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Abstract
Summary: We have developed a suite of protein redesign algorithms that improves real-
istic in silico modeling of proteins. These algorithms are based on three characteristics
that make them unique: (1) improved flexibility of the protein backbone, protein side-
chains, and ligand to accurately capture the conformational changes that are induced
by mutations to the protein sequence; (2) modeling of proteins and ligands as ensem-
bles of low-energy structures to better approximate binding affinity; and (3) a globally
optimal protein design search, guaranteeing that the computational predictions are
optimal with respect to the input model. Here, we illustrate the importance of these
three characteristics. We then describe OSPREY, a protein redesign suite that implements
our protein design algorithms. OSPREY has been used prospectively, with experimental
validation, in several biomedically relevant settings. We show in detail how OSPREY has
been used to predict resistance mutations and explain why improved flexibility, ensem-
bles, and provability are essential for this application.

Availability: OSPREY is free and open source under a Lesser GPL license. The latest ver-
sion is OSPREY 2.0. The program, user manual, and source code are available at www.cs.
duke.edu/donaldlab/software.php. Contact: osprey@cs.duke.edu
1. INTRODUCTION

Technological advances in protein redesign could revolutionize thera-
peutic treatment. With these advances, proteins and other molecules can be

designed to act on today’s undruggable proteins or tomorrow’s drug-resistant

diseases. One of the most promising approaches in protein redesign is

structure-based computational protein redesign (SCPR). SCPR programs

model a protein’s three-dimensional structure and predict mutations to the

native protein sequence that will have a desired effect on its biochemical prop-

erties and function, such as improving the affinity of a drug-like protein for a

disease target. In this chapter, we describe OSPREY (Open Source Protein

Redesign for You), a free, open-source SCPR program. We have prospec-

tively used OSPREY, with experimental validation, to redesign enzymes

(Chen, Georgiev, Anderson, & Donald, 2009), design new drugs

(Gorczynski et al., 2007), predict drug resistance (Frey, Georgiev, Donald,

& Anderson, 2010), design peptide inhibitors of protein–protein interactions

(Roberts, Cushing, Boisguerin, Madden, & Donald, 2012), and design

epitope-specific antibody probes (Georgiev, Acharya, et al., 2012).

Predicting mutations that result in a desired protein structure and enable

novel function or new biochemical properties presents four main protein

design challenges. First, as the number of mutated residues to the native

http://www.cs.duke.edu/donaldlab/software.php
http://www.cs.duke.edu/donaldlab/software.php
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sequence increases, the number of unique protein sequences, or the size of

sequence space, increases exponentially. Second, mutating a protein sequence

induces conformational changes to the protein structure. Thus, the most sta-

ble, lowest energy conformations of one sequence can differ significantly

from those of another sequence. A protein’s potential flexibility occurs over

many degrees of freedom. This results in an astronomically large, continuous

space over which SCPR algorithmsmust search. A third challenge is that, for

each protein sequence, an ensemble of low-energy states exists, which con-

tributes to protein–ligand binding (Gilson, Given, Bush, & McCammon,

1997). Thus, each binding partner’s conformational ensemble must be con-

sidered to compute the binding energy of the protein and ligand (Donald,

2011; Lilien, Stevens, Anderson, & Donald, 2005). Finally, the fourth chal-

lenge in protein design is calculating the energy that drives protein structure

and function at the molecular level. The most accurate models would

require computationally expensive quantum mechanical simulations of

the protein and solvent, which is intractable for SCPR problems.

These challenges require SCPR programs to make approximations in

their input model. The input model defines (i) the initial protein structure,

(ii) the sequence space to which the protein can mutate, (iii) the allowed

protein flexibility, and (iv) the energy function to rank the generated con-

formations. The input model must be carefully chosen to minimize the error

that stems from its approximations, while at the same time ensuring that the

SCPR algorithm can efficiently search the protein conformational space.

The accuracy of an SCPR program largely depends on how it addresses

the protein design challenges. OSPREY’s approach is based on three main pro-

tein design principles: (1) realistic, yet efficient, models of flexibility; (2)

ensembles of low-energy conformations; and (3) provable optimality with

respect to the input model. In Section 2, we describe these three principles

and their importance. Section 3 details specific design problems where

OSPREY has been applied. Section 4 describes the OSPREY program and its

input, algorithms, and expected output. In Section 5, we show how to

use OSPREY to predict drug resistance-conferring mutations.

2. OSPREY DESIGN PRINCIPLES

2.1. Protein flexibility

Proteins are dynamic and can exist in many different low-energy, relatively

near-native conformations at physiological conditions. The ability of a

ligand to select or induce protein conformations demonstrates the
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requirement of SCPR algorithms to accurately model flexibility (Teague,

2003). However, SCPR algorithms often must limit protein flexibility dur-

ing the design search in the interest of computational feasibility.

One common SCPR approximation is to limit the allowed side-chain

conformations to search. Protein amino acid side-chains appear in

clusters at low-energy regions of w-angle space, known as rotamers (Lovell,

Word, Richardson, &Richardson, 2000).Many SCPRprograms use discrete

rotamers to represent each cluster as only a single point in w-angle space.

However, protein energetics are sensitive to small changes in atom coordi-

nates; so, the reduction of a cluster to a single discrete conformation cannot

fully describe a continuous region of side-chain conformation space.

To improve upon the limitations of discrete rotamers, OSPREY imple-

ments continuous rotamers (Gainza, Roberts, & Donald, 2012; Georgiev,

Lilien, & Donald, 2008). In contrast to discrete rotamers, each continuous

rotamer is a region in w-angle space that more accurately reflects the empir-

ically discovered side-chain clusters. A large-scale study of protein core

designs using continuous rotamers versus discrete rotamers demonstrated

the benefits of continuous rotamers in protein design (Gainza et al.,

2012). Importantly, continuous rotamers were able to find conformations

that were both lower in energy and had different sequences than the con-

formations found using discrete rotamers, even when more expansive dis-

crete rotamer libraries were used. This means that discrete rotamers do

not accurately quantize conformation space and will likely result in less than

optimal design predictions. Also, using continuous rotamers improves the

biological accuracy of the designs. Specifically, sequences found using con-

tinuous rotamers were significantly more similar to native sequences than

sequences found with rigid rotamers. The accuracy improvements are com-

parable to gains achieved when incorporating sophisticated energy terms

such as solvation (Hu & Kuhlman, 2006). Therefore, continuous rotamers

are likely required to accurately search conformation space to find the true

low-energy protein structures.

While the large-scale study in Gainza et al. (2012) was conducted for side-

chain flexibility, OSPREY can also be used to search over local backbone flex-

ibility (Georgiev, Lilien, & Donald, 2008), or continuous global backbone

flexibility (Georgiev & Donald, 2007). Extrapolating from the benefits

obtained by using continuous rotamers, similar benefits were shown

(Hallen, Keedy, & Donald, 2013) when using OSPREY’s flexible backbone

models instead of traditional backbonemodels (that use only a fixed backbone

or discrete backbone conformers). The benefits of continuous rotamers and
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continuous backbone flexibility have been experimentally demonstrated by

Chen et al. (2009), Frey et al. (2010), and Roberts et al. (2012).
2.2. Ensemble-based design
Traditional protein design methods often focus on finding the single global

minimum energy conformation (GMEC) for a design. However, this sim-

plification ignores the reality that proteins in solution exist as a thermody-

namic ensemble of conformations, and not just a single low-energy structure

(Fig. 5.1). In fact, current nuclear magnetic resonance (NMR) techniques

can now estimate relative populations of side-chain rotamers in folded pro-

teins (Chou, Case, & Bax, 2003). It is the nature of this thermodynamic

ensemble that governs protein–ligand binding (Gilson et al., 1997). There-

fore, if several low-energy conformations contribute to protein–ligand

binding, a model that only considers a single GMEC is likely to incorrectly

predict binding.

OSPREY uses the K* algorithm (Donald, 2011; Georgiev, Lilien, et al.,

2008) to efficiently approximate the association constant, KA, of a

protein–ligand complex using structural ensembles. K* considers ensembles

of only the most probable low-energy conformations and discards the

majority of conformations that are rarely populated by the protein or ligand.

K*’s ability to accurately rank protein sequences by weighting ensembles of

low-energy conformations relies heavily on OSPREY’s provable guarantees
A B

Figure 5.1 Binding prediction using a single conformation versus using an ensemble.
Dihydrofolate reductase from methicillin-resistant Staphylococcus aureus is shown
bound to a propargyl-linked anti-folate inhibitor (Frey et al., 2010). (A) Many SCPR algo-
rithms use a single low-energy conformation to model a protein–ligand complex. The
GMEC for the protein–ligand complex is shown. (B) OSPREY's MinDEE/A*/K* pipeline
models the most populated conformations in which binding occurs. Members of an
ensemble of bound low-energy conformations are superimposed.
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(discussed below). Since OSPREY can guarantee that it finds all low-energy

conformations for a protein sequence, the generated ensembles do not lack

any critical conformations and can be accurately ranked for each sequence.

We found K* to be more accurate and reliable than GMEC-based designs

when applying OSPREY to biologically relevant protein design systems (Chen

et al., 2009; Roberts et al., 2012).
2.3. Provable guarantees
SCPR requires searching over a very large protein conformation space.

Even when searching over a relatively small rotamer library (152 rotamers;

Lovell et al., 2000), redesigning 10 residues results in approximately 1021

possible rotamer combinations. To handle this large space, heuristic search

methods, such as Monte Carlo, are often used. However, when using heu-

ristic methods, it is impossible to know when the design search is complete

and how close the computed protein conformation is to the GMEC. There-

fore, OSPREY uses provable techniques that guarantee that it finds all low-

energy conformations with respect to the input model.

As discussed above, the protein design input model contains many assump-

tions that can potentially cause errors in the protein design predictions.

Ultimately, experimental validation is required to determine whether these

assumptions are sufficiently accurate. If the experimentally tested SCPRpredic-

tions are successful, the input model is considered sufficiently accurate.

However, if the designs fail, it is crucial to ascertain why they did not function

as designed. One key advantage of provable SCPR is that there is no error or

inaccuracy arising from the search; so, all error can be attributed to the input

model. Specifically, if a design prediction fails, one can be confident that

improvements should be made to the input model. In contrast, if a heuristic

approach were used, it is impossible to disambiguate inaccuracies in the input

model frominaccuracies resulting froman insufficient searchof the inputmodel.

Misattributing heuristic SCPR search inaccuracies as flaws in the input

model could have dire consequences when trying to improve protein energy

models. If energy term weights are recalculated or additional terms are

added to the energy function based on this misinformation, overfitting is

likely to occur. The overfitting is worsened because the energies are not

fit to the actual GMECs but rather to the local minima found by the heuristic

search. Therefore, training an energy function and improving an input

model is more straightforward when using provable SCPR techniques

(Roberts et al., 2012).
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2.4. Significance of design principles in positive/negative
design
Most applications of SCPR focus on stabilizing a target protein fold or bind-

ing capability (positive design). When trying to design specificity for a single

target, it is also important to prevent unwanted folds or binding events from

occurring (negative design). A successful positive design only requires

finding at least one protein sequence with the desired properties. However,

in negative design, the SCPR algorithmmust be confident that no off-target

binding occurs. Therefore, negative design is much more sensitive to

false negatives and requires a more thorough search of the conformation

space. Missing low-energy conformations is more detrimental to a

negative design than to a positive design. All of the main OSPREY design prin-

ciples focus on accurately and completely searching the low-energy protein

conformation space, which will likely be a great advantage for negative

design efforts (Donald, 2011; Frey et al., 2010; Georgiev, Acharya, et al.,

2012; Roberts et al., 2012). We further explore positive and negative design

with OSPREY in Section 5.2.
3. APPLICATIONS OF OSPREY

We have used OSPREY in several successful prospective designs. In this
section, we summarize these designs and mention which protein design

algorithms were used for each design. All of these algorithms are explained

in detail in Section 4.2.

OSPREY was used to switch the specificity of the phenylalanine

adenylation domain of the nonribosomal peptide synthetase enzyme gram-

icidin S synthetase toward a set of substrates for which the wild-type enzyme

had little or no specificity (Chen et al., 2009). The K* algorithm, with both

Minimized DEE (MinDEE) and BD, predicted mutations to the catalytic

active site that would switch the substrate specificity. The OSPREY self-

consistent mean field (SCMF) module was then used to find residue posi-

tions distal from the active site that could bolster the stability of the

redesigned enzymes. The chosen distal positions were analyzed with Min-

DEE to determine the most stabilizing mutations. The mutant enzyme with

the highest activity toward its noncognate substrate (L-Leu) showed 1/6 of

the wild-type protein/substrate activity. This mutant showed a 2168-fold

switch in specificity from the cognate (L-Phe) to the noncognate (L-Leu)

substrate.
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In Georgiev, Acharya, et al. (2012), OSPREY used a positive/negative

design approach to design epitope-specific antibody probes. OSPREY

predicted HIV-1 gp120 mutations that would eliminate the binding of spe-

cific, undesired antibodies. ELISA assays confirmed that the designed probes

maintained binding to their target antibodies, and had weak or only mod-

erate binding toward undesired antibodies. A set of these designed probes is

currently being used to isolate antibodies that target epitopes of interest. In

Section 5, we describe how OSPREY’s positive/negative design approach was

used to predict bacterial resistance mutations (Frey et al., 2010).

In Roberts et al. (2012), MinDEE and K* were used to design peptides

that inhibited the cystic fibrosis-related interaction between the proteins

CAL and cystic fibrosis transmembrane conductance regulator (CFTR).

Specifically, OSPREY redesigned the protein–protein interface between the

CFTR C-terminus and CAL to produce a competitive peptide inhibitor

of the interaction. The top-ranked peptide bound the CAL protein with

a sevenfold better affinity than the previous best-known hexamer peptide

and 170-fold more tightly than the CFTR C-terminus. The top-ranked

peptide was also shown to rescue chloride flux in human airway epithelial

cells containing the DF508-CFTR mutation.

In Gorczynski et al. (2007), OSPREY screened inhibitors of a leukemia-

associated protein–protein interaction. An earlier version of K*

(Georgiev, Lilien, et al., 2008) used ensembles of protein structures from

NMR to rank small molecules that could bind to CBF-b and disrupt its

interaction with the protein Runx1. The small molecules allosterically

inhibited the interaction and prevented proliferation of cancerous cells.

Finally, we have also used OSPREY in combination with sparse NMR data

to determine protein structures. In Zeng, Zhou, and Donald (2011), the

DEE/A* algorithms enabled the computation of side-chain resonance

assignments and backbone structure with less NMR data than traditional

structure determination methods. In Zeng, Roberts, Zhou, and Donald

(2011), side-chain conformations were inferred using a modified version

of OSPREY that incorporates unassigned distance restraints data into side-

chain placement optimization.

4. PROTEIN DESIGN IN OSPREY

OSPREY redesigns a protein’s function and biochemical properties. To
perform a redesign, OSPREY requires as input: (a) a 3D structure of the protein

to be redesigned; (b) the sequence space, as defined by the allowedmutations
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to the redesigned protein; (c) the allowed protein flexibility, defined by both

an empirical database of favored side-chain conformations (a rotamer library)

and the type of allowed flexibility (e.g., see below and Fig. 5.2); and (d) an

all-atom pairwise energy function to score protein conformations. The 3D

structure, sequence space, and allowed flexibility define the conformation

search space. A suite of algorithms with mathematical guarantees then com-

putes the GMEC and, optionally, a gap-free list of the other lowest energy

conformations. Finally, sequences are ranked using either the GMEC for

each sequence or a binding constant prediction based on the computed

ensemble of low-energy conformations. Here, we give a brief overview

of the input and algorithms. Detailed explanations can be found in

Donald (2011), Gainza et al. (2012), Georgiev, Lilien, and Donald

(2006), Georgiev and Donald (2007), Georgiev, Keedy, Richardson,

Richardson, and Donald (2008), Georgiev, Lilien, et al. (2008), and

Lilien et al. (2005) and in the OSPREY user manual (Georgiev, Roberts,

Gainza, & Donald, 2012).
A B

C

Input model OSPREY
DEE algorithms

Input
protein

structure

Sequence
space

Protein
flexibility

Energy
function

Bolstering mutations
to increase stability:

SCMF

Discrete
rotamer flexibility:

Rigid DEE

Ranking based
on lowest energy

(enthalpy)

Ranking based on 
binding constant

Positive/negative design
K* ratio

Complete
search: A*

Partition search
space: DACS

Ensemble

Binding constant
approximation: K*

Continuous
rotamer flexibility:
MinDEE/iMinDEE

Continuous, global
backbone flexibility:

BD

Iterate

Local backbone
movements
(backrubs):

BRDEE

Figure 5.2 SCPR with OSPREY. (A) The input model (see Section 4.1). (B) According to the
type of flexibility allowed, a specific pruning algorithm is run. The output from the prun-
ing algorithm is directed to either a divide-and-conquer algorithm or directly to the A*
algorithm for a full conformational search. According to the user's selection, the A* out-
put can then be used to generate a ranking for each sequence based on either the low-
est energy structure or on an ensemble of structures generated by the K* algorithm. (C)
If the goal is to find sequences that have a high affinity for one ligand (positive design)
while having a low affinity for another (negative design), a ranking can be produced
based on the ratio of K* scores (i.e., positive design score/negative design score; Frey
et al., 2010). In addition, if desired, predicted mutants can be improved by finding bol-
stering mutations that can increase the stability of a mutant. The bolstering mutations
can be designed using any of the DEE variants and A*.
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4.1. Input model
OSPREY requires a protonated protein structure in PDB format that has no

residues with missing atoms. A single molecule can be modeled as a flexible

ligand, while all other water and nonamino acid molecules present in the

PDB file must be either specified as rigid bodies or removed. When a ligand

is present, OSPREY can use distinct or identical structures for both the protein

and ligand’s unbound (apo) states and for the bound (holo) state.

By default, OSPREY includes the Richardsons’ Penultimate Rotamer

Library (Lovell et al., 2000) and is extensible to other rotamer libraries.

Rotamer libraries are available for all natural amino acids, but they are rare

for nonamino acid molecules. Thus, in cases where a nonamino acid small

molecule is used as the ligand, the user must define its low-energy confor-

mations (called the small molecule’s generalized rotamers). Within OSPREY, the

small molecule’s generalized rotamers consist of different conformations of

the molecule’s flexible dihedral-torsion angles. These conformations are

defined by specifying the angle value for each flexible dihedral torsion in

the molecule. For a specific example of a generalized rotamer, see Frey

et al. (2010) and Georgiev, Roberts, et al. (2012).

OSPREY relies on empirical pairwise-decomposable energy functions to

rank protein conformations. OSPREY includes both the Amber96 (Pearlman

et al., 1995) and CHARMM (Brooks et al., 2009) energy functions for

electrostatics and repulsive–attractive van der Waals (vdW) forces. EEF1

(Lazaridis & Karplus, 1999) is used to score solvation penalties, which are

the cost to bury hydrophilic amino acids and/or solvate hydrophobic residues.

OSPREY includes charges for some nonamino acidmolecules, such as DNA and

RNA nucleotides (Reza, 2010), as well as waters. Charges for other organic

molecules can be precomputed with a program such as Antechamber (Chen

et al., 2009; Frey et al., 2010; Wang, Wang, Kollman, & Case, 2001). All

energy parameters, vdW, solvation, and electrostatics, can be scaled and

weighted by the user from the defaults provided. Other pairwise-

decomposable energy functions can be incorporated into OSPREY; in fact, users

are encouraged to improve designs by modifying the energy function.

The user can also specify other design parameters that can significantly

improve the accuracy of OSPREY. Amino acid reference energies (Lippow,

Wittrup, & Tidor, 2007) account for the energy of a residue in the unfolded

state of the protein. These reference energies are important in GMEC-based

designs but are not necessary in K* designs (see following section). Dihedral

energy penalties can also be used to prevent continuous flexibility algorithms
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from minimizing away from the most frequently observed protein confor-

mations. These and several other design parameters are thoroughly

explained in Georgiev, Roberts, et al. (2012).

4.2. Protein design algorithms
The search space in protein design is large, and grows exponentially with the

number of protein residues and side-chain rotamers. To search in an efficient

manner, OSPREY first reduces the size of the search space through a suite of

algorithms based on extensions and generalizations of the dead-end elimina-

tion (DEE) algorithm (Desmet, de Maeyer, Hazes, & Lasters, 1992). These

algorithms prune the rotamers that, even in the presence of backbone or

continuous side-chain flexibility, would not lead to the GMEC or one of

the lowest energy conformations (Gainza et al., 2012; Georgiev &

Donald, 2007; Georgiev, Keedy, et al., 2008; Georgiev et al., 2006;

Georgiev, Lilien, et al., 2008; Lilien et al., 2005). A branch-and-bound algo-

rithm based on A* (Georgiev, Lilien, et al., 2008; Leach & Lemon, 1998)

then traverses the remaining search space and outputs the GMEC and, if

desired, a gap-free list of low-energy conformations. The K* algorithm uses

the gap-free list of low-energy conformations to approximate the

protein–ligand binding constant. After a design iteration, the results can

be reintroduced into OSPREY to search for mutations distal from the active

site that will increase the stability of the design (Chen et al., 2009; Fig. 5.2).

Many SCPR algorithms restrict the backbone to a single rigid conforma-

tion and the side-chains to discrete, rigid rotameric conformations. The orig-

inal DEE algorithm (Desmet et al., 1992) falls into this category, and we will

refer to it as rigid DEE because the rotamers are discrete, rigid geometries that

do not include the continuous w-angle space that immediately surrounds

them. OSPREY includes rigid DEE as well as improved variations of DEE that

search the continuous w-angle space that surrounds side-chain rotamers and

the continuous f- and c-angle space that surrounds the protein backbone

(Fig. 5.3, B–E). These continuous-flexibility algorithms compute upper

and lower bounds on the energy that a backbone or a rotamer could reach after

minimization and use these bounds for pruning instead of the rigid energies.

The MinDEE (Georgiev, Lilien, et al., 2008) algorithm extends rigid

DEE by including in the search the continuous w-angle space that immedi-

ately surrounds rotamers, and guarantees that no rotamer that can minimize

and be part of a minimized GMEC (minGMEC) will be pruned. The

iMinDEE algorithm (Gainza et al., 2012) improves over MinDEE by
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Figure 5.3 Conceptual illustration of the protein flexibility modeled by OSPREY's algorithms.
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shown below. (A) Theoretical “complete” flexibility that could be induced by the intro-
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continuous side-chain flexibility with a rigid backbone. (D) brDEE: discrete side-chain
flexibility and local backbone (backrub) moves. (E) BD: discrete side-chain flexibility
and continuous global backbone moves.
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pruning orders of magnitude more rotamers with close to the same effi-

ciency as rigid DEE, and also guarantees to find the minGMEC. The bac-

krub DEE (brDEE) algorithm (Georgiev, Keedy, et al., 2008) allows

mutants to undergo backrub motions, which are entirely local backbone

movements that each change the orientation of one Ca–Cb bond vector

by performing a small rotation of the surrounding dipeptide (Davis,

Arendall, Richardson, & Richardson, 2006). The Backbone DEE (BD)

algorithm (Georgiev & Donald, 2007) prunes only rotamers that cannot

be part of the GMEC after allowing continuous global backbone

movements.

When a ligand is present, it can rotate and translate with respect to the

protein (i.e., rigid-body motions), and continuous rotamers can be defined

for the ligand. If the ligand is a polypeptide, both the ligand and protein can

mutate and rigid DEE, MinDEE, iMinDEE, brDEE, or BD can be used on

both molecules.

Each OSPREY algorithm (rigid DEE, MinDEE, iMinDEE, brDEE, and

BD) reduces the search space through a stage of DEE-based pruning. In

addition, several extensions to the DEE algorithm implemented in OSPREY

further improve its pruning capabilities, including generalized DEE

(Goldstein, 1994), split flags (Pierce, Spriet, Desmet, & Mayo, 2000),
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bounds pruning (Gordon, Hom, Mayo, & Pierce, 2003), and a divide-and-

conquer strategy called DACS (Georgiev et al., 2006).

Once the DEE algorithms prune the majority of the conformational

space, the remaining space must be searched to find the lowest energy con-

formation(s). We have implemented a branch-and-bound algorithm based

on the A* algorithm (Georgiev, Lilien, et al., 2008; Leach & Lemon,

1998) that searches conformations in a tree and traverses only the branches

that might lead to the lowest energy structure, even in the presence of flex-

ibility. A* searches the space completely and guarantees to find the optimal

answer. When rigid DEE is used, our extension of A* can also enumerate

conformations in order of the lowest energy, whichmakes it possible to enu-

merate a gap-free list of low-energy conformations and their sequences.

When MinDEE, brDEE, or BD is used, our version of A* enumerates con-

formations in order of the lower bounds on the energy of each conformation,

and can also enumerate a gap-free list of low-energy conformations.

The K* algorithm (Georgiev, Lilien, et al., 2008; Lilien et al., 2005) uses

this list of low-energy conformations to compute a provable

e-approximation to the binding constant (a K* score) with respect to the

input model (Fig. 5.2A). A provable e-approximation algorithm guarantees

that the computed binding constant is mathematically accurate up to a user-

specified percentage error of e, with respect to the input model. The

e parameter is specified by the user as the desired accuracy and all computed

solutions are guaranteed to be e-accurate.K* is efficient because it usesA* to
compute only the reduced set of low-energy conformations that are most

likely to be taken on by the protein, the ligand, and the protein–ligand com-

plex. These low-energy conformations are then Boltzmann-weighted and

used to approximate the partition function for the unbound and bound

states. Because A* enumerates conformations in order of their low-energy

bound, K* can calculate exactly when each partition function is within an

e-factor of the exact solution and stop the computation. Since the energy of

each low-energy conformation is Boltzmann-weighted,K*must only com-

pute a small percentage of the total number of conformations (Georgiev,

Lilien, et al., 2008). Once each partition function is computed, theK* score
is computed by dividing the partition function of the bound state (i.e., the

protein–ligand complex) by the partition functions of both unbound states

(Georgiev, Lilien, et al., 2008).

After redesigning a protein core, boundary, surface, or active site, it can be

beneficial to increase themutant’s stability by furthermutating residues that are

distal to the redesigned region.However, since proteins can be large, searching
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at these distal positions for potential bolsteringmutations using algorithmswith

mathematical guarantees can be an expensive process. To address this issue,

OSPREY uses a heuristic SCMF algorithm to find residue positions, that when

mutated, might increase the stability of the engineered protein. After SCMF

identifies distal residue positions, OSPREY’s MinDEE variants and A* can be

used to find mutant residues at those distal positions that stabilize the fold.

We have used this approach to increase the stability and catalytic efficiency

of a redesigned enzyme using MinDEE/A* (Chen et al., 2009).

5. EXAMPLE: PREDICTING DRUG RESISTANCE
MUTATIONS USING OSPREY
Pharmaceutical companies periodically release new, effective drugs to

treat the world’s most dangerous infectious diseases. After these drugs are first

introduced, pathogens that cause these diseases, such as methicillin-resistant

Staphylococcus aureus (MRSA), recede temporarily, only to reemerge months

or years later as drug-resistant strains. When novel drugs are first discovered,

little is known about how pathogens will develop drug resistance. Without

that information, drug designers cannot improve existing drugs or develop

new ones to target resistant strains until after they spread in the community.

Fortunately, SCPR programs can be used to predict drug resistance that

could arise through mutations in enzyme active sites as soon as a drug is

developed. This type of application exemplifies the next frontier in SCPR:

the design of proteins not only for activity but for specificity. We have used

OSPREY to predict resistance mutations in enzyme active sites that confer

resistance to competitive inhibitors. Competitive inhibitors are drugs that

compete with the natural substrate for binding, and thus inhibit a critical

enzyme in a pathogen. Organisms can often evolve active site mutations that

maintain catalysis of the substrate but reduce the affinity for the competitive

inhibitor. In effect, this resistance mechanism allows the substrate to out-

compete the inhibitor for binding to the enzyme. To perform this kind

of design, OSPREY must design specificity for the natural substrate over the

drug, which is a relatively new and attractive goal for SCPR algorithms.

We have developed a methodology that uses OSPREY to accurately predict

resistance-conferring mutations. In Frey et al. (2010), we showed that this

methodology can successfully predict resistance mutations to a new antibiotic,

UCP111D26M (termed D26M, and shown in Fig. 5.4) that inhibits the

MRSA DHFR enzyme. In this section, we describe in depth the methods,

empirical rationale, and experimental validation used in Frey et al. (2010).
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Figure 5.4 D26M compound. This compound belongs to a new class of propargyl-linked
antifolates. D26M is an effective antibiotic against MRSA.
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5.1. Input model in a resistance prediction problem

5.1.1 Initial protein structure
Our approach assumes that mutant sequences that bind the natural substrate

well (positive design) while binding the competitive inhibitor poorly (negative

design) will confer drug resistance. This positive/negative design approach

needs both a structure of the wild-type enzyme bound to its natural substrate

and a structure of the wild-type enzyme bound to the competitive inhibitor

drug. In general, higher quality input structures should lead to more accurate

results. However, if the relevant high-quality structure is not available,

modeling based on a related structure can be used. In the case of MRSA

DHFR resistance prediction, a structure of the wild-type enzyme bound

to D26M (Fig. 5.4) was determined (PDB ID: 3F0Q) for negative design,

and the structure of the F98Y DHFR mutant bound to folate was used to

generate a model of the wild type for positive design.

5.1.2 Protein flexibility
The structural changes caused by resistance mutations must preserve the cat-

alytic activity of the enzyme. Thus, we expect that successful resistance

mutations to the active site of MRSA DHFR will cause small conforma-

tional changes in the protein structure. The BD, brDEE, andMinDEE algo-

rithms can model these conformational changes. However, in the case of

DHFR, we chose to model continuous side-chain flexibility (MinDEE)

in addition to ligand flexibility (described below) because we expected that
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the protein backbone surrounding the active site would remain relatively

rigid after the introduction of resistance mutations to maintain catalytic

activity. Thus, we assumed that the protein’s side-chain interactions with

the ligand would determine resistance.

The ligand (both D26M and dihydrofolate) can potentially bind DHFR

in a large number of conformations (see Section 4.1). However, choosing

the D26M negative design rotamers is especially important because missing

low-energy binding conformations between D26M and DHFR could result

in a failure of the negative design (see Section 2.4). We chose 512 general-

ized rotamers for D26M over four rotatable dihedrals. Based on structural

information, in addition to the reasons described in Section 2.4, we believe

that the catalytic activity of DHFR is highly optimized for a few specific

binding conformations of dihydrofolate. We chose 12 generalized rotamers

over 10 rotatable dihedrals for dihydrofolate. Each of these generalized

rotamers was treated as a continuous rotamer, meaning that each flexible

dihedral was allowed to minimize by rotating its torsional dihedrals �9�.
Additionally, continuous rigid-body motions (rotation and translation) were

allowed for each ligand within the active site. The allowed conformation

space, CI, for the inhibitor D26M is completely described by these three

modeling choices. Namely, CI is defined by the chosen generalized

rotamers, the allowed continuous minimization around these rotamers,

and the allowed rigid-body rotation and translation. The conformation

space for DHFR and dihydrofolate, CP, and CS, respectively, were similarly

defined.
5.1.3 Sequence space
For this study, we only allowed residues in the active site with direct contact

to the drug to mutate. Specifically, only residues L5, V6, L20, D27, L28,

V31, T46, I50, L54, and F92 were allowed to mutate and/or change con-

formation. The allowed amino acid mutations were selected based on the

wild-type amino acid and correlation with other DHFR species. Residues

5, 6, 20, 28, 31, 50, and 92 were allowed tomutate to Ala, Val, Leu, Ile, Met,

Phe, Trp, and Tyr. Residue D27 was allowed to maintain its identity or

mutate to Glu, while residues T46 and L54 were allowed to change their

conformation but not mutate. Only mutant sequences representing

single- or double-point amino acid mutations were allowed to mimic resis-

tance mutations that could evolve naturally. This resulted in a total sequence

space of 1173 mutants to the wild type.
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5.2. Results
OSPREY computed the K* score for the 1173 DHFR single- and double-

point mutants bound to dihydrofolate (positive design) or D26M (negative

design). Positive and negative design computations were performed sepa-

rately and then combined.

Each sequence was ranked by its K* ratio: the K* score of the positive

design divided by theK* score of the negative design. Sequences with a neg-
ative design score of zero were ranked solely by the positive design score,

namely by their binding affinity for dihydrofolate. Since the K* score

approximates a KA for the protein–ligand complex, a higher K* score rep-

resents better binding. Therefore, a mutant DHFR sequence with a high

positive design score and negative design score of zero is predicted to desta-

bilize binding to D26M versus dihydrofolate. All of the top 10 mutations

were predicted to bind dihydrofolate, while disrupting the binding of

D26M in the conformations specified by CI for negative design. Four of

the top 10 predicted resistance mutants were tested experimentally: (1)

V31Y/F92I, (3) V31I/F92S, (7) V31F/F92L, and (9) I50W/F92S. Mutants

(1), (3), and (7) yielded biologically successful results. Specifically, these

mutants maintained catalytic activity and had a lower affinity for the

D26M drug. The top-ranked mutant sequence, V31Y/F92I, conferred

the greatest decrease in binding to D26M, an 18-fold loss.

In addition to confirming that the top mutants were biologically success-

ful, it is important to evaluate the success of the underlying computational

predictions. The success of the computational prediction relies entirely on

the accuracy of the input model’s definition of conformation space and

energy function because OSPREY guarantees to find the optimal conforma-

tion(s) given the input model. Moreover, the goal of the computational neg-

ative design was to find protein sequences that cannot bind any

conformation in the D26M ligand’s conformational space, CI. Note that

if, for example, CI does not accurately represent the conformational energy

landscape, it is possible that the computational prediction would successfully

exclude binding in CI but result in biologically failed designs because the

protein could bind to a D26M conformation outside of CI. Of course,

the issue of defining the input conformational space CI arises in any protein

design algorithm. But since K*’s search guarantees completeness, we can

rule out failures of optimization and attribute any discrepancies between

predictions and experimental measurements exclusively to the input model,

which includes CI. This guarantee is crucial because if any low-energy
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conformation was missed, there would likely be a low-energy D26M bind-

ing mode resulting in designs that fail both computationally and biologically.

To analyze the binding mechanism of the top resistant DHFR mutant,

V31Y/F92I, the crystal structure of this mutant bound to D26M was deter-

mined (PDB ID: 3LG4). The structure showed that D26M occupies the active

site of mutant V31Y/F92I with 50% occupancy. In contrast, wild-type DHFR

binds D26M with full occupancy, which suggests that poor occupancy in

V31Y/F92I is caused by reduced ligand binding. D26M binds the V31Y/

F92I mutant weakly in a conformation that was not in CI, which demonstrates

the difficulty for the user to determine a priori all conformations of a drug to input

into the design protocol. However, the predicted energy of this new conforma-

tion bound to DHFR V31Y/F92I was very similar to the lowest energy con-

formations in the predicted K* ensemble. This demonstrates thatCI accurately

covered the energy landscape and OSPREY successfully found a mutant protein

sequence that could destabilize binding to D26M. Since OSPREY uses provable

algorithms, it can guarantee that no conformations inCI would bindwith a bet-

ter energy than what was found in the K* ensemble. This is confirmed by the

conformation of D26M in the V31Y/F92I crystal structure.

5.2.1 Effect of limiting flexibility on mutation predictions
We have argued that ensembles, flexibility, and provability are essential for

both positive design and negative design (see Section 2). We have also

shown that using ensembles can have important consequences on binding

affinity rankings (Roberts et al., 2012), and that provably modeling contin-

uous flexibility in protein core redesign is critical for accuracy (Gainza et al.,

2012). Similarly, we now show the importance of improving flexibility in an

additional example. For this example, we performed predictions almost

identical to those in Frey et al. (2010) with one crucial change: we limited

protein flexibility to discrete rotamers for both the rotamer and ligands, and

disabled continuous rigid-body motions. Using such a discrete, rigid model

is very common in the protein design field.

Rigid DEE/A*/K*was used to compute a positive and a negative design

K* score for all 1173 DHFRmutant sequences. We found that all of the top

10 ranked mutants predicted by MinDEE/K* in Frey et al. (2010) now

received radically different scores. They all had a positive design score of

0 in the rigid, discrete designs because rigid DEE/A*/K* could not find

any low-energy binding conformation of dihydrofolate for these sequences.

Thus, the rigid model incorrectly predicted that the experimentally tested

mutants of Frey et al. (2010) would not bind dihydrofolate. These results

suggest that rigid rotamers not only fail to cover the entire rotamer space
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but also are sensitive to small changes in torsional dihedrals and rigid-body

motions. Consequently, few mutants are predicted by rigid DEE/A*/K* to
bind dihydrofolate or D26M, which is manifestly wrong in light of the

MinDEE/A*/K* results and our experimental validation.

6. FUTURE DIRECTIONS AND AVAILABILITY

We have presented an overview of OSPREY, a comprehensive open-
source SCPR suite. OSPREY has been in continuous development over the

last decade and both the algorithms and functionality will continue to

improve. The variety of the prospective designs where OSPREY has been

applied, and the suite of sophisticated algorithms with which they were cre-

ated, suggest that OSPREY can be adapted to facilitate protein engineering in a

number of settings. Several enhancements of OSPREY are planned, including

support for explicit water-mediated hydrogen bonds, concerted backbone

and side-chain continuous flexibility (Hallen, Keedy, &Donald, 2013), pro-

tein loop modeling (Tripathy, Zeng, Zhou, & Donald, 2012), and RNA

rotamers.

OSPREY is available under a GNULesser General Public License. As such,

the source code is provided as part of the distribution.We encourage users to

customize and/or improve it. Specifically, OSPREY provides a platform for

the development of new algorithms and new protein design methodology,

beyond the features we have presented here. All software is implemented in

Java, with parallel computing capabilities provided by mpiJava (Baker,

Carpenter, Hoon Ko, & Li, 1998). OSPREY can run on any operating system

that supports Java, but we recommend a computing cluster to run OSPREY to

distribute and reduce the computation time.
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