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Abstract

One goal of the structural genomics initiative is the iden-
tification of new protein folds. Sequence-based structural
homology prediction methods are an important means for
prioritizing unknown proteins for structure determination.
However, an important challenge remains: two highly dis-
similar sequences can have similar folds — how can we
detect this rapidly, in the context of structural genomics?
High-throughput NMR experiments, coupled with novel al-
gorithms for data analysis, can address this challenge. We
report an automated procedure, calledHD, for detecting
3D structural homologies from sparse,unassignedprotein
NMR data. Our method identifies 3D models in a pro-
tein structural database whose geometries best fit the unas-
signed experimental NMR data.HD does not use, and
is thus not limited by sequence homology. The method
can also be used to confirm or refute structural predic-
tions made by other techniques such as protein threading
or homology modelling. The algorithm runs inO(pn +
pn5/2 log (cn)+p log p) time, wherep is the number of pro-
teins in the database,n is the number of residues in the tar-
get protein andc is the maximum edge weight in an integer-
weighted bipartite graph. Our experiments on real NMR
data from 3 different proteins against a database of 4,500
representative folds demonstrate that the method identi-
fies closely related protein folds, including sub-domains of
larger proteins, with as little as 10-30% sequence homology
between the target protein (or sub-domain) and the com-
puted model. In particular, we report no false-negatives or
false-positives despite significant percentages of missing ex-
perimental data.
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1 Introduction

An important goal of the structural genomics initia-
tive [29] is the identification of all protein folds in na-
ture. While a great many folds have been observed, it
is believed that still more exist and have yet to be deter-
mined experimentally. Unfortunately, determining a pro-
tein’s structure experimentally, via X-ray crystallography
or Nuclear Magnetic Resonance (NMR), is very costly and
time-consuming. Consequently, it is necessary to prioritize
different proteins for structure determination based on the
likelihood they will lead to new folds. It is known that pro-
teins having high sequence homology are very likely to have
high structural homology. Therefore, it is reasonable to pri-
oritize those proteins with low (< 30%) sequence identity
to known structures. However, it is not uncommon for two
dissimilar amino acid sequences to fold to the “same” ter-
tiary structure. For example, the RMSD between the hu-
man ubiquitin structure (PDB Id 1D3Z) and the structure
of the Ubx Domain from human Faf1 (PDB Id 1H8C) is
quite small (1.9Å), yet they have only 16% sequence iden-
tity (Fig. 1). Predicting structural homology given low
sequence identity poses a difficult challenge for sequence-
based homology predictors.Detectingstructural homology
is relatively easy, once the structure is determined experi-
mentally. We ask: is there a set of very fast, cheap exper-
iments that can be analyzed to rapidly detect 3D structural
homology, without resorting to full-blown structure deter-
mination?

This paper presents a new method for structural ho-
mology detection that takes advantage of high-throughput
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solution-state NMR. Our algorithm, calledHD, computes
the likelihoodP(M |D), whereD is a set of sparse, unas-
signed NMR data, andM is a model taken from a database
of protein structures. Backbone resonance assignments are
needed to compute this likelihood and we apply the tech-
nique of Nuclear Vector Replacement (NVR) [22, 24, 25] to
perform backbone amide resonance assignments given the
model. The key idea behind our method is that structurally
homologous proteins give rise to similar data, regardless of
sequence identity. An important advantage ofHD is that
the required experimental NMR data can be recorded in
about 2 days, far less than the weeks of data acquisition re-
quired for full-blown structure determination via NMR. In
this way, the algorithm can detect homology early on in the
discovery process.HD may also be used in conjunction with
techniques such as protein threading [26, 42], and compu-
tational homology modelling [6, 13, 14, 18, 33], providing
experimental validation of the computational predictions.

HD is demonstrated on NMR data from 3 proteins against
a database of 4,500 representative folds determined either
by X-ray crystallography or by NMR. We report no false
positives or false negatives in detecting structural homolo-
gies between proteins with less than 30% sequence identity.
We also report the successful detection of homology to a
sub-domain of a larger protein.

1.1 Organization of paper

We begin, in Section 2, with a review of the specific
NMR experiments used in our method, highlighting their in-
formation content. Section 3 describes existing techniques
for homology detection. In section 4, we give the details of
theHD algorithm and analyze its computational complexity.
Section 5 reports the results ofHD on real NMR data from
three different proteins.

2 Background

Atomic nuclei having the quantum property of spin> 0
resonate when subjected to radio-frequency energy in a
strong magnetic field. The resonant frequency (orchemi-
cal shift) is determined by a number of factors including
the atom type (1H, 15N, 13C, etc.) and the local electronic
environment surrounding the nucleus. An NMR spectrom-
eter records these resonant frequencies as time-domain sig-
nals. These time-domain signals are almost always ana-
lyzed and interpreted in the frequency-domain, where reso-
nances manifest as peaks in a spectrum. NMR data cap-
ture interactions between spin systems (tuples of atomic
nuclei) in R2, R3, or R4, where the axes are the chemi-
cal shifts of the constituent nuclei. For example, our al-
gorithm processes the 2-dimensional15N-edited Heteronu-
clear Single-Quantum Coherence (HSQC) spectrum, where

each peak identifies an amide (bonded HN and15N atoms)
pair. Proteins are linear-polymers of amino acids and the
backbone of every amino acid (except proline), has a sin-
gle amide group. Thus, in an ideal HSQC spectrum, each
residue (amino acid) in the protein gives rise to a single,
well-defined peak.∗

The process of mapping each peak to the spin-system
that generated it is known asassignment. For the purposes
of exposition, we will equatespin-systemwith residueas
per the particular set of NMR data upon which our algo-
rithm operates. Hence, we will (re)define assignment as the
mapping of peaks to residues. The resonance assignment
problem is, in fact, equivalent to the well-studied assign-
ment problem from combinatorial optimization [19]. LetR
be the set of residues in the primary sequence of the pro-
tein (except prolines and theN -terminus). LetK be the set
of peaks in the HSQC. One can imagine constructing a bi-
partite graph onR andK as follows: B = {K ∪ R,E},
whereE = K × R. Given some suitable means for com-
puting a weight for each edgee ∈ E, w : K ×R→ R, one
could imagine applying a standard algorithm for computing
maximum bipartite matchings, such as the Kuhn-Munkres
algorithm [19], for solving the resonance assignment prob-
lem. Indeed, maximum bipartite matching has been applied
to resonance assignment by a number of algorithms (e.g.,
[17, 43, 22]).

Our method for detecting homology works as follows.
Each model in a database of structures is used to compute a
(different) set of assignments that correlate the experimen-
tal NMR data to the model. These assignments are made
within a probabilistic framework, which we describe in Sec-
tion 2.1. Consequently, we can compute the likelihood of
the assignments, and therefore the model. The intuition is
that a homologous structure should “fit” the data better than
an unrelated structure.

The experimental inputs toHD are detailed in Table 1.
HD calls the NVR algorithm as a subroutine. NVR com-
putes assignments by correlating geometric constraints to
a given model of the protein’s structure. These constraints
are extracted directly from the NMR data. We will summa-
rize these constraints here. All NMR data input to NVR
is unassigned. An assay for measuring amide-exchange
rates serves to identify resonant peaks associated with la-
bile, solvent-accessible amide protons. NVR also uses HN-
HN NOE’s (dNNs) and residual dipolar couplings (RDCs).
dNNs may be observed between pairs of amide protons that
are within approximately 5̊A of each other.dNNs arelocal
measurements. In contrast, RDCs [37, 38] provideglobal
orientational restraints on internuclear bond vectors. We

∗In practice however, peaks often overlap and some may not appear
at all due to intra-molecular dynamics. These issues are just some of the
challenges faced when analyzing NMR data. Prolines and theN -terminus
do not, of course, generate amide peaks.



Figure 1. The backbone alignment of PDB Id 1D3Z (light grey/gold) and 1H8C (dark grey/blue). The RMSD between the proteins
is only 1.9Å, yet they have only 16% sequence identity.

note that RDCS are theonly global measurement that can
be made using NMR and that the techniques for recording
RDCs from proteins in solution were first reported in 1995
[38]. For good introductions to RDCs see [34, 27, 37]. For
each RDCd, we have

d = dmaxvT Sv, (1)

wheredmax is a constant, andv is the internuclear vector
orientation relative to an arbitrary substructure frame and
S is the3 × 3 Saupe order matrix[34]. S is a symmetric,
traceless, rank 2 tensor with 5 degrees of freedom, which
describes the average substructure alignment in the dilute
liquid crystalline phase. We will refer toS as thealignment
tensor. S is initially an unknown; various methods for es-
timating S from unassigned data exist (e.g., [25, 45, 44]).
Given assignments of five or more RDCs in substructures
of known geometry,S can be determination using singular
value decomposition [27].

OnceS has been determined, RDCs may be simulated
(back-calculated) given any other internuclear vectorvi. In
particular, suppose an (HN,15N) peaki in an HSQC spec-
trum is assigned to residuej of a protein, whose crystal
structure is known. Letdi be the measured RDC value cor-
responding to this peak. Then the RDCdi is assigned to
amide bond vectorvj of a known structure, and we should
expect thatdi ≈ dmaxvT

j Svj (modulo noise, dynamics,
crystal contacts in the structural model, etc). In this way,
back-computed RDCs can be used to generate constraints
on assignment.

2.1 Nuclear Vector Replacement

In this section, we will briefly summarize the NVR al-
gorithm [22]. NVR is divided into two phases,Tensor De-
terminationandResonance Assignment. In the first phase,
chemical shift predictions,dNNs, and amide exchange rates
are correlated with a given structural model of the protein
to make a small number of assignments using Expecta-
tion/Maximization (EM). Specifically, this phase attempts

to assign at least 5 peaks for the purpose of determining the
alignment tensors directly. The tensors are then used to con-
vert RDCs into probabilistic constraints. Algorithmically,
the only difference between phases 1 and 2 is that phase 1
does not use RDCs (because the tensors have not yet been
determined).

2.1.1 Expectation/Maximization

We outline in this section the EM algorithm, a variation of
which is used in both the first and second phases of NVR.
EM has been described previously [11]. EM is a statistical
method for computing the maximum likelihood estimates of
parameters for a generative model. EM has been a popular
technique in a number of different fields, including machine
learning and computer vision. It has been applied to bipar-
tite matching problems in computer vision [9]. In the EM
framework there are both observed and hidden (i.e., unob-
served) random variables. In the context of NVR, the ob-
served variables are the chemical shifts,dNNs, amide ex-
change rates, RDCs, and the 3D structure of the target pro-
tein. LetX be the set of observed variables.

The hidden variablesY = YG ∪ YS are the true (i.e.,
correct) resonance assignmentsYG, andYS , the correct, or
‘true’ alignment tensor. Of course, the values of the hid-
den variables are unknown. Specifically,YG is the set of
edge weights of a bipartite graph. The weightsYG rep-
resentcorrect assignments, and therefore encode a perfect
matching inG. Hence, for each peakk ∈ K (respectively,
residuer ∈ R), exactly one edge weight fromk (respec-
tively r) is 1 and the rest are 0. The probabilities on all
variables inY are parameterized by the ‘model’, which is
the setΘ of all assignments made so far by the algorithm.
Initially, Θ is empty. As EM makes more assignments,
Θ grows, and both the probabilities on the edge weights
YG and the probabilities on the alignment tensor values
YS will change. The goal of the EM algorithm is to esti-
mateY accurately to discover the correct edge weightsYG,
thereby computing the correct assignments. The EM algo-
rithm has two steps; the Expectation (E) step and the Max-



Experiment/Data Information Role
Content

HN-15N HSQC HN,15N Chemical shifts Backbone resonances,
Cross-referencing NOESY

HN-15N RDC (in 2 media) Restraints on amide Tensor Determination,
bond vector orientation Resonance Assignment,

H-D exchange HSQC Identifies solvent exposed Tensor Determination
amide protons

HN-15N HSQC-NOESY Distance restraints Tensor Determination,
between spin systems Resonance Assignment

15N TOCSY Side-Chain Chemical Shifts Tensor Determination,
Resonance Assignment

Backbone Structure Tertiary Structure Tensor Determination,
Resonance Assignment

Chemical Shift Restraints on Tensor Determination,
Predictions Assignment Resonance Assignment

Table 1. Experiment Suite: The 6unassignedNMR spectra used by our algorithm to perform homology detection. The HSQC
provides the backbone resonances to be assigned. HN-15N RDC data in two media provide independent, global restraints on the
orientation of each backbone amide bond vector. The H-D exchange HSQC identifies fast exchanging amide protons. These amide
protons are likely to be solvent-exposed and non-hydrogen bonded and can be correlated to the structural model. A sparse number (<
1 per residue, on average) of unassigneddNNs can be obtained from the NOESY. ThesedNNs provide distance constraints between
spin systems which can be correlated to the structural model. The15N TOCSY is used to measure1H side-chain resonances. These
resonances are useful in eliminating certain amino acid types from consideration when performing assignments. Chemical shift
predictions are used as a probabilistic constraint on assignment.

imization (M ) step. TheE step computes the expectation
E(Θ∪Θ′|Θ) = E(log P(X, Y |Θ∪Θ′)). Here,Θ′ is a non-
empty set of candidate new assignments that is disjoint from
Θ. TheM step computes the maximum likelihood new as-
signmentsΘ∗, Θ∗ = argmax

Θ′
E(Θ∪Θ′|Θ). The master list

of assignments is then updated,Θ← Θ∪Θ∗. Thus, on each
iteration, the EM algorithm makes the most likely assign-
ments. The algorithm terminates when each peak has been
assigned. NVR runs in timeO(n5/2 log (cn)), wheren is
the number of amino acids in the protein andc is the max-
imum edge weight in an integer-weighted bipartite graph
[23]. For reference,c is a constant and dictated by the res-
olution of the NMR data. The NVR algorithm is described
in detail in [22].

3 Related Work

Xu and co-workers [42] have also attacked homology de-
tection using sparse NMR data. Their method extends pro-
tein threading by incorporating a sparse set of NOE data.
Their method requires assigned NOEs while our method
works on unassigned NMR data.

Assigned RDCs have been used for homology detec-
tion [1, 3]. In contrast, our algorithm processes unassigned
NMR data. This is a significant distinction. Assigning
NMR data typically requires many days of data acquisition
followed by several days of data analysis. Moreover, as-

signed RDCs can be used to compute the alignment tensor,
S, directly. Our method calls NVR as a subroutine, and
thus simultaneously performs tensor estimation, resonance
assignment, and homology detection.

Unassigned NOEs [12] and unassigned RDCs [21, 39]
have also been used for homology detection. [21] and [39]
both estimate the alignment tensorS by first estimating the
eigenvalues ofS and subsequently, its eigenvectors via a
discrete rotation search overSO(3). In both cases,S can
be estimated in timeO(pnk3 +p log p) wherep is the num-
ber of proteins in the database,n is the number of amino
acids in the protein, andk is the resolution of a grid over
SO(3). The two techniques measure structural homology
by computing the similarity of the distribution of (unas-
signed) experimentally recorded RDCs to an expected set
of RDCs. The technique presented in [39] takes advan-
tage of the fact that the backbone amide bond vectors in
anα-helix are roughly parallel, and therefore generate (ap-
proximately) the same RDC value. Their method counts the
number ofα-helices in the protein, and then estimates their
relative size and orientation. The number, sizes and orien-
tation of these helices are compared to putative homologs.
Their method does not attempt to estimateβ-structure and
therefore does not generalize to all protein structures. In-
deed, their method was only demonstrated on one protein
(F1Fo ATP Synthase) which is 84%α-helical and contains
noβ structure. In contrast, the method we presented in [21],
calledGD, imposes no bias on the secondary structure char-



acteristics of the protein and was demonstrated on a vari-
ety of different proteins with different secondary structure
characteristics.GD reported no false negatives in detecting
homology against a database of 2,500 structures. Unfortu-
nately, GD did report a number of false-positives at a rate
of about 2%. These false-positives are the main motivation
for the algorithm presented in this paper (HD). HD is very
different thanGD. HD processes more NMR data thanGD

and requires no rotation search overSO(3). The computa-
tional complexity ofHD is O(pn+pn5/2 log (cn)+p log p)
vs. O(pnk3 + p log p) for GD. Thus,HD is faster (when
k ≥ O(n2/3)) and has no dependency onk. In practice it
takes only minutes to process each protein. Conservative
heuristics are also employed to eliminate much of database
from consideration early such that the entire database can be
processed in under an hour. More important,HD generated
no false positives or false negatives in our experiments.

The HD algorithm is an example of ‘structural homol-
ogy detection by NMR resonance assignments’, which was
suggested in [21]. Recently [28], Meiler and Baker have in-
troduced a technique for homology detection and fold deter-
mination from unassigned15N and13C labeled data.HD re-
quires only15N labeling. This confers a significant advan-
tage in terms of cost, as13C labeling is an order of mag-
nitude more expensive than15N labeling.Moreover, Meiler
and Baker’s method are based on Neural Networks, fuzzy-
logic, and Monte Carlo sampling.HD, in contrast, is built
upon combinatorially precise algorithms. However, the pre-
processing beforeHD currently uses bioinformatics tools
such asHNN [15], which is not combinatorially precise.

4 Details of theHD algorithm

4.1 Preprocessing

We first assembled a database of 4,496 structural models
from the Protein Data Bank (PDB [5]) representing a variety
of different fold-families. Lett be the target protein. That
is, t is the protein whose structure we are trying to determine
via HD. Let M be the set of protein models in the database.
Let m ∈ M be a model in the database. Lets(m) be the
primary sequence ofm ∈ M , and lets(t) be the primary
sequence oft.

Using the programHNN [15], we estimate the secondary
structure of the target protein using its primary sequence,
s(t). HNN was chosen specifically because it performs sec-
ondary structure predictionswithoutperforming a sequence
alignment to known structures.HNN makes predictions us-
ing a neural network. We note that none of our test proteins
were present in the training set used to trainHNN. There-
fore, our algorithm does not gain an unfair advantage based
on sequence similarity to known structures.

The database is then filtered using the secondary struc-
ture prediction and the length oft. Briefly, structures are
discarded that have very different secondary structure com-
position or are significantly longer or smaller thant. The
interested reader is directed to Appendix A.1 for details of
the filtering criteria. LetW ⊆M be the set of proteins that
satisfy the constraints of the filters.

Next, for each modelm ∈ W , we use the homology
modelling programMODELLER [32] to perform both se-
quence alignment betweens(t) ands(m), and subsequently
build a backbone model fort based on the backbone struc-
ture ofm ∈W .

4.2 Using NVR

Let T ′ be the set of models constructed byMODELLER

from m ∈ W . The functionNVR(t′, D) takes as input a
modelt′ ∈ T ′ and a sparse set of NMR data,D, and returns
an assignmentA. We runNVRfor each model inT ′.

We next compute the likelihood of an assignment,A,
given the data. To do this, we must describe in more de-
tail the inner mechanisms of NVR. The algorithm in this
paper uses a slightly modified form of the NVR algorithm
in [22]. We will indicate the changes we made in the fol-
lowing paragraphs. In this paper, we equate the likelihood
of the assignment with the likelihood of the model. That is,
P (A|D) = P (m|D).

As discussed in Section 2.1, NVR uses a probabilistic
framework to assign the peaks in the HSQC spectrum. In
particular, NVR constructs seven weighted bipartite graphs
encoding seven different probability distributions on assign-
ment. LetR be the set of residues in the model (as con-
structed by the programMODELLER). Let K be the set of
peaks in the HSQC. Each bipartite graph is defined as fol-
lows: B = {K ∪ R,E}, whereE = K × R. Each edge
e ∈ E is weighted,w : K × R → R+ ∪ {0}. The edge
weights from each peakk ∈ K are normalized so that they
form a probability distribution. If there are missing peaks
in the HSQC then|K| < |R|. In this casedummypeaks are
added to the setK until |K| = |R|.

The first bipartite graph is constructed using amide ex-
change rates experimentally measured by NMR. Amide ex-
change rates are indicative of solvent accessibility and hy-
drogen bonding. The programRASMOL is used on the in-
put model to identify the residues with hydrogen-bonded
backbone amides. A uniform probability is given over
any slow exchanging peak and these residues. Edges from
non-hydrogen bonded surface residues to slow-exchanging
peaks are given a default probability ofε. This is the first
difference between the algorithm in this paper and the NVR
algorithm as presented in [22, p. 131]. In the unmodified
NVR algorithm, we immediately setε = 0, effectively dis-
allowing such an assignment. This is appropriate when the



input model has very high (> 90%) sequence homology
to the target protein. In that case, we expect the hydro-
gen bonding patterns to be the same. In a homologous
protein, however, the structures are somewhat different and
may have different hydrogen bonding patterns. This is es-
pecially true of the models we constructed using theMOD-
ELLER program. In this case, it is appropriate to set the as-
signment probability to a low, but non-zero value. LetBHD

be the bipartite graph constructed using the amide exchange
data. ConstructingBHD takesO(n2) time.

Next, the model is used to predict the chemical shifts
of the backbone amide protons and nitrogens. The chem-
ical shifts of each peakk ∈ K are given byω(k) =
(ωH(k), ωN (k)), whereωH(k) andωN (k) are the amide
proton and nitrogen chemical shifts, respectively. The dif-
ference between these experimentally determined chemical
shifts and the set of predicted chemical shifts are used to
compute probabilities which, in turn, become edge weights
on a bipartite graph:w(k, r) = P(k 7→ r) = f(k, r),
wherek ∈ K andr ∈ R. Here,f(k, r) = N (ωH(k) −
µH(r), σH(r))N (ωN (k) − µN (r), σN (r)). The function
N (x − µ, σ) is the probability of observing the difference
x − µ in a normal distribution with meanµ and standard
deviationσ. That is,

N (x− µ, σ) =
1

σ
√

2π
exp

(
− (x− µ)2

2σ

)
. (2)

Thus, the probabilities are computed using two one-
dimensional Gaussian distributions (one for proton shifts,
one for nitrogen shifts) with meansµ(r) and standard de-
viation σ(r). We are thus implicitly assuming that the two
dimensions are independent. More sophisticated treatments
that model the covariance between the two dimensions are
worth investigating.

Three different methods for backbone chemical shift pre-
diction are used resulting in three different bipartite graphs.
The first method applies statistics from the BioMagRes-
Bank (BMRB) [36]. LetBbmrb be the bipartite graph whose
edges are computed using the statistics from the BMRB.
The programsSHIFTS [41] andSHIFTX [30] are also used
to compute chemical shift predictions using the model. Let
Bshifts andBshiftx be the bipartite graphs whose edges are
computed using the statistics computed from the programs
SHIFTS and SHIFTX, respectively. ConstructingBbmrb,
Bshifts andBshiftx takesO(n2) time. A detailed expla-
nation of the construction of these graphs, including the es-
timating of the variousµ’s andσ’s, is presented in [22].

The final modification we have made to the NVR al-
gorithm is the incorporation of data from the15N TOCSY
[7]. The15N TOCSY measures the chemical shifts of side-
chain protons. These side-chain chemical shifts are mapped
to the peaks in the HSQC. Differences between the native

structure and the model built usingMODELLER will perturb
the chemical shift predictions. The15N TOCSY partially
compensates for these differences. The number of observed
side-chain peaks is indicative of amino acid type. For exam-
ple, modulo noise, if a given residue gives rise to more than
two side-chain peaks, it cannot possibly be a Glycine, be-
cause Glycine has only two Hα protons. The actual frequen-
cies of the side-chain resonances are also indicative of the
amino acid type. Note, the15N TOCSY does not uniquely
identify the amino acid type associated with each peak. For
example, it is often the case that some of the side-chain res-
onances are missing from the data. Thus, the15N TOCSY
is more useful for ruling out certain amino acid types.

The fifth bipartite graph,Btocsy, is constructed as fol-
lows. If the number of side chain resonances fork ∈ K ex-
ceeds the number of side-chain protons for a given amino-
acid typet, the edge-weights betweenk and and any in-
stance of amino acid typet in the primary sequence of the
protein is set to 0. Otherwise, the edge-weight is com-
puted as the joint probability of the individual side chain
resonances. The marginal probabilities are computed us-
ing Gaussian distributions. More sophisticated means for
modeling assignment likelihoods using TOCSY resonances
have been employed in theJIGSAW algorithm [4]. It would
be interesting to include these techniques into NVR.

The final two bipartite graphs are constructed using the
experimentally determined RDCs. As previously men-
tioned, the NVR algorithm has two phases. In the first
phase, a small number of assignments are made using the
probability distributions encoded inBHD, Bbmrb, Bshifts,
Bshiftx andBtocsy. Once 5 assignments are made, we can
determine the alignment tensors for the two RDC media us-
ing SVD. LetS1 andS2 be the alignment tensors computed
using the assignments inΘ for media 1 and 2, respectively.
Each order matrix is used to back-compute a set of expected
RDCs from the model using Eq. (1). LetDm be the set of
observed RDCs in mediumm, andFm be the set of back-
computed RDCs using the model andSm. Two bipartite
graphsBS1 andBS2 are constructed on the peaks inK and
residues inR. The edge weights are computed as probabil-
ities as follows:w(k, r) = P(k 7→ r|Sm) = g(k, r) where
k ∈ K andr ∈ R. Here,g(k, r) = N (dm(k)−bm(r), σm),
wheredm(k) ∈ Dm, bm(r) ∈ Fm. Thus, the probabilities
are computed using a 1 dimensional Gaussian distribution
N (Eq. (2)) with meandm(k) − bm(r) and standard de-
viation σm. We usedσ = L/8 Hz in all our trials, where
L is the range of the RDCs in that medium (the maximum-
valued RDC minus the minimum valued RDC). If an RDC
is missing in mediumi for a peakk, then we set the weight
w(k, r) = 1/n0 in bipartite graphB, for each residuer of
then0 remaining (i.e.,unassigned) residues. Constructing
BS1 andBS2 takesO(n2) time.

In summary, there are seven bipartite graphs encod-



Protein Homolog Sequence RMSD HD-score
Identity

Ubiquitin 1H8C:A 26.8% 1.8Å -7.65
1RFA 15.9% 2.2Å -8.69
1VCB:B 11.8% 1Å -8.31
1EF1:A [4-84] 10% 1.6Å -8.50

GαIP 1DK8:A 28.7% 1.8Å -7.18

SPG 1JML:A 12.8% 1.8Å -9.27
1HEZ:E 12.7% 2.0Å -9.65

Table 2. Homologous Structures with low sequence similarity detected byHD. Column one lists the three test proteins.
Column 2 lists the PDB Id and chain Id for the structures detected byHD. Column 3 lists the sequence identity of the proteins in
column 1 and the primary sequence of the structure in column 2. Column 4 lists the backbone RMSD between the structures in
column 2 and the native structures of the the proteins in column 1. The native structures for Ubiquitin, GαIP and SPG were taken
as 1D3Z, 1CMZ and 3GB1, respectively. Column 5 lists the score computed by our algorithmHD. Higher-HD scores (closer to 0)
indicate closer structural similarity. Note that this table does not include those structures detected byHD which have more than 30%
sequence identity (see text).

ing seven different probability distributions on assignment.
Constructing these graphs takesO(n2) time. NVR uses
these bipartite graphs and iteratively assigns each peak in
the HSQC. Following assignment, we can then go back
and compute the likelihood of the assignments. LetB =
{BHD, Bbmrb, Bshifts, Bshiftx, Btocsy, BS1 , BS2}. The
edge and vertices are identical for every element ofBi, only
the edge-weights differ.Combine-Graphs is a function
that takes as input a set of bipartite graphs and returns a new
bipartite graph [22]. The edge weights of the output graph
are the joint probabilities of the edges in the input graphs:

w(k, r) =
∏
i∈B

wi(k, r). (3)

Let H = Combine-Graphs (B). Given an assignment
A ⊂ K×R, as computed by NVR, we can compute the ex-
pected log-likelihood of that assignment using the bipartite
graphH:

L(A|H) =
1
|A|

∑
i∈A

log wi, (4)

We have found that the expected log-likelihood is more
robust than the total log-likelihood to small differences be-
tween the protein’s native structure and the homologous
structure.

Recall thatW is the set of putative homologous struc-
tures from our database. We compute an assignmentA and
the bipartite graphH for eachm ∈W using NVR. We then
rank eachm ∈W byL(A|H).

We now analyze the computational complexity ofHD.
Let p be the number of proteins in the databaseM . Apply-
ing the various filters takesO(n) time for eachm ∈ M .
Now, let q = |W |, that is, the number of proteins that

pass the filter. In our experiments,q is typically very small
(< 10). The HD algorithm calls NVR as a subroutine on
eachm ∈ W . The NVR algorithm takesO(n5/2 log (cn))
time [23], wheren is the number of residues in the protein
andc is the maximum edge-weight in an integer-weighted
bipartite graph. We note that in NVR,c is determined by
the resolution of NMR data. NMR data is, in general,
accurate to no more than 5-6 significant digits. Conse-
quently, settingc = 107 suffices. Thus,q proteins can
be processed inO(qn5/2 log (cn)) time. Sorting the mod-
els byL(A|H) takes timeO(q log q), for a total runtime of
O(pn+qn5/2 log (cn)+q log q). In our experiments, the en-
tire database of 4,500 structures was filtered, assigned, and
the HD-score computed in about an hour. To exhaustively
rankall of the proteins inM (i.e., without applying the fil-
ters), takesO(pn + pn5/2 log (cn) + p log p) time. Clearly,
it is trivial to parallelizeHD.

5 Results and Discussion

Our goal was to identify structural homology between
proteins with less than 30% sequence identity. While there
are over 18,000 protein structures deposited in the PDB to
date, only a small handful of these proteins have RDC data
(as required byHD) published in the BMRB. This is due,
in part, to the fact that the recording of RDCs in solution
has only recently been perfected. In contrast, NOE data is
available for thousands of proteins. Unfortunately, simulat-
ing RDC data is difficult for two reasons. First, one needs
to predict the alignment tensor for a given medium. This
devolves to simulating the tumbling dynamics for the inter-
action of the protein with the aligning mediumin solution.
This is, in general, difficult to do. Furthermore, it is dif-



ficult to create an accurate noise model because the noise
in real experimental RDC data is governed in part by such
factors as the internal dynamics of the protein. We felt that
we could not reasonably simulate realistic RDC data. Thus,
the number of proteins we tested was limited by the con-
tents of the BMRB. Only 5 proteins have the necessary pub-
lished data. Of these, only 3 have structural homologs that
have less than30% sequence identity; the 76-residue human
ubiquitin (PDB Id 1D3Z [8]), the 56-residue streptococcal
protein G (SPG) (PDB Id 3GB1 [20]), and the 128-residue
Gα Interacting Protein (GαIP) (PDB Id 1CMZ [10]). We
will refer to these proteins as ourtest proteins. Experimen-
tal data for 3 different proteins is considered to be a more
than adequate test suite by the NMR community [40], and
many new computational protocols are tested on only one
protein (e.g., [17, 39]).

Table 2 lists the homologous protein structures with low
sequence similarity detected using theHD algorithm. Each
of the models in Table 2 has an RMSD less than2.3Å to
the native structure of the test protein. Thus, we report
no false positives from our experiments on three differ-
ent proteins against a database of 4,496 protein structures.
Moreover, no significant similarity was detected between
the primary sequences of 2 of our test proteins (Ubiqui-
tin and SPG) and their respective homologs using NCBI’s
pair-wise BLAST analysis using a threshold of 10. For
the third protein (GαIP), a modest similarity was observed
(E = 5 × 10−8). The only other structures identified by
HD were indeed structurally homologous, but had> 30%
sequence homology to our test proteins. For example, the
protein SPG was (correctly) identified as being homologous
to the structure 2IGD. 2IGD has an RMSD of0.6Å to 3GB1
(SPG’s native structure) but the two proteins have 87.5% se-
quence identity. Hence, predicting homology between SPG
and 2IGD would have been easy using sequence-alignment
techniques. However, it is completely correct forHD to de-
tect the SPG-2IGD homology, so this is not a false-positive,
but rather an easy case. For comparison,HD computes a
score of -5.03 for 2IGD, which is higher (i.e., fits the data
better) than the scores reported in Table 2 for 1JML (-9.27)
and 1HEZ (-9.65). We also report no false negatives for
structures with backbone RMSDs less than2.3Å.

We next set out to determine the relationship between the
score computed byHD, and backbone RMSD. We searched
our database and identified a subset of structures having be-
tween 2.4 and 11̊A backbone RMSDand less than30% se-
quence identity to our three test proteins. We will refer to
these structures as ourcomparison set. See Table 3 for de-
tails of the comparison set. We ran NVR and computed the
HD-score for the structures in the comparison set. TheHD-
scores computed for the comparison set are lower than the
scores listed in Table 2, reflecting the fact that the structures
in the comparison set are less similar to the test proteins.

Protein Homolog Sequence RMSD HD-score
Identity

Ubiquitin 1C9F:A 12.1% 3Å -17.52
1XGM:A 6.1% 4.6Å -18.52
1ESR:A 0% 5.9Å -15.21

GαIP 1VLK 8.2% 3.6Å -26.65
1I4Y:D 4.8% 4Å -28.06
1SWG:A 0% 4.5Å -26.38
1B33:D 5.8% 4.9Å -22.08
1CFC 5.1% 6.1Å -28.48
1J95:A 0% 7.7Å -23.37
1IDR:B 5.2% 8Å -25.61
1E8E:A 7.1% 9.4Å -35.18
1IDR:A 5.2% 10.9Å -33.90

SPG 1EX4:B 8.7% 2.5Å -19.04
1EXQ:B 6.2% 3Å -31.04
1MPG:A 7.3% 4.4Å -26.31
1DH3:A 0% 5Å -17.27

Table 3. Comparison SetThe structures in this table
comprise our comparison set. These structures correspond
to the blue filled-in diamonds in Figure 2.

Note that the scores in column 5 of Table 2 are all greater
than -10.0. None of the structures in the comparison set had
a score higher than -15.2. The meanHD-score for the struc-
tures listed in Table 2 is -8.5, while the meanHD-score for
the comparison set is -24.7. At-test reports a significance
of 6.8 × 10−7 between the means of the two distributions
of HD-scores. Figure 2 shows the relationship between the
HD-score and the RMSD. The score computed byHD is cor-
related with RMSD (correlation coefficient = -0.75).

5.1 Sub-domain Detection

As indicated in Table 2, one of the homologs of 1D3Z
(ubiquitin) is a subdomain of a larger protein, 1EF1
(Moesin). To obtain these results, we used the program
PDP[2] to predict the domain boundaries in 1EF1.PDPpre-
dicted 3 sub-domains (residues 4-84, 85-202, and 203-297).
Residues 4-84 are homologous to ubiquitin and it was this
sub-domain that was detected by our algorithm. In prin-
ciple, a program likePDP could be used to process every
entry in an initial database of structures. Any extracted sub-
domains could be added to the database.

5.2 Missing Data

The Expectation/Maximization method, upon which
NVR is based, is known to be robust to missing and cor-
rupted data [22]. Our algorithm for homology detection
inherits this same property. Table 4 summarizes the data
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Figure 2. HD-score vs. RMSD: Scatter plot of the score computed by our algorithm vs. backbone RMSD. The red open
diamonds are the structures in Table 2. The blue solid diamonds are the structures in our comparison set (see text). The line is a
least-squares fit to the data. The correlation coefficient is -0.75.

Protein HSQC Peaks RDCs
Observed “missing” #, (%) Observed “missing” #, (%)

medium 1 medium 2 medium 1 medium 2
Ubiquitin 70 2, (3%) 65 64 7 (10%) 8, (11%)

SPG 55 0, (0%) 48 46 7 (13%) 9, (16%)
GαIP 122 6, (5%) 70 66 58 (45%) 62, (48%)

Table 4. Missing Data. The data processed on our experiments contained both missing peaks and missing RDCs. By missing,
we mean that if the protein hasn amino acids (excluding prolines and theN -terminus), then the ideal HSQC spectrum should have
n peaks. Ideally,n RDCs should also be recorded for each medium. In reality, some data is not obtainable. Column 2 indicated the
number of HSQC peaks contained in our experimental data. Column 3 indicates the number of missing HSQC peaks (number of
expected peaks− number of observed peaks). Columns 4-5 indicate the number of RDCs obtained in media 1 and 2. Columns 6-7
indicate the number of missing RDCs in media 1 and 2. The modified NVR algorithm inHD processed all data as-is, and handles
missing data.

processed in our experiments on 3 proteins. In theory, the
HSQC spectrum should contain one peak per residue in the
protein (except prolines, and theN -terminus). In reality,
some peaks may be “missing” from the spectrum. For ex-
ample, the ubiquitin HSQC data processed by NVR lacks
peaks for Glu24 and Gly53. Furthermore, it is not al-
ways possible to record two RDCs for each backbone amide
group. The ubiquitin RDC data processed by NVR lacks
RDCs for residues Thr9, Glu24, Gly53, Leu73, Arg74,
Gly75, and Gly76 in one medium, and for residues Thr9,
Glu24, Gly53, Arg72, Leu73, Arg74, Gly75, and Gly76 in
the other. Our algorithm processed the data as-is and han-
dles missing data directly. Missing data is handled in NVR
with unbiased estimates. For example, in the ubiquitin data
set, it is clear that two peaks are missing from the HSQC be-
cause we expect to see 72 peaks (76 residues− 3 prolines

− N -terminus = 72), and only 70 peaks are present. In
this case, the algorithm constructs and includes 2 “dummy”
peaks that are interpreted as follows. Each dummy peak
is assigned a uniform probability (P = 1/72) to match all
72 expected residues when computing assignment proba-
bilities using chemical shift data. That is, an unbiased (uni-
form) probability distribution is used. Similarly, if an RDC
is missing in one or both media an unbiased probability dis-
tribution is used when computing assignment probabilities
using RDCs. As shown in Table 4, our algorithm performed
well on data sets that contained up to 5% missing HSQC
peaks and up to 48% missing RDCs.



6 Conclusion

We have described a fast, automated procedure for struc-
tural homology detection from sparse unassigned NMR
data. The relationship between structure and function is
strong, thus our algorithm can be used to help characterize
the function of new proteins. Perhaps more important, ho-
mology can be detected very early based on a sparse, fast,
and inexpensive set of NMR experiments, without resort-
ing to full-blown structure determination.HD identifies the
3D structural models in a protein structural database whose
geometries best fit the unassigned experimental NMR data.
The algorithm runs inO(pn+pn5/2 log (cn)+p log p) time,
wherep is the number of proteins in the database,n is the
number of residues in the target protein, andc is the max-
imum edge-weight in an integer-weighted bipartite graph.
The NMR data required by our algorithm can be recorded
in about 2 days, far less than the time required for full-blown
structure determination via NMR.

Our method has been tested on NMR data from 3 test
proteins against a protein structure database containing al-
most 4,500 models. No false negatives or positives were
observed, despite i) sequence identities of less than 30%
between the target and homolog and ii) significant amounts
of noise and missing data. Our method was also able to cor-
rectly identify structural homology between ubiquitin and
a sub-domain of the protein moesin. Thus, the method is
both robust and accurate, suggesting the possibility that it
may be useful in structural genomics.
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A Appendix

Here, we describe, in detail, the filtering steps applied by
HD prior to the application of NVR. The variable names in
this section are defined in the main body of the paper. Table
3 details the contents of our comparison set.

A.1 Filtering Steps

The first step in theHD algorithm is to apply a series
of conservative filters to eliminate various structures from
consideration. The first filter eliminates entries based on
the length of their primary sequences. In particular we only
consider models whose length is within±30% of the length
of s(t). Let U ⊆M be the set of proteins that pass this first
filter. Next, using the programHNN [15], we estimate the
secondary structure of the target protein using its primary
sequence,s(t). HNN was chosen specifically because it per-
forms secondary structure predictionswithoutperforming a
sequence alignment to known structures.HNN makes pre-
dictions using a neural network. We note that none of our
test proteins were present in the training set used to train
HNN. Therefore, our algorithm does not gain an unfair ad-
vantage based on sequence similarity to known structures.
The total percentages ofα andβ secondary structure pre-
dicted by HNN are used in the next filter. In particular,
if HNN predicts thats(t) hasa% α-structure andb% β-
structure, we only consider models witha±25% α-structure
andb±25% β-structure. The percentages ofα andβ struc-
ture for each model are determined using the programRAS-
MOL [35]. Let V ⊆ U be the set of models that pass this
filter. These first two filters, while conservative, are very
effective, typically reducing the number of potential candi-
dates to a few hundred.

Next, for each model inV , we use the homology mod-
elling programMODELLER [32] to perform both sequence
alignment betweens(t) ands(m) for eachm ∈ V , and sub-
sequently build a backbone model fort based on the back-
bone structure ofm ∈ V . In our experiments the percentage
of sequence identity betweens(t) ands(m) was always less
than30%. Moreover, no significant similarity was detected
between the primary sequences of 2 of our test proteins
(Ubiquitin and SPG) and their respective homologs using
NCBI’s pair-wise BLAST analysis using a threshold of 10.
For the third protein (GαIP), a modest similarity was ob-
served (E= 5×10−8). Thus, the alignments made byMOD-
ELLER are not based on significant amounts of sequence ho-
mology. LetT ′ be the set of models constructed byMOD-
ELLER from m ∈ V . Note that eacht′ ∈ T ′ now has the
same sequence ass(t), and therefore the same number of
amino acids. Side chains for eacht′ ∈ T ′ are constructed
using the programMAXSPROUT [16]. MAXSPROUTconsid-
ers the rotamers of each side chain and avoids steric clashes.

Next, the programRASMOL is used to compare each
modelt′ ∈ T ′ with the secondary structure prediction made
by HNN. HNN reports the prediction confidence for each
amino acid position. In some cases, these confidence scores
are very high. For example, for the protein ubiquitin,HNN

predicts, with high confidence, that residues 24-27 are inα-
helix. The mainα-helix in ubiquitin actually spans residues
23-34.HNN’s confidence in the predictions for residues 23,
28-34 are significantly lower. Indeed, all secondary struc-
ture prediction methods, have trouble predicting the exact
boundaries of a given secondary structure element. Using
thresholds of83%, 78%, and84% confidence forα, β and
random coil, respectively, we eliminate any modelt′ ∈ T ′

that does not conform to these high-confidence prediction
made byHNN. Let W ⊆ T ′ be the set of models that pass
this filter.

Protons are added to each model inW using thePRO-
TONATE module from the programAMBER [31]. Next,
the protonated models are then energy-minimized using the
SANDER module from the programAMBER. The models
are now ready for use in the NVR assignment algorithm as
described in Section 4 of the main paper.


