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Chapter 1

Introduction

OSPREY (Open Source Protein REdesign for You) is a suite of programs for computational
structure-based protein design. OSPREY is developed in the lab of Prof. Bruce Donald at Duke
University. This user manual is for OSPREY version 2.0.

OSPREY is free software and can be redistributed and/or modified under the terms of the GNU
Lesser General Public License as published by the Free Software Foundation, either version 3 of the
License, or (optionally) any later version. OSPREY is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. Full licensing details, including citation requirements for the various different modules
of the software, are found in the document license.pdf enclosed with this package distribution.

OSPREY is specifically designed to identify protein mutants that possess desired target prop-
erties (e.g., improved stability, switch of substrate specificity, etc.). OSPREY can also be used
for predicting small-molecule inhibitors. Beginning with the 2.0 release, OSPREY now supports
protein-protein and protein-peptide interaction design. OSPREY is built around the following
algorithmic modules:

• DEE/A∗: provably-accurate algorithms for protein design that combine Dead-End Elimina-
tion (DEE) rotamer pruning [8, 26] with A∗ conformation enumeration [21]. The DEE/A∗

algorithms score and rank mutation sequences based on the single best conformation for each
sequence, the Global Minimum Energy Conformation (GMEC). Hence, these algorithms are
referred to as GMEC-based. The DEE/A∗ algorithms are typically applied to redesign spe-
cific parts of the protein (e.g., the protein core). For problems where the goal is to improve
protein-ligand interactions, the K∗ algorithm is typically used instead (see below). NOTE:
In this documentation, the term DEE refers to all of traditional DEE [8, 26] (DEE for rigid
rotamers and a rigid backbone), MinDEE [15], and the more efficient iMinDEE [11] (both
implement minimized DEE for continuously-flexible rotamers and a rigid backbone), BD [12]
(DEE for continuously-flexible backbones), Brdee [13] (DEE for backrub protein motions),
and DEEPer [17] (DEE with continuous sidechain and backbone flexibility). In cases where
a specific DEE algorithm is referenced, the corresponding algorithm name (e.g., Brdee) is
used explicitly.

• K∗: a provably-accurate algorithm for protein-ligand and protein-protein binding prediction,
as well as enzyme redesign [3, 15, 22]. K∗ computes a provably-accurate approximation
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(given the input model, see below) to the binding constant for a given protein-ligand/protein-
protein complex by computing partition functions over ensembles of (energy-minimized) con-
formations for the bound protein-ligand complex and the unbound protein and ligand. Hence,
the K∗ algorithm is referred to as ensemble-based. K∗ can be applied to predict mutations
to protein binding/active site residues in order to switch the substrate specificity toward a
novel substrate [3] or the binding affinity towards another protein or peptide. K∗ can also be
applied to design small-molecule or peptide inhibitors for a given protein (or set of proteins).
NOTE: Although the term ligand is typically used to refer to an ion or small molecule,
in this document we refer to ligands as the binding partner of a protein. Therefore, in any
redesign of a protein-protein interface one protein will be referred to as the “protein” and the
other as the “ligand”.

• SCMF: a Self-Consistent Mean Field (SCMF) algorithm for computing the entropy of each
residue position in a protein [3, 29]. This algorithm can be used as part of a hybrid mutation
search for enzyme redesign that also incorporates K∗ and DEE/A∗: K∗ can be applied first
to predict mutations to the enzyme active site that improve the target substrate specificity;
SCMF can then be used to identify mutable positions anywhere in a protein, both close to and
far from the active site of an enzyme; finally, DEE/A∗ can be applied to predict mutations
to these mutable positions for further improvement in the target substrate specificity [3].

The basic data and algorithm flow in OSPREY is summarized in Fig. 1.1. The input model
for the OSPREY modules consists of an input structure for redesign, rotamer libraries for proteins
and general compounds (e.g., small-molecule inhibitors), and a pairwise energy function for scoring
and ranking the computational predictions. Additionally, input configuration files specify required
mutation search parameters for the different modules. Computed structures for selected K∗ and
DEE/A∗ mutant predictions can also be generated for further visual and structural analysis by the
user. OSPREY uses MPI for distributed computation.

1.1 Modeling Flexibility

OSPREY is capable of modeling additional protein and ligand flexibility as compared to other
structure-based design approaches. Typically, protein design algorithms use a model with a rigid
protein backbone and rigid rotamers [8, 26]. In contrast, OSPREY is capable of modeling continu-
ous side-chain flexibility (i.e., flexible rotamers) [15, 11, 17] and continuous [12, 17] or discrete [13]
backbone flexibility. The user can select to model different types of flexibility by appropriately ma-
nipulating some configuration file parameters (see Sec. 5.1.1). Additionally, flexibility in OSPREY
can be modeled using conformational ensembles, as in the K∗ algorithm [3, 15]. The K∗ module is
described in Sec. 5.2.

1.2 What’s new in Version 2?

• Full support for the design of protein:protein and protein:peptide interfaces (PPI) [27, 28].
In the new release, both binding partners in a PPI are allowed to change their conformations
using any of the DEE extensions. In addition, OSPREY 2.0 allows one of the partners in a
PPI to make small rotation and translations around the binding interface.
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Figure 1.1: Basic data and algorithm flow in OSPREY.
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• An implementation of the iMinDEE algorithm. For details on the algorithm see [11].

• The new version of OSPREY continues to support the execution under mpiJava, but it also
supports single-machine multithreaded execution. Multithreaded exectution allows the user
to execute OSPREY without installing mpiJava (yet it limits a run to one machine), and
facilitates code debugging.

• Charmm 19 [2] has been included. The user can select to use either the Charmm19 [2] or
Amber [25] energy functions.

• Default options for most configuration parameters. This will grealty simplify the configuration
of a redesign for new users.

• Type-dependent Dead-End Elimination is now supported [34].

1.3 What’s new in Version 2.1β?

• The DEEPer algorithm [17], allowing continuous sidechain and backbone flexibility to be
modeled simultaneously, is now supported.

• There is now an “autofix” feature to handle common problems with introducing new PDB
files into OSPREY, such as missing atoms in sidechains.

• There is now a feature to identify the current rotamers at specified residues of an input
structure (that is, to select the rotamers from a given rotamer library that are closest to the
input conformations of those residues).

• Indirect pruning [17] and pruning of triples of rotamers are now supported, and pruned pairs
and triples can now be used to limit the growth of the A* tree if desired.

Organization

This documentation is organized as follows:

• Chapter 2 contains installation instructions for OSPREY and other required software pack-
ages.

• Instructions for initializing and starting up OSPREY are provided in Chapter 3.

• The four parts of the OSPREY input model (input structure, rotamer libraries, energy func-
tion, and perturbations) are described in Chapter 4.

• The various algorithmic modules (DEE/A∗, K∗, and SCMF) are described in Chapter 5, along
with the corresponding input configuration files and instructions for generating structures for
selected mutants predicted by the algorithms.

• Chapter 6 provides instructions for applying OSPREY to two special cases of redesign prob-
lems: modeling protein-protein and protein-peptide interactions and modeling explicit water
molecules.
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• A detailed walk-through of two actual protein redesign examples using K∗, from input setup
to analysis of the results, is described in Chapter 7 and Chapter 8.

• Appendix A presents a brief overview of the OSPREY classes.

The primary contributors to this version of the OSPREY distribution are: Ivelin Georgiev,
Ryan Lilien, Kyle E. Roberts, Pablo Gainza, Mark Hallen, and Bruce Donald.
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Chapter 2

Installation

OSPREY requires Java to run. MPI is required for distributed computation. To install MPI for
distrubuted computation, two programs are required: MPICH2 (http://www-unix.mcs.anl.gov/
mpi/mpich2/index.htm), and mpiJava (http://www.hpjava.org/mpiJava.html). Following the
default installation instructions for these programs should be sufficient on 32-bit machines and
some 64-bit machines. On certain 64-bit machines, however, the following modified installation
instructions must be used. These instructions assume that Java, MPICH2, and mpiJava will be
installed as subdirectories in ’/home/you/mpi/’ (modify this path according to your preference).

Starting with version 2.0, OSPREY also implements a multithreaded version and no longer
requires MPI to run on a single machine. If you wish to use the multithreaded version exclusively,
you can ignore steps (2) and (3) below, as well as sections 3.2 and 3.2.1.

(1) Installing 64-bit Java (v. jdk 1.6.0 06). Follow the default installation instructions.
Update your path to make sure that this java version comes first in your path:

export PATH=/home/you/mpi/jdk1.6.0 06/bin:$PATH

(2) Modifying Java. For the mpiJava installation (see below), you may need to copy the file
’jni md.h’ from ’jdk1.6.0 06/include/linux/’ to ’jdk1.6.0 06/include/’:

cd /home/you/mpi/jdk1.6.0 06/include/linux

cp -i jni md.h ../

(3) Installing MPICH2 (v. 1.0.7). Using bash:

tar -xzf mpich2-1.0.7.tar.gz
cd mpich2-1.0.7
export CFLAGS=”-fPIC”
./configure –prefix=/home/you/mpi/mpich2-install –enable-sharedlibs=gcc
make
make install
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export PATH=/home/you/mpi/mpich2-install/bin:$PATH

(4) Installing mpiJava (v. 1.2.5). Using bash:

tar -xzf mpiJava-1.2.5.tar.gz
cd mpiJava
export DEFPINS=”-shared -fPIC”
export LDFLAGSIG=”-shared -fPIC”
export LDFLAG=”-shared -fPIC”
./configure –with-MPI=mpich
make
export LD LIBRARY PATH=$LD LIBRARY PATH:/home/you/mpi/mpiJava/lib

export CLASSPATH=$CLASSPATH:/home/you/mpi/mpiJava/lib/classes

NOTE: ./configure –with-MPI=mpich for mpiJava may generate some errors/warnings: these
can be generally discarded; if at the end of ’make’ there are no errors, then the mpiJava installation
should be successful.

(5) Installing OSPREY. After Java, mpich2, and mpiJava have been successfully installed,
choose a directory where the OSPREY software will be installed, copy all files to that directory,
and compile using:

javac *.java

Some warning statements may be output when javac is called, but these can be generally
discarded. OSPREY should now be installed and ready for use.

9



Chapter 3

Setting up OSPREY

3.1 Compute Node Setup

After the installation of all required software is complete (see Chapter 2), OSPREY will be ready for
use. If OSPREY will run on a distributed environment, MPI must be setup to run on the selected
set of compute nodes. Users who will run OSPREY in a single compute node using multithreads
can skip to Sec. 3.2.2. Users who will use MPI but are familiar with its functionality may skip to
Sec. 3.2.1. Next, some basic MPI functionality that should be sufficient for the proper execution of
OSPREY is described.

We will assume that the .mpd.conf file has been created and saved according to the instructions
in the MPICH2 Installer’s Guide. We will also assume that the list of available compute nodes
is stored in the file mpd.hosts in the OSPREY code directory. Each line in the mpd.hosts file
corresponds to a single compute node. An example mpd.hosts file may look like this:

linux1
linux2
linux3
linux4

linux5

In this example, there are five compute nodes on which MPI will be started. The user must
make sure that they can ssh into any of these nodes without having to enter a password. One
possible way to do this is to first execute the following commands and then manually login to each
of the selected nodes:

ssh-keygen -t rsa

cp ∼/.ssh/id rsa.pub ∼/.ssh/authorized keys

The following command will set up MPI for the list of nodes in mpd.hosts:

mpdboot -n 5 -f mpd.hosts

The number 5 for the -n argument is the total number of compute nodes on which MPI should
be started; in this case, this number is equal to the total number of nodes in the mpd.hosts file. If
mpdboot is executed from a node not in the mpd.hosts file (e.g., linux6), then -n could be called
with a value of 6 (or less, in which case MPI will be started on only a subset of the nodes in the
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mpd.hosts file). To check whether MPI was successfully started on the given set of nodes, the user
can execute the following command:

mpdtrace

This command should output the names of all of the nodes on which MPI should have been
started. At this point, the user has created a ring of MPI daemons on the desired set of nodes.
MPI-based (e.g., OSPREY) jobs can now be run from the node on which the ring was created. To
exit from the ring, the following command can be used:

mpdallexit

If mpdallexit is called, the mpdboot command must be executed again in order to start up
MPI on the given set of nodes (these nodes need not be the same as before, so the mpd.hosts file
can be modified).

3.2 Starting OSPREY

3.2.1 Starting OSPREY using MPI

We will assume that a ring of MPI-ready compute nodes has already been setup according to the
instructions in Sec. 3.1. From the OSPREY code directory, the program can be started using the
following command:

mpirun -machinefile ./machines -np 5 java -Xmx1024M KStar mpi -c KStar.cfg

This command is parsed as follows:

• The machines file contains a list of nodes on which OSPREY will be executed. This list
should only contain node names found in the mpd.hosts file (Sec. 3.1); however, a node name
can appear more than once, in which case more than one job will be distributed to that node.
An example machines file may look like this:

linux1

linux1

linux1

linux2

linux2

linux3

linux3

• The -np 5 option specifies that the program should be run on five processors (so not all nodes
in the example machines file will be used for the given execution).

• The -Xmx1024M option sets the maximum heap size for java to 1024M. Depending on the
size of the problem, the heap size may have to be increased; for some problems, a smaller
value (e.g., 512M) may be sufficient.
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• The mpi option tells OSPREY to start a distributed computation. Note that while there are
some OSPREY commands that can be executed on a single processor, all major commands
require distributed execution.

• The KStar.cfg file is the main configuration file that specifies some basic parameters required
by OSPREY. KStar.cfg is described in detail in Sec. 3.2.3. This file can have any filename
specified by the -c option; for clarity, we will use the filename KStar.cfg throughout this
documentation.

3.2.2 Starting OSPREY using Java Threads

The user can also run OSPREY 2.0 without MPI using multithreaded execution:

java -Xmx1024M KStar -t 5 -c KStar.cfg

• The java command calls the java virtual machine.

• The -Xmx1024M option sets the maximum heap size for java to 1024M. Depending on the
size of the problem, the heap size may have to be increased; for some problems, a smaller
value (e.g., 512M) may be sufficient.

• KStar specifies that the KStar class will be called. Note that the location of the KStar class
must be set in the CLASSPATH variable in order for java to find it.

• -t 5 Sets the number of threads for the current execution.

• The KStar.cfg file is the main configuration file that specifies some basic parameters required
by OSPREY. KStar.cfg is described in detail in Sec. 3.2.3. This file can have any filename
specified by the -c option; for clarity, we will use the filename KStar.cfg throughout this
documentation.

Once OSPREY is executed through multithreads or MPI, the following screen is displayed:

OSPREY Protein Redesign Software Version 1.0

Copyright (C) 2001-2009 Bruce Donald Lab, Duke University

This program is free software: you can redistribute it and/or modify

it under the terms of the GNU Lesser General Public License as

published by the Free Software Foundation, either version 3 of the

License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

There are additional restrictions imposed on the use and distribution

of this open-source code, including: (A) this header must be included

in any modification or extension of the code; (B) you are required to
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cite our papers in any publications that use this code. The citation

for the various different modules of our software, together with a

complete list of requirements and restrictions are found in the

document license.pdf enclosed with this distribution.

OSPREY running on 5 processor(s)

>

NOTE: The number of processors shown on the output line OSPREY running on 5 processor(s)

can differ between runs and should be equal to the number of processors specified when executing
mpirun.

At this point, the program waits for the user to execute one of the OSPREY commands for
protein redesign. The OSPREY commands are described in Chapter 5. All of the OSPREY
commands require some standard input (e.g., input pdb structure, rotamer libraries, etc.). This
standard input is described in Chapter 4.

3.2.3 Main Configuration File

This section describes the KStar.cfg configuration file. This file contains some parameters related
to the OSPREY energy function (see Sec. 4.3), rotamer library (Sec. 4.2), and steric filter (see
below). Most parameters have a default value. A minimal file looks like this:

dataDir /home/you/proteinDesign/dataFiles/

The format of each line in the KStar.cfg file is: parameter value, where the parameter and
value are separated by a single space. In addition to the required parameters, the following pa-
rameters have default values (shown here), and can be modified by including them in KStar.cfg:

hElect true

hVDW true

hSteric false

distDepDielect true

dielectConst 6.0

vdwMult 0.95

doDihedE false

doSolvationE true

solvScale 0.5

stericThresh 0.4

softStericThresh 1.5

ForceField AMBER

entropyScale 0.0

rotFile LovellRotamer.dat

autoFix true

ramaGlyFile rama500-gly-sym.data

ramaProFile rama500-pro.data

ramaGenFile rama500-general.data
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ramaPreProProfile rama500-prepro.data

Both required and optional parameters are described here:

hElect/hVDW

Determines if electrostatics/vDW energies are computed for hydrogens; both are boolean
parameters. Typically, hElect should be set to true. In some cases, the user may not be as
confident in the hydrogen positions in the input pdb structure, so the hVDW parameter can
be set to false. By default, however, both values are set to true.

hSteric

Determines if hydrogens are used in steric checks; this is a boolean parameter. If
hSteric is false, then steric clashes involving hydrogens are not pruned by the OSPREY
steric filter. By default, hSteric is set to false.

distDepDielect

Determines if a distance-dependent dielectric should be used; this is a boolean param-
eter. This parameter is typically (and by default) set to true.

dielectConst

The value of the dielectric constant. The values typically used are between 6.0 and 8.0
with a distance-dependent dielectric (distDepDielect set by default to true).

vdwMult

A scaling factor for the atomic vdW radii read in from the force field parameters (see
Sec. 4.3). By default this value is set to 0.95.

doDihedE

Determines if side-chain dihedral energies should be computed and added to the total
energy; this is a boolean parameter. This parameter is used only if side-chain dihedral
flexibility is allowed - for MinDEE-based searches (see Sec. 4.3 and [15]). This parameter is
by default set to false.

doSolvationE

Determines if implicit solvation energies should be computed and added to the total
energy; this is a boolean parameter. The EEF1 implicit pairwise solvation model [20] is used
in OSPREY (see the description of the eef1parm.dat file in Sec. 4.3 for details). By default
this value is set to true.

solvScale

A multiplicative factor that scales the computed solvation energy value before adding
it to the total energy of the system. Recommended values are between 0.5 and 0.8, although
different values may be used depending on the type of problem (e.g., active site vs. protein
surface redesign, etc.). This value is set to 0.5 by default.
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stericThresh

Steric overlap allowed in the initial (before minimization) steric check. If the vdW
radii for a pair of atoms overlap by more than the value of this parameter, then the current
rotamer-based conformation is pruned from further consideration. This parameter is used for
computational efficiency. The idea is that some initial soft steric clash may be allowed, since
conformations may minimize from such soft clashes; large clashes are not allowed and are
immediately pruned. Larger values for stericThresh will prune fewer rotameric conforma-
tions, resulting in increased computational requirements. Smaller values for stericThresh
may result in too much pruning and in discarding conformations that may have minimized to
low energies. A value of 1.5 is typically used for the stericThresh parameter, with hSteric
set to false (see above). If the input structure is not of high resolution, larger values (e.g.,
2.0) for stericThresh can be used. By default this value is set to 0.4.

softStericThresh

Steric overlap allowed for a fixed rotamer conformation in Brdee redesigns (see Sec. 5.1.4
and [13]). The value of this parameter is typically much lower than the stericThresh value
since no energy minimization is allowed after the steric check. A typical value used for this
parameter is 0.6, although lower values (≥ 0.4) may be used for very high-resolution input
structures. By default this value is set to 1.5.

ForceField

Starting with version 2.0, OSPREY now includes both the Amber and Charmm energy
function. The user can select any of the two energy functions by setting this value to either
Amber or Charmm 19. In addition, the neutral Charmm19 forcefield developed alongside
the EEF1 solvation forcefield [20] can be used with the value of CHARMM19NEUTRAL. By default,
the energy function used is Amber.

entropyScale

Constraining the flexibility of residues with a high conformational freedom (e.g. by
burying them in the core of a protein) can incur an entropic penalty [9, 1]. OSPREY includes
entropic penalties to account for the burying of flexible residues, as described in [1]. If desired,
the user can set this value 0.0 to deactivate the penalties. Entropic penalties are not necessary
when K∗ is used. By default entropyScale is set at 0.0 and therefore deactivated. A value of
1.0 is recommended for cases where entropic penalties are necessary.

dataDir

Data files such as rotamer libraries, amino acid charges, etc. are located in the directory
pointed by this variable.

rotFile

The file that contains the rotamer library data for the natural amino acids (see Sec. 4.2).
This file name must be relative to the directory set by dataDir.

autoFix

15



Indicates that the input structure should be processed using the autofix feature (de-
scribed in section 4.1); this will not affect structures that already in the OSPREY format
(also described in that section) but will allow some other structures to be read. This value is
set to true by default.

ramaGlyFile

The file with this name will be used as a Ramachandran map for glycine residues; this
is used in DEEPer to select perturbations (see [17]). The file should specify the density of
structures at each value of the glycine backbone dihedrals. This file name must be relative
to the directory set by dataDir. A default file with this data is provided in the dataFiles
directory, and any substitute data should follow the same format. This value is set to the
name of the default file, rama500-gly-sym.data, by default. (Default files in the same
format are provided for the next three options; they are also in the dataFiles directory, and
their names are also set to be the default values for their respective options).

ramaProFile

This is the Ramachandran map for proline residues (same format as ramaGlyFile).
This file name must be relative to the directory set by dataDir. The default file is named
rama500-pro.data.

ramaPreProFile

This is the Ramachandran map for residues immediately before a proline (same format
as ramaGlyFile). This file name must be relative to the directory set by dataDir. The
default file is named rama500-prepro.data.

ramaGenFile

This is the Ramachandran map for residues that are not proline or glycine or immedi-
ately before a proline (same format as ramaGlyFile). This file name must be relative to the
directory set by dataDir. The default file is named rama500-gen.data.
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Chapter 4

OSPREY Input Model

Performing redesigns with OSPREY requires four basic types of input: a pdb structure of the
protein (or protein-ligand complex) to be redesigned (described in Sec. 4.1), rotamer libraries for
natural amino acids and (optionally) for general compounds (described in Sec. 4.2), energy function
parameter files (described in Sec. 4.3), and various command-dependent input configuration files
that specify the different mutation search parameters (described in detail for each of the OSPREY
commands in Chapter 5).

4.1 Setting up the Input Structure

After determining the protein or protein/substrate complex for redesign, a structure of that pro-
tein/complex must be used as input for OSPREY. This structure must be in the PDBv3 format,
but other than that constraint, the source of the input structure (e.g., downloaded from the PDB,
obtained from homology modeling, etc.) is not important. Structures using the older PDBv2.3
format can be converted to PDBv3 using programs such as the Remediator from the Richardson
Lab at Duke University [19]. NOTE: When K∗ runs are performed, two separate input structures
can be used: one for the bound protein-ligand complex and one for the unbound (free) protein (see
Sec. 5.2 for details). Typically, the initial input structure must be modified to make it compatible
with OSPREY. Below we describe some typical modifications that are necessary for each input
structure. Due to the lack of standardization in the format of some input structures, the use of
non-standard ligands, and the presence of certain limitations of the structure reader in OSPREY,
manual per-case tweaking of the input structure may be necessary to make it compatible with
the program. However, we now provide an “autofix” feature to perform some of these changes
automatically.

Residues with Missing Atoms

OSPREY requires that no residues in the input structure have missing atoms. Since missing
(heavy) atoms in crystal structures are not uncommon, one of two approaches is suggested in such
cases. First, the entire residue that has missing atoms can be deleted from the input structure.
Alternatively, a program such as KiNG [19] can be used to model the missing atoms in a reasonable
conformation. A disadvantage of the former approach is that the flexible/mutable residues in the
protein may have erroneously reduced constraint on their movement; this approach is therefore
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mostly applicable when the deleted residue is far from any residues that are being redesigned. A
disadvantage of the latter approach is that if the modeled residue conformation is incorrect, then
the flexible/mutable residues in the protein may have erroneous constraints on their movement (too
much constraint where the modeled residue is and too little constraint where the modeled residue
should be). To alleviate this problem, the modeled residue may also be allowed to flex during the
OSPREY mutation search in order to assume a more reasonable conformation.

The autofix feature will often be able to repair sidechains with missing atoms by searching
through rotamers. It will try to model in the sterically allowed rotamer with the smallest RMSD
to the input structure over the atoms that structure includes. If there are no sterically allowed
rotamers, it will try to place a clashing rotamer in place by the same metric.

Adding Hydrogens

OSPREY requires that all hydrogens be present in the input structure. The MolProbity server [6]
is recommended for adding hydrogens to proteins and standard ligands that follow the PDB nomen-
clature. For non-standard ligands (e.g., derived chemical compounds), the Accelrys DS Visualizer
program seems to perform generally well. In many cases, however, manual editing of the proto-
nation states and hydrogen orientation may be necessary for non-standard ligands. It is generally
recommended that the protonated structure be inspected for missing/misplaced hydrogens.

His Residues

His residues require special consideration. OSPREY recognizes three different protonation states
for His residues:

• Both hydrogens are present for Nδ and Nε. In that case, the given HIS residue must be
renamed to HIP in the input structure;

• Both hydrogens are present for Nδ but only one hydrogen is present for Nε. In that case, the
given HIS residue must be renamed to HID in the input structure;

• Both hydrogens are present for Nε but only one hydrogen is present for Nδ. In that case, the
given HIS residue must be renamed to HIE in the input structure;

The autofix feature will rename histidine residues appropriately if the hydrogens are provided
in the input structure.

Steric Shell

When design is performed for proteins with more than 60-100 residues, the computational burden
is significantly increased due to the increased cost of the energy minimization/computation for each
candidate conformation and the increased cost of managing the data structures of the molecule.
In such cases, a reduced steric shell around the flexible parts of the protein can be used, instead
of all residues in the protein. The steric shell (e.g., all residues with a specified cutoff distance
from any of the flexible/mutable residues or the ligand) restrains the movement of the flexible
residues. The idea here is that residues that are far from the flexible/mutable residues should
generally have negligible long-range energy interactions and virtually no steric interactions with
the flexible/mutable residues, and can thus be excluded from the steric shell. Recommended values
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for the distance cutoff are 8-9 Å, although smaller values may be used depending on the size of the
protein. For side-chain placement problems, the use of a steric shell should not be necessary, even
for proteins with several hundred residues.

Input Structure Contents

Typically all water molecules and metal ions should be deleted from the input structure. Other than
the protein residues, the input structure should only contain a ligand (if present) and a cofactor
(if present). The current version of OSPREY allows the ligand to be another protein, a peptide,
a natural amino acid or other small molecule. Cofactors can consist of multiple entities (residues
or even molecules). Explicit water molecules can also be modeled as part of the rigid cofactor
(Sec. 6.1). Generally, however, OSPREY is optimized for redesigning proteins and for designing
protein-protein and protein-small molecule interactions.

Residues in the protein must match either one of the amino-acid or one of the general residue
templates (see section 4.3), depending on whether the strand is marked as protein or not. The
autofix feature will delete any residues not matching a template.

Other Considerations

Several additional considerations must be taken into account when fixing the input structure for
OSPREY. First, it is recommended that all TER symbols be removed from the input structure
since otherwise OSPREY may interpret the strand (a special data structure that logically divides
the molecule into a protein, ligand, and cofactor, if present) information erroneously. Second,
OSPREY has no notion of chain IDs when reading the input structure, so if residues from several
different chain IDs (e.g., A, B, etc.) are included, the user must make sure that each residue has a
unique residue number. For example, if there are two residues in the input structure that have the
same residue number (e.g., 5) but different chain IDs (e.g., A vs. B), one of the residues should
be re-numbered (e.g., to 505, assuming there is no residue with that number present in the input
structure). Finally, OSPREY uses atom-atom distances to determine the bond information for the
molecule. Thus, the bond information for input structures with significant steric clashes can be
interpreted erroneously, which can lead to problems with the energy computation (in fact, in such
cases, OSPREY typically reports an error and exits the computation). It is therefore important to
use good input structures with reasonable sterics.

fixStruct Command

OSPREY includes a command to autofix a structure and output the result to a PDB file. To
autofix the structure in original.pdb and output to fixed.pdb, the command is

fixStruct original.pdb fixed.pdb

4.2 Rotamer Libraries

Two rotamer libraries are used by OSPREY: for natural amino acids and for general compounds.
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Natural Amino Acids

The default rotamers for all natural amino acids, except for Pro, are based on the modal rotamer
values from the Penultimate rotamer library [24]. These rotamers are stored in the file specified
by the rotFile parameter in the KStar.cfg configuration file (see Sec. 3.2.3). Different rotamer
libraries for the natural amino acids can be incorporated by modifying the rotFile file. This file
has the following format. Comment lines that are discarded by the program start with ‘!’. The
first non-comment line in the file contains a single number representing the number of amino acids
for which rotamers are defined in the file. By default, this number is 19 (all natural amino acids
other than Pro; NOTE: mutations to/from Pro are not allowed in OSPREY, so Pro rotamers are
not applicable). The remainder of the file has the following format for each amino acid type:

AA name number of dihedrals number of rotamers
dihedral list one per line

rotamer angles

The AA name is given by the three-letter code for each amino acid. The dihedral list one per line

lines give the atom names (standard PDB format) for the four atoms that form each of the num-

ber of dihedrals dihedrals for the given amino acid. Each of the rotamer angles lines contains the
number of dihedrals dihedral angle values for the corresponding rotamer; the total number of ro-
tamers is given by the number of rotamers value. For example, by default, Leu has two dihedrals
and five rotamers:

LEU 2 5
N CA CB CG
CA CB CG CD1
62 80
-177 65
-172 145
-85 65

-65 175

To add another Leu rotamer with rotamer angles -85 50, the entry for Leu must be changed to:

LEU 2 6
N CA CB CG
CA CB CG CD1
62 80
-177 65
-172 145
-85 65
-65 175

-85 50

Notice that the total number of rotamers for Leu is increased to 6 and the new rotamer angles
are added at the end of the Leu rotamer list.

NOTE: If a given amino acid type has no rotamers but mutations to this amino acid are
allowed, then an entry must still be present in the rotFile file, such that the number of dihedrals

and number of rotamers values are set to 0. For example: ALA 0 0, or even LYS 0 0 if no
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rotamers for Lys will be used (however, setting the rotamers for a natural amino acid, other than
Ala or Gly, to 0 is not recommended).

General Compounds

For ligands in a specific system that are not natural amino acids, rotamers must be defined in a
separate file. This file is specified by the grotFilei parameter in the System.cfg configuration file
(see Sec. 5.1.1). The grotFile file has the same format as the rotFile file. The first non-comment
line in the file contains a single number representing the number of compounds (non-amino acid
ligands) for which rotamers are defined in the file. For each compound, the first line of information
contains the three-letter code (as found in the input pdb structure), followed by the number of
dihedrals and number of rotamers for that compound. Note that the number of dihedrals should
reflect only the number of flexible dihedrals (in effect, this is the number of bonds allowed to rotate),
rather than the total number of dihedrals in the compound. For each rotamer (one per line), the
values of the (flexible) dihedral angles are then specified. For example, let us assume we have a
ligand whose three-letter code is CHR and that has two flexible dihedrals and six rotamers; the
entry for that ligand in the grotFile may then look like this:

CHR 2 6
N1 C2 C3 C4
C2 C3 C4 N5
62 180
-177 68
-177 180
-90 68
-67 180

-62 -68

NOTE: Remember to increase the total number of compounds (the first non-comment line in
the grotFile file) when adding the rotamer information for a new compound.

4.3 Energy Function

The default energy function used in OSPREY consists of the Amber electrostatic, van der Waals,
and dihedral energy terms [31, 4] and the EEF1 implicit solvation energy term [20]. The Am-
ber force field parameters are read in from the following files: parm96a.dat, all amino94.in,
all aminont94.in, all aminoct94.in, and all nuc94 and gr.in. The EEF1 parameters are read in
from the eef1parm.dat file.

Starting with version 2.0, the Charmm energy function is also included in the OSPREY distri-
bution and can be used instead of Amber. The Charmm parameters have been reformatted to the
Amber format in the files: parmcharmm19.dat, all amino charmm19.in, all amino charmm19 nt.in,
and all amino charmm19 ct.in.

Next, we describe the Amber, Charmm, and EEF1 parameter files in detail.

The Amber parm96a.dat, and the Charmm parmcharmm19.dat file

The parm96a.dat and parmcharmm19.dat files contain, respectively, the Amber and Charmm
force field parameters for the different atom types, including the parameters used for the vdW and
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dihedral energy computation. NOTE: A distinction is made here between atom type, atom name,
and element type. The atom name is the name that an atom has in the input pdb file (e.g., ’CA’ for
the Cα atom of a given amino acid). The element type is the chemical element to which the current
atom corresponds (e.g., Cα’s are carbon atoms). The atom type refers to the force field type that
is assigned to the current atom (e.g., a Cα may be assigned a ’CT’ force field type according to the
Amber force field); each force field type has specific force field parameters which are used in the
energy computation for a given structure.

The parm96a.dat file has the same format and virtually the same contents (with some minor
modifications) as the parm96.dat file from the Amber 9 distribution. The Amber parm96.dat

file is a modified version of the parm94.dat force field parameter file. The parameters found in the
parm96a.dat should be sufficient for protein redesigns. In some cases, however, additional atom
types (and the corresponding force field parameters) might be necessary. Additional and updated
force field parameters can be incorporated into the parm96a.dat file, as long as the same format
of the file is used. An example of how to add new force field parameters to the parm96a.dat file is
discussed in detail below.

The parmcharmm19.dat is an adaptation of the Charmm parameters to the parm96a.dat file
format.

NOTE: All parameters from the parm96a.dat and parmcharmm19.dat file are read in by
OSPREY; however, the bond and angle parameters are currently not used as part of the energy
function computation in OSPREY.

The all aminoX94.in files

The all amino94.in file contains the Amber force field atom types and charges, as well as the atom
connectivity information, for all natural amino acids. This file has the same format and virtually
the same contents (with some minor modifications) as the all amino94.in file from the Amber 1994
force field [4], as found in the Amber 9 distribution. This file should generally be left unchanged,
unless a newer version of the atom types/charges (e.g., the Amber 2002 force field) is desired. If
a new version of the amino acid parameters is incorporated instead, the new all amino94.in file
must have the same format as the current version.

The all aminont94.in and all aminoct94.in files contain, respectively, the NH3+ and COO-
amino acid atom force field types and charges. These files have the same format as the all amino94.in

file and are virtually the same (with some minor modifications) as the corresponding files from the
Amber 9 distribution.

The Charmm parameter files in our OSPREY distribution have been adapted to the same
format as the Amber ones: all amino charmm19 neutral.in, all amino charmm19 neutral nt.in,
and all amino charmm19 neutral ct.in correspond, respectively, to all amino94.in, all aminont94.in,
and all aminoct94.in.

The all nuc94 and gr.in file

The all nuc94 and gr.in file contains the force field atom types and charges, as well as the atom
connectivity information, for: (1) nucleic acids and (2) any general compounds. The nucleic acid
parameters are the same as the parameters in the all nuc94.in file from the Amber 1994 force
field [4], as found in the Amber 9 distribution. The force field parameters for general compounds
can be derived using the Antechamber program [30] and added to the all nuc94 and gr.in. Next,

22



Figure 4.1: A schematic of the FCL molecule.

we give an example of how to compute and add force field parameters for a general compound as
part of the OSPREY input parameter files.

NOTE:Antechamber is designed to be used with Amber energy parameters. Adding gen-
eral compounds for use with Charmm to OSPREY would require a Charmm-specific force field
calculation.

Example: adding force field parameters

Here, we give an example of how to add force field parameters to the OSPREY input parameter
files (parm96a.dat and all nuc94 and gr.in) in the cases when certain parameters are missing. Let
us have a small molecule ligand with three-letter name ’FCL’ that differs from Phe in that chlorine
is added to the para ring position (Fig. 4.1). FCL is not a natural amino acid, and force field
parameters for this small molecule are not found in any of the OSPREY input files. We thus need
to generate all necessary force field parameters and add them to the OSPREY input files. To do
this, we will use the Antechamber program from the Amber 9 distribution since Antechamber
can generate force field parameters in the exact format required by OSPREY.

Assuming the structure of FCL is found in fcl.pdb (and there is nothing else in this pdb file),
Antechamber can be run using the following command:

antechamber -i fcl.pdb -fi pdb -o fcl.prepi -fo prepi -c bcc -at amber
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This generates many files, but the only output file that we need is fcl.prepi which contains the
atom types and charges for the FCL molecule. Since Antechamber was called with -fo prepi

and -at amber, the fcl.prepi file is in the correct format for input into OSPREY. The contents
of the fcl.prepi may look like Fig. 4.2. All lines from fcl.prepi, between This is a remark line

and DONE (inclusive) must be added between the last DONE line and the STOP line in the
all nuc94 and gr.in file. This will allow OSPREY to read in the force field parameters for the FCL
molecule.

As is the case in this example, adding new parameters to all nuc94 and gr.in may also require
adding new parameters to parm96a.dat. FCL has a chlorine atom, Cl. The atom type Cl is not
available in the original parm96a.dat, and neither are any of the force field parameters related to
this atom type. To obtain these parameters, the parmchk command from the Amber distribution
can be called:

parmchk -i fcl.prepi -fi prepi -o fcl.frcmod

This should generate the different force field parameters for the atom types from the fcl.prepi

file, and output these parameters to the fcl.frcmod file. In the current example, it is sufficient to
add two lines to parm96a.dat. First, add the line

Cl 35.450 same as cl, antechamber

to the group of atom types and mass parameters at the beginning of parm96a.dat, immediately
after the line

Cs 132.91 cesium

Next, add the line

Cl 1.9480 0.2650 same as cl, antechamber

to the group of vdW parameters at the end of parm96a.dat, immediately after the line

IB 5.0 0.1 solvated ion for vacuum approximation

In some cases, it may also be necessary to add a subset of the dihedral parameters from
fcl.frcmod to parm96a.dat. This will happen if an atom whose atom type is not available in
the original parm96a.dat is also part of a dihedral whose two central atoms define a rotatable
bond, as determined by the rotamers for the given molecule (see Sec. 4.2).

The eef1parm.dat file

The eef1parm.dat file contains solvation energy parameters for different force field atom types,
as described in [20]. The mapping between amino acid atom names and force field atom types
is done in the EEF1.java class, so any changes to the eef1parm.dat file should also be reflected
in EEF1.java. The eef1parm.dat file only contains parameters for proteins (e.g., there are no
parameters for phosphorus); cofactors and ligands that are not natural amino acids are not included
in the solvation energy computation.
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0 0 2

This is a remark line

molecule.res

FCL INT 0

CORRECT OMIT DU BEG

0.0000

1 DUMM DU M 0 -1 -2 0.000 .0 .0 .00000

2 DUMM DU M 1 0 -1 1.449 .0 .0 .00000

3 DUMM DU M 2 1 0 1.522 111.1 .0 .00000

4 O O2 M 3 2 1 1.540 111.208 180.000 -0.70919

5 C C M 4 3 2 1.250 25.416 -155.202 0.93765

6 OXT O2 E 5 4 3 1.250 124.369 -68.343 -0.80178

7 CA CT M 5 4 3 1.521 118.862 111.241 -0.07264

8 N N3 3 7 5 4 1.487 109.136 -158.208 -0.82993

9 H1 H E 8 7 5 1.070 109.492 179.981 0.41914

10 H2 H E 8 7 5 1.070 109.510 60.002 0.42834

11 H3 H E 8 7 5 1.070 109.521 -60.023 0.48650

12 HA HP E 7 5 4 1.100 109.118 82.072 0.08888

13 CB CT M 7 5 4 1.528 110.798 -36.499 -0.05260

14 HB2 HC E 13 7 5 1.100 108.981 -67.828 0.06449

15 HB3 HC E 13 7 5 1.100 108.985 48.654 0.12875

16 CG CA M 13 7 5 1.497 113.679 170.400 -0.11169

17 CD1 CA M 16 13 7 1.396 120.643 -54.259 -0.12508

18 HD1 HA E 17 16 13 1.100 119.589 0.946 0.14651

19 CE1 CA M 17 16 13 1.399 120.862 -179.043 -0.11974

20 HE1 HA E 19 17 16 1.101 120.141 179.898 0.15325

21 CZ CA M 19 17 16 1.393 119.721 -0.086 0.01562

22 Cl1 Cl E 21 19 17 1.770 120.084 -179.920 -0.08313

23 CE2 CA M 21 19 17 1.399 119.809 0.048 -0.12119

24 HE2 HA E 23 21 19 1.100 120.030 179.988 0.15163

25 CD2 CA M 23 21 19 1.396 119.925 -0.051 -0.13198

26 HD2 HA E 25 23 21 1.100 119.613 -179.907 0.13819

LOOP

CD2 CG

IMPROPER

CA O C OXT

CD1 CD2 CG CB

CG CE1 CD1 HD1

CD1 CZ CE1 HE1

CE1 CE2 CZ Cl1

CZ CD2 CE2 HE2

CG CE2 CD2 HD2

DONE

STOP

Figure 4.2: The fcl.prepi file.
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User control of the energy function

The user is also allowed to change certain energy function parameters, such as the value of the
dielectric constant and the scaling factor for the vdW radii of the atoms, from the KStar.cfg
configuration file. For details, see Sec. 3.2.3.

4.4 Perturbations

DEEPer calculations [17], whether GMEC- or K∗-based, require a perturbation file, which specifies
the modes of flexibility other than sidechain dihedral changes that are available to the molecule.
This file contains a list of perturbations (i.e., modes of flexibility), followed by a list of residues and
the residue conformations (RCs) available to them (see [17] for a description of these concepts).
Perturbation files can be generated automatically by the new perturbation selection module, de-
scribed in [17]. So for many applications, the user will not need to work with the perturbation file
(the selection module will generate it, and then OSPREY will read it for use in the design run).
In some cases, the user may want to generate some perturbations by hand, or may otherwise want
to specify a set of perturbations differing from what would be automatically generated. These
perturbations can be provided in a “starting perturbation file.” The selection module can either
add these perturbations to the automatically generated perturbations or use only the perturba-
tions provided in the starting perturbation file, depending on the user’s choice. Also, the user can
specify a set of parameter intervals to be used for all shears and backrubs. Options for configuring
the residue-conformation selection mechanism are also provided. All these options are described
in section 5.1.1. The user can also write or change the set of RCs specified in the perturbation
file, if these need to be different from what the automatic selection module would generate from
the specified perturbations. However, this is expected to rarely be necessary, since the automatic
selection module is configured to handle most reasonable options for generating RCs from a set of
perturbations.

Perturbation files consist of two parts. We will now describe each part and give examples.
The first part gives information on the perturbations themselves. This part is more likely to

require user modification. It starts with a line giving the title of the file (this is PERTURBATIONS

by default), and then a line stating the number of perturbations, as follows:

PERTURBATIONS

8

This is followed by a list of the perturbations, in the order in which they should be applied. The
record for each perturbation starts with a line naming the perturbation type: BACKRUB, SHEAR,
LOOP CLOSURE ADJUSTMENT, SSNE, SSCE, PARTIAL STRUCTURE SWITCH, FULL

STRUCTURE SWITCH, or PROLINE FLIP. These type of perturbations are explained in [17],
except that secondary structure adjustments [17] should be listed as either LOOP CLOSURE

ADJUSTMENT, if they affect only three residues (and thus are formally the same as a loop
closure adjustment); SSNE (Secondary Structure N-terminal Extension), if they are expanding a
secondary structure element (helix or strand) at its N-terminus; or SSCE (Secondary Structure
C-terminal Extension), if they are expanding a secondary structure element at its C-terminus. The
next line states the residue numbers for the residue affected by the perturbation (using the PDB-file-
based numbering system for residues). The next line says n states where n is the number of “states”
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available to the perturbation (each corresponds to an interval for the perturbation parameter). The
states are then listed, one to a line, in the format u v where the parameter (denoted as x) is in the
range u ≤ x ≤ v for that interval. The first state should be unperturbed, meaning u+ v = 0 (i.e.,
the state is centered at the starting backbone conformation). An example record for a backrub
perturbation is shown here:

BACKRUB

36 37 38

2 states

-2.0 2.0

2.0 5.0

This backrub affects residues 36-38 and has 2 states, one for which −2 ≤ x ≤ 2 and one for
which 2 ≤ x ≤ 5 (where x is the backrub parameter).

The second part of the perturbation file defines the perturbed residue conformations for each
affected residue. (Perturbed residue conformations are those that correspond to a perturbed param-
eter interval for some perturbation). This part of the file is unlikely to requires user modification.
The record for each residue starts with a line saying “RES,” followed by a line stating the residue
number of the residue (PDB-based) and a line of the form m states n RCs. A residue conforma-
tion will be represented as the triple of an amino-acid type, a sidechain rotamer, and a “residue
perturbation state,” meaning a tuple of intervals corresponding to each perturbation affecting the
residue; the residue will have n perturbed residue conformations and m of these residue perturba-
tion states. The next line says PERTURBATIONS followed by the numbers of the perturbations
affecting the residue (in the order given in the first part of the perturbation file, starting with 0).
Then the residue perturbation states are defined, one to a line. Each state is represented using
interval numbers (in the order given in the first part of the perturbation file, starting with 0) for
each perturbation affecting the residue, separated by spaces. The next line says RCs, and is fol-
lowed by a set of lines defining the residue conformations, one to a line, in the format AA TYPE

m n where AA TYPE is the amino-acid type, m is the sidechain rotamer number for the residue
(numbered as in the rotamer library) and n is the residue perturbation state (in the order listed
in this residue record, starting with 0). Unperturbed RCs are not included here; all unperturbed
RCs (i.e., all rotamers along with residue perturbation state 0) are assumed to be used for the
calculations. m = −2 denotes the wild-type rotamer.

An example record for a residue is as follows. It describes residue number 65, which is affected
by a single shear perturbation. This shear is the first perturbation described in the first part of the
perturbation file (so perturbation number 0 in the 0-based numbering system). The shear has only
one perturbation state, which is unperturbed (though it allows minimization of the shear parameter
in the range from -2.5 to 2.5). As a result, the residue has only one residue perturbation state and
only unperturbed RCs (normal rotamers, in this case allowing up to 2.5◦ of shear minimization in
either direction from the starting backbone):

RES

65

1 states 0 RCs

PERTURBATIONS 0

0

RCs
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A more complicated residue record is shown below. It describes residue number 36, which is
affected by 5 perturbations (numbers 0-4 from the first part of the perturbation file). 4 residue
perturbation states are available. These all correspond to the “unperturbed” interval (interval
number 0) for perturbations 0-2, but residue perturbation state 1 corresponds to interval number
1 for perturbation 4, etc. 27 perturbed RCs are available: three for alanine (rotamer 0, which is
the only rotamer, along with any of the three perturbed residue perturbation states) and 24 for
isoleucine.

RES

36

4 states 27 RCs

PERTURBATIONS 0 1 2 3 4

0 0 0 0 0

0 0 0 0 1

0 0 0 1 0

0 0 0 1 1

RCs

ALA 0 1

ALA 0 2

ALA 0 3

ILE -2 1

ILE 0 1

ILE 1 1

ILE 2 1

ILE 3 1

ILE 4 1

ILE 5 1

ILE 6 1

ILE -2 2

ILE 0 2

ILE 1 2

ILE 2 2

ILE 3 2

ILE 4 2

ILE 5 2

ILE 6 2

ILE -2 3

ILE 0 3

ILE 1 3

ILE 2 3

ILE 3 3

ILE 4 3

ILE 5 3

ILE 6 3
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Chapter 5

OSPREY Commands

We will assume that the MPI-based or multithreaded OSPREY command (Sec. 3.2) has been
executed and the program is waiting for the user to execute one of the available commands. The
OSPREY commands can be divided into three general algorithmic modules, each described in a
separate section of this documentation.

Redesign can be performed using a GMEC-based approach in which candidate protein mutants
are ranked based on the single best conformation (the Global Minimum Energy Conformation,
GMEC) for each candidate mutant. The OSPREY GMEC-based redesign approach utilizes a
number of Dead-End Elimination (DEE) algorithms combined with the A∗ search algorithm for
solving protein redesign problems. GMEC-based redesign with OSPREY is described in Sec. 5.1.

Alternatively, redesign can be performed using an ensemble-based approach in which candidate
mutants are ranked based on an ensemble of low-energy conformations, rather than just the GMEC.
The OSPREY ensemble-based approach utilizes the K∗ algorithm for protein-ligand binding pre-
diction and protein redesign. Redesign with K∗ is described in Sec. 5.2.

Finally, OSPREY allows the user to use a Self-Consistent Mean Field (SCMF)-based algorithm
for computing residue entropies for all residue positions in a protein. This algorithm can be used
in combination with a DEE-based algorithm to predict mutations anywhere in a protein. Such
a hybrid SCMF/DEE approach is applicable to, e.g., enzyme redesign for improving the target
substrate specificity of the mutant enzymes. The SCMF computation in OSPREY is described in
Sec. 5.3.

Once the execution of a OSPREY command completes, OSPREY exits. If more OSPREY
commands must be executed, the mpirun or java command must be executed again, followed by
the desired OSPREY command.

NOTE: The mpirun/java and the OSPREY commands need not be executed sequentially;
rather, these commands can be executed as a single command. For example, the doDEE command
(described in Sec. 5.1) can be executed in the following way:

mpirun -machinefile ./machines -np 5 java -Xmx1024M KStar mpi -c KStar.cfg doDEE

System.cfg DEE.cfg

or

java -Xmx1024M KStar -t 5 -c KStar.cfg doDEE System.cfg DEE.cfg

With any of these single command, the standard output from OSPREY can be redirected to a
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file for analysis. For example, assuming tcsh is used:

mpirun -machinefile ./machines -np 5 java -Xmx1024M KStar mpi -c KStar.cfg doDEE

System.cfg DEE.cfg >! logDEE.out

This command will generate a file logDEE.out that will store all standard output from the
OSPREY run. This way, some advanced information (such as rotamer pruning and detailed running
times) that is typically not generated as part of the standard OSPREY output files, will be available
for analysis by the user. NOTE: For some problems, the standard output from a OSPREY run
may generate very large files (sometimes, though rarely, exceeding 1GB), so the user should make
sure that there is sufficient space in the target location.

30



5.1 GMEC-based Redesign

The GMEC-based redesign uses DEE-based rotamer pruning and A∗ conformation enumeration.
The DEE pruning stage can incorporate continuously-flexible rotamers (the MinDEE algorithm [15]
or the more efficient iMinDEE algorithm [11]) or continuous (the BD algorithm [12]) or discrete (the
Brdee algorithm [13]) protein backbones. Traditional DEE pruning [8, 26] for a rigid backbone
and rigid rotamers can also be performed.

In a GMEC-based redesign, mutation sequences are ranked according to the single lowest-energy
rotamer-based conformation for each sequence. Typically, either only the overall GMEC (over all
mutation sequences) is identified, or a gap-free list of conformations and sequences is generated, such
that all conformations/sequences within a user-specified energy window from the GMEC energy
are generated by the A∗ enumeration [15].

A GMEC-based mutation search can be performed by OSPREY using the following command:

doDEE System.cfg DEE.cfg

The System.cfg and DEE.cfg configuration files are described in detail below (Sec. 5.1.1). The
names of the two configuration files specified after the doDEE command can be chosen by the user;
for clarity, we will refer to these files as System.cfg and DEE.cfg throughout this documentation.
The output of the doDEE command is also described below (Sec. 5.1.2).

Once the doDEE command completes its execution, the user will have a list of low-energy
conformations and sequences. PDB structures for selected conformations can then be generated
using the following command:

genStructDEE System.cfg GenStruct.cfg

The System.cfg configuration file is the same as with the doDEE command. The GenStruct.cfg

file (or the corresponding user-specified filename) is described in detail in Sec. 5.1.1 below. The
output of the genStructDEE command is described in Sec. 5.1.2 below. The genStructDEE

command is executed on a single processor.
The GMEC-based mutation search can be applied with or without the DACS (Divide-And-

Conquer Splitting) algorithm [14]. DACS divides the conformation space into non-overlapping
partitions and uses partition-specific information to efficiently generate the GMEC for each parti-
tion. The partition GMEC’s are then used to obtain the overall GMEC, for the full conformation
space. DACS was found to result in speedups of up to more than three orders of magnitude when
compared to DEE/A∗ runs without DACS [14]. DACS can be performed on a single processor or
on a (large) cluster of processors. Generally, the user can adapt the DACS partitioning scheme
depending on the redesign problem and the availability of computational resources.

5.1.1 Configuration Files

System.cfg

This configuration file contains the information about the system (protein) being redesigned. The
file format has been significantly changed in OSPREY 2.0 to support protein-protein interactions.
A minimal file looks like this:

pdbName dhfr_8A_ucp_mod.pdb
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numOfStrands 1

strand0 3 151

strand1 300 300

strandMutNums 7 1

strandMut0 5 20 31 46 50 54 92

strandMut1 300

strandAA0 true

strandAA1 false

strandRotTrans0 false

strandRotTrans1 true

numCofRes 1

cofMap0 200

grotFile1 GenericRotamers.dat

In addition to the required parameters, the following parameters are required when different
structures are use for either of the unbound ligands:

UseUnboundStruct0 false

UseUnboundStruct1 false

unboundPdbName0 none

unboundPdbName1 none

A description of the parameters is as follows:

pdbName

The name of the input pdb file of the design system. This should be the file modified
by the user according to the instructions for making the input structure compatible with
OSPREY, as described in Sec. 4.1.

numOfStrands

The number of strands to be designed: 1 or 2. 2 strands are designed when two binding
partners are being redesigned and it is desirable to have them rotate and translate. For
example, if a protein-protein interface is being designed, and one of the proteins can translate
and rotate a small distance within the active site, then the number of strands is equal to 2.
Similarly, if a protein-ligand binding site is being designed, the second strand corresponds to
the ligand. If, by contrast, only one protein is being designed, or no rotation/translation is
desired in a GMEC-based design, then the number of strands is 1.

strand0

The range of residues for strand0. For example, if strand0 is defined from residue 1 to
residue 90, the value would be ‘1 90’. NOTE: residue numbers are assumed to be consecutive;
there is no notion of ’chains’ in OSPREY. The user should therefore renumber residues that
are in different chains so that no two residues have the same number in the PDB file.

strand1
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The range of residues for strand1, if two strands are defined. For example, if strand1
is defined from residue 91 to residue 120, the value would be ‘91 120’. If a strand is only one
residue long that residue should be listed as both the start and end of the strand. I.E. if the
ligand is residue 300 then “strand1 300 300” should be used.

strandMutNums

The number of flexible/mutable residues in each strand. For example, ‘4 6’ specifies 4
flexible/mutable residues in strand 0 and 6 flexible/mutable residues in strand 1.

strandMut0

The list of residue numbers (numbering from PDB file) that can mutate in strand0,
separated by a space. For example ‘2 3 15 20’. The total number of residues must agree with
the first field in strandMutNums.

strandMut1

The list of residue numbers (numbering from PDB file) that can mutate in strand1,
separated by a space. For example ‘91 92 100’. The total number of residues must agree with
the second field in strandMutNums.

strandAA0/strandAA1

Is strandi composed of Amino acids? If so, set strandAAi to true, otherwise to false.

strandRotTrans0

True/false flag that determines whether this strand can perform rigid-body motions of
rotation and translation. Note that only one strand (the smaller of the two strands) needs to
be set to rotate and translate since it is redundant for both to rotate and translate.

strandRotTrans1

True/false flag that determines whether this strand can perform rigid-body motions of
rotation and translation.

onlySingleStrand

Integer flag that determines if only one strand will be present during the design. This
flag is used for DEE runs where the user would only like to design one of the protein strands
instead of the complex. Set value to the strand number to be designed. I.E. if you would like
to design only strand 1 then set the value of onlySingleStrand to “1”. If you want to design
the protein complex choose “-1” (default is -1).

useUnboundStruct0

Determines if a different unbound structure for strand0 is used for the unbound partition
function computation. By default, K∗ uses the input structure for the bound protein-ligand
complex (specified by the pdbName parameter in the System.cfg file described in Sec. 5.1.1)
for both the bound and unbound (free protein) partition function computation. In the default
case, the unbound (free) protein structure is obtained by simply removing the ligand from
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the input structure. This approach is useful if only a bound protein-ligand structure is
available. In cases where a structure of the free protein is also available, that structure can be
used for the unbound partition function computation; the useUnboundStruct parameter
should then be set to true. NOTE: If both the bound and unbound structures are used, the
only difference between these structures should be the conformation of the residues in these
structures and the lack of a ligand in the unbound structure; the two structures must have
the same input residues (e.g., if residue 278 is present in the bound structure, it must also be
present in the unbound structure, and vice versa).

useUnboundStruct1

Same as useUnboundStruct0, but for strand1.

unboundPdbName0

The name of the input pdb file for the unbound (free) protein defined in strand0. This
should be the file modified by the user according to the instructions for making the input
structure compatible with OSPREY, as described in Sec. 4.1. This parameter is only taken
into account if useUnboundStruct is true.

unboundPdbName1

Same as unboundPdbName0, but for strand1.

minEnergyMatrixNameUnbound0/maxEnergyMatrixNameUnbound0

The precomputed lower-/upper-bound pairwise energy matrix file names for the un-
bound (free) protein structures. These matrices are analogous to the minEnergyMatrix-
Name and maxEnergyMatrixName matrices, which are used for the bound protein-ligand
computation (or for both the bound and unbound computation if unboundPdbName0
is false). The minEnergyMatrixNameUnbound0 and maxEnergyMatrixNameUn-
bound0 parameters are only taken into account if unboundPdbName0 is true.

minEnergyMatrixNameUnbound1/maxEnergyMatrixNameUnbound1

Same as minEnergyMatrixNameUnbound0/maxEnergyMatrixNameUnbound0,
but for strand1.

grotFile

The file that contains the rotamer library data for general compounds (see Sec. 4.2).

cofMap0

The pdb residue numbers for all cofactors in strand 0. If there are no cofactors either
don’t include the flag or set the value to -1.

cofMap1 Same as cofMap0 but for strand 1.
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DEE.cfg

This configuration file contains the information about the DEE/A∗ mutation search parameters.
A minimal file looks like this:

runName dhfr-dee-example

addWT false

resAllowed0_0 leu

resAllowed0_1 leu

resAllowed0_2 val

resAllowed0_3 thr

resAllowed0_4 ile

resAllowed0_5 leu

resAllowed0_6 phe ile

resAllowed1_0 drg

The above example sets a DEE/A* search with 7 flexible residues in the protein, and a ligand.
One residue, phe92 is allowed to undertake one of two identities: phe or ile. In addition to these
parameters, the following parameters have default values assigned, shown here, and can be modified
by the user:

numMaxMut 1000

algOption 3

imindee false

ival 0.5

doDACS false

splitFlags false

distrDACS false

doMinimize false

minimizeBB false

doBackrubs false

backrubFile none

minEnergyMatrixName runNameminM.dat

maxEnergyMatrixName runNamemaxM.dat

useEref true

initEw 0.0

pruningE 100.0

stericE 30.0

approxMinGMEC false

lambda 0.0

preprocPairs true

pairSt 100.0

scaleInt false

maxIntScale 0

minRatioDiff 0.15

initDepth 1

subDepth 1
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diffFact 6

genInteractionGraph false

distCutoff 10000.0

eInteractionCutoff 0.0

outputConfInfo c_runName_

outputPruneInfo p_runName_

addWT true

typedep false

onlysinglestrand -1

resumeSearch false

resumeFilename runInfo.out.partial

useTriples false

magicBulletTriples true

magicBulletNumTriples 5

useFlagsAStar false

doPerturbations false

perturbationScreen false

perturbationFile defaultPerturbationFileName.pert

minimizePerturbations false

screenOutFile screenOutFileDefaultName.pert

idealizeSidechains true

selectPerturbations false

minRMSD 0

shearParams -2.5 2.5

backrubParams -2.5 2.5

RamachandranCutoff 0.02

startingPerturbationFile none

onlyStartingPerturbations false

addWTRots false

A description of the parameters, both optional and required, is as follows:

runName

The file in which partial results are stored. The format of this file is described in detail
in Sec. 5.1.2. This parameter is required.

numMaxMut

The maximum number of mutations from the wildtype, such that any solution generated
by the algorithm will contain not more than numMaxMut mutations. By default a very
large number, 10000, is used here. If you wish to limit the number of simultaneous mutations
to, for example, two residue positions, then set a 2 here.

algOption

Determines the types of DEE criteria applied: 2-split positions DEE is used for algOption>=2,
while DEE pairs pruning is applied for algOption>=3. The other DEE criteria (Bounds,
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simple Goldstein, 1-split position DEE) are used for any value of algOption. See [14] for a
review of the different DEE pruning criteria. By default, a value of 3 is used.

imindee

If continuous side-chain minimization is used, the iMinDEE algorithm can dramatically
increase the amount of pruning that is performed before the A* conformational search. In
design problems where the size of the conformational space is large, this can be critical [11].
By default it is false. Set to true to use it.

ival iMinDEE performs a “greedy” round of pruning on its first iteration that depends
on an initial tight pruning value. We have performed many effective tests with a value of 0.5
for ival. This pruning value is called I0 in [11], where it is thoroughly explained.

doDACS

Determines if the algorithms should use DACS or not. If false, then DACS is not per-
formed after the initial DEE pruning and the program directly proceeds to a single-processor
A∗ conformation enumeration; otherwise, DACS splitting is performed. By default it is set
to false

splitFlags

Is the split-flags technique used? See [14] for a review of this pruning algorithm. By
default it is set to true.

distrDACS

Will the DACS run be distributed? If true, then each DACS partition is distributed to
a separate processor for evaluation. If there are more partitions than processors, a queue is
formed and the distribution continues until there are no remaining partitions in the queue.
If distrDACS is false, the DACS partitions are evaluated sequentially on a single processor.
By default it is set to false.

doMinimize

Determines if energy minimization is to be performed; true if energy minimization is
performed (for Brdee, BD, MinDEE); false otherwise (for traditional DEE). By default it is
set to false

minimizeBB

Determines if backbone energy minimization is to be performed; true if backbone en-
ergy minimization is performed (for BD and Brdee); false otherwise (for MinDEE). This
parameter is taken into account only if doMinimize is true. By default it is set to false

doBackrubs

Determines if backrubs are to be performed; true if backrubs are performed (for Brdee);
false otherwise (for BD). This parameter is taken into account only if minimizeBB is true.
By default it is set to false
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backrubFile

The input file that contains the precomputed allowed backrub sets (this is the output
file from the precomputeBackrubs command described in Sec. 5.1.4). This parameter is
taken into account only if doBackrubs is true.

minEnergyMatrixName/maxEnergyMatrixName

The precomputed lower-/upper-bound pairwise energy matrix file names. For tradi-
tional DEE, where no minimization is performed, only the min matrix is computed and
stored. These matrices are described in detail in Sec. 5.1.2. As of version 2.0 this parameter
has a default value based on the runName. It is therefore recommended that the user not
change it.

useEref

Determines if amino acid reference energies are used as part of the energy function. The
amino acid reference energies are computed using the lowest computed intra-rotamer energy
for each amino acid type among all flexible residue positions (similarly to [23]). By default
this is set to true.

initEw

The Ew value [15] used to guarantee that no conformations having an energy within Ew
of the energy of the GMEC are pruned by the DEE algorithms. The value of initEw is also
used as a halting condition to determine the set of conformations generated by A∗. If initEw
is set to zero, then the only conformation that is guaranteed not to be pruned is the GMEC.
Larger values of initEw can generate a gap-free list of multiple low-energy conformations
and mutation sequences. By default this is set to 0.

pruningE

Conformations with an energy lower bound greater than this value are pruned. This
parameter is used by the MinBounds algorithm [14]. A value for this parameter can be
generated using the doSinglePartFn command (Sec. 5.2) and setting pruningE to be the
energy of the lowest-energy conformation for the wildtype protein sequence. If the value of
pruningE is not obtained through doSinglePartFn, then pruningE can be conservatively
set to a reasonably large value (e.g., 50-100 kcal/mol), so that conformations with high energy
bounds are pruned. By default this is set to 100.0.

stericE

Rotamers with intra-rotamer plus rotamer-to-template energy greater than this thresh-
old are pruned as a preprocessing step. By default this is set to 30.0.

approxMinGMEC

Determines if the heuristic halting condition for the DEE/A∗ computation should be
used (see [3, Supporting Information, Sec. S1.2.3]); true if the heuristic halting condition is
used; false if the provable halting condition (see [15, Proposition 2]) is used. The heuristic
halting condition is useful for DEE algorithms that use minimization (MinDEE, BD, and
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Brdee), since these algorithms require the A∗ enumeration of a significantly larger number
of conformations before the mutation search can be provably halted.

lambda

The cutoff for the heuristic halting condition; lambda is only used if approxMinG-
MEC is true. Let bm be the computed lower bound on the conformational energy of the
first rotameric conformation generated by A∗, and let bc be the computed lower bound on the
conformational energy of the current rotameric conformation generated by A∗. The DEE/A∗

search can then be halted when bc > bm + λ. By default this is set to 0.

preprocPairs

Determines if rotamer pairs should be pruned based on a steric energy threshold: true
if rotamer pairs should be pruned based on a steric energy threshold; false otherwise. By
default this is set to true.

pairSt

If preprocPairs is true, rotamer pairs with interaction energy greater than this thresh-
old are pruned as a preprocessing step. This parameter is analogous to the stericE parameter
for single rotamers. By default this is set to 100.0.

scaleInt

This parameter scales down the E� pairwise energy interval terms (see [12, Eq. 9]) to
allow for additional rotamer pruning. It is recommended to keep this parameter set to false
since the effects of applying interval scaling are not yet fully evaluated. By default this is set
to false.

maxIntScale

The maximum scaling factor (0-1) for the interval terms (if scaleInt is true). The value
of this scaling factor decreases as a function of the distance between the respective residue
positions involved for each interval term.

minRatioDiff

This is a parameter that is used for choosing a major split position for the DACS
algorithm, in combination with the original p-ratio approach. The higher the value, the more
favored lower-numbered residue positions are (see [14] for details). Faster run times were
achieved with a value of 0.15 as compared to a value of 0.0, although optimization of this
parameter has not been attempted.

initDepth

This parameter is only used if distrDACS is true. initDepth determines the number
of major splitting positions for the DACS algorithm. DACS partitions are formed by enu-
merating all combinations of unpruned rotamers for each residue position (each combination
is given by a single rotamer choice for each residue position). For example, if initDepth is 2
and each of the two selected major split positions has q rotamers, then there will be q2 DACS
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partitions. Each partition is then distributed to a separate processor for evaluation. Harder
problems may require larger values of initDepth (depending on the processor availability).
However, if the value of initDepth is too large (e.g., close to numInAS, the total number
of flexible residue positions), the partition enumeration may come at a significant additional
computational cost. The initDepth partitioning will be referred to as major partitioning.

subDepth

This parameter is used when doDACS is true and (1) distrDACS is false, or (2) dis-
trDACS is true and the current major partition has already been distributed for computation
to a given processor. The value of subDepth gives the number of (additional) minor splitting
positions. Partitions (rotamer combinations) are formed the same way as with initDepth.
The difference from initDepth is that the newly-formed partitions are evaluated sequentially
on the current processor, and not distributed to separate processors. If the sum of initDepth
and subDepth is too large (e.g., close to numInAS), the partition enumeration may come
at a significant additional computational cost. The subDepth partitioning will be referred
to as sub-partitioning.

diffFact

Consider a given major partition for evaluation (or the single initial partition, if dis-
trDACS is false). Also, note that sub-partitioning is implemented as a recursive procedure
in OSPREY. Let i < subDepth be the current residue position, such that the current sub-
partition (combination of rotamers) is only assigned for i of the minor splitting positions.
If the total number of remaining unpruned conformations for the current partially-assigned
partition is not more than 10diffFact, then the sub-partitioning is stopped and A∗ enumera-
tion for the current partially-assigned partition is executed. Otherwise, the sub-partitioning
is continued until either the diffFact stopping condition is reached, or all minor splitting
positions are assigned, at which point the A∗ enumeration is executed.

genInteractionGraph, distCutoff, eInteractionCutoff

The genInteractionGraph parameter must be set to false. genInteractionGraph,
distCutoff, and eInteractionCutoff are used for residue interaction graph generation,
rather than conformation/sequence generation, and are thus not applicable here.

outputConfInfo

The output file name that will store information about the best-energy conformations
found. If distrDACS is true, a directory named conf info must exist in the source code
directory, since this is where the output files will be stored. These output files are discussed
in detail in Sec. 5.1.2.

outputPruneInfo

The output file name that will store information about the pruning done. If distrDACS
is true, a directory named conf info must exist in the source code directory, since this is where
the output files will be stored. These output files are discussed in detail in Sec. 5.1.2.

onlySingleStrand
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If the System.cfg defines more than one strand, it might be desirable to compute the
GMEC using DEE/A* of only one strand. If the desired strand is strand0, then onlySin-
gleStrand should be set to 0. If the desired strand is strand1, then onlySingleStrand should
be set to 1. If, instead, the target is the GMEC of the complex then onlySingleStrand should
be set to -1. By default onlySingleStrand is set to -1.

addWT

Determines if the redesign positions should be allowed to keep their wildtype identity,
in addition to allowing them to mutate to the amino acid types in resAllowedi (see below).
By default this is set to true. If set to true, residues that are not explicitly listed in DEE.cfg
are assumed to be flexible but not mutable.

resAllowedj i

What amino acid types are allowed for the j-th strand’s i-th flexible residue (numbered
from 0, 1, ..., strandMutNums[j])? Use standard three-letter amino acid codes separated
by a single space. If for a given residue position k, only the wildtype should be allowed, set
addWT to true, and leave resAllowedj empty (however, a single empty space must still
be present immediately after resAllowedk). As of version 2.0, the user can omit entries
for specific postions; OSPREY will assume that these omitted entries are flexible but not
mutable and that the wildtype must be preserved there.

resumeSearch

Is the current run an unfinished search, so that the resume files must be loaded? This
is used only to resume a distributed DACS run, so that the completed partitions will not have
to be computed again. The resume capability is discussed in detail in Sec. 5.1.2. By default
this is set to false.

resumeFileName

What file contains the resume information if resumeSearch is set to true?

useTriples

Should we try to prune triples of rotamers? Any triple of rotamers at different residues
is considered for pruning, using a criterion analogous to the simple Goldstein rotamer pruning
and the DEE pairs pruning described above. By default this is set to false.

magicBulletTriples

If pruning triples, should we try to prune them only using competitor triples that appear
likely to be most effective for pruning (using a heuristic “magic-bullet” competitor-selection
condition based on that of [16] for pairs)? By default this is set to true.

magicBulletNumTriples

If magicBulletTriples is set to true, how many competitor triples should we try when
attempting to prune each candidate triple? By default this is set to 5.
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useFlagsAStar

When expanding the A∗tree, should we avoid forming nodes that contain pruned pairs
or triples of rotamers? By default this is set to false.

doPerturbations

Should DEEPer be used (in other words, should we allow flexibility in the form of
perturbations)? By default this is set to false.

perturbationFile

If this is a DEEPer run, what is the name of the perturbation file to use? If selectPer-
turbations is set to true, this file will be generated by the automatic perturbation selection
module; otherwise it needs to be provided by the user. The file follows the format described
in section 4.4. By default this is set to “defaultPerturbationFileName.pert”.

perturbationScreen

If this is a DEEPer run, should the program only proceed through the pruning phase,
and then produce a record of what was pruned, in order to help with perturbation selection?
By default this is set to false.

minimizePerturbations

If running DEEPer, should perturbations be allowed continuous flexibility? (If not,
then for every parameter interval specified in the perturbation file, only the mean value for
the interval will be allowed). By default this is set to false.

idealizeSidechains

If running DEEPer, should sidechains for residues affected by perturbations be moved
as rigid bodies to attain ideal Cβ geometry, as in KiNG [19]? (Turning this feature off may
produce unrealistic sidechain conformations, particularly for large perturbations). By default
this is set to true.

addWTRots

If set to true then the wild-type rotamers of the redesigned amino acids in the structure
are added to the search. Only the wild-type rotamers of the amino acids that are defined in
the System.cfg file as mutable will be added. If running DEEPer, they will be added to the
specific residues in the structure at which they appear; if not, then they will be added to the
rotamer library for all residue positions, since variable rotamer sets for amino acids of the
same type are not supported outside DEEPer. By default this is set to false.

screenOutFile

If pertScreen is true, what should the output file be? (This will be a version of the
perturbation file with P’s marked on all pruned residue conformations as well as perturba-
tions states for which all residue conformations are pruned and perturbations for which all
perturbed states are pruned). By default this is set to “screenOutFileDefaultName.pert”.
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selectPerturbations

If running DEEPer, should perturbations be selected using the automatic perturbation
selection module? (The following 6 options are used to configure the selection module, and
thus are only meaningful if automatic perturbation selection is being used). By default this
is set to false.

minRMSD

A perturbed backbone conformation (and its associated residue conformations) will be
rejected by the selector if it is too similar to another backbone conformation that is being
considered, as measured by backbone heavy-atom RMSD. This RMSD filter can widen the
diversity of sampled backbone conformations per unit computational cost. (If minRMSD is
set to 0 then the RMSD filter is not used). By default this is set to 0.

shearParams

Sets the parameter intervals to be used for shears. It should be in the format u1 v1 u2
v2 ... un vn, where there are n intervals and interval i correspond to ui ≤ θ ≤ vi, where θ
is the shear parameter. Values should be specified in degrees. By default there is 1 interval,
with −2.5◦ ≤ θ ≤ 2.5◦. (This corresponds to a setting of “-2.5 2.5”).

backrubParams

Sets the backrub parameters; same format as shearParams with same default.

RamachandranCutoff

Indicates the cutoff for Ramachandran density to use when selecting perturbed back-
bone states; the density on the Ramachandran map must be greater than the cutoff for a
perturbed backbone state to be allowed. (The files with density data can be specified in
KStar.cfg; see section 3.2.3). By default this is set to 0.02.

startingPerturbationFile

If a value other than the default “none” is provided for this parameter, then the file
with the given name will be read and its perturbations included in the perturbation file for
the calculation. The calculation can be run with only these perturbations, or with these
perturbations plus all the perturbations that the automatic perturbation selection module
generates (depending on how onlyStartingPerturbations is set). The input file should
be in the format for a perturbation file (section 4.4) except without the section on residue
conformations (just the list of perturbations with their information). This option can be
useful for introducing perturbations based on other structures, such as partial or full structure
switches, or for placing perturbations in locations where the automatic perturbation selector
would not place them (such as shears outside helices).

onlyStartingPerturbations false

Should the calculation be run with only the perturbations in the starting perturbation
file (limiting the automatic selection to selecting RCs for these perturbations)? If not, then the
automatic perturbation selection module will be run normally, and then the perturbations
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from the starting perturbation file will be added to the perturbations generated by that
module. By default this is set to false.

GenStruct.cfg

This configuration file contains the information about the structure generation parameters. A
typical minimal file looks like this:

confResFile c_dhfr-dee-example

numResults 5

onlySingleStrand 0

Other parameters with default values include:

outputpdbs true

addOrigRots false

doMinimize false

minimizeBB false

doBackrubs false

backrubfile none

doPerturbations false

perturbationFile defaultPerturbationFileName.pert

minimizePerturbations false

idealizeSidechains true

addWTRots false

The following parameters must have the same value as the respective parameters in the DEE.cfg
file:

doMinimize false

minimizeBB false

doBackrubs false

backrubfile none

onlySingleStrand 0

doPerturbations false

perturbationFile defaultPerturbationFileName.pert

minimizePerturbations false

idealizeSidechains true

addWTRots false

The remaining parameters are described as follows:

confResFile

The file that contains the input information, one conformation per line. This file is
obtained from the output of the doDEE command. The format of this file is described in
detail in Sec. 5.1.2.
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numResults

The number of lines in the confResFile file.

outputPDBs

Determines if pdb structures will be generated for each conformation from the con-
fResFile file. This parameter is by default set to true.

5.1.2 Output Files

Pairwise Energy Matrices

The doDEE command first computes a lower-bound and an upper-bound pairwise energy matrix
(in the case of MinDEE, BD, and Brdee) or a single matrix (in the case of traditional DEE).
These matrices contain the computed interaction energies for the protein template (the protein
backbone and the side-chains not modeled as flexible), between each rotamer for each residue
position and the protein template, and between each pair of rotamers for the different pairs of
residue positions. Only the energies for the amino acid types (and the corresponding rotamers)
specified by the resAllowedi parameters are computed. For example, in the DEE.cfg sample file
shown in Sec. 5.1.1, resAllowed4 has gly ala cys as the allowed amino acid types (we will assume
that the wildtype identity at that residue position is Ala). In that case, energies involving, e.g.,
Leu rotamers at that residue position will not be computed.

In the case of MinDEE, BD, and Brdee, energy minimization (either rotamer or backbone) is
allowed. As a result, the energies between rotamer pairs (and between rotamers and the protein
template) are not rigid and will depend on the rotamer identities and conformation of the surround-
ing residues (see [15, Fig. 2]). If the energy minimization of the rotamers or the protein backbone is
restrained (by, e.g., restraints on the side-chain dihedral movement), then both a lower-bound and
an upper-bound for each pairwise energy can be computed within the specified restraints. Hence,
the computed lower/upper energy bounds are saved into two matrices. These matrices are saved
as binary files, as specified by the minEnergyMatrixName/maxEnergyMatrixName param-
eters in the DEE.cfg file. The two energy matrices are used by MinDEE, BD, and Brdee during
the respective DEE pruning stage. The lower-bound matrix is further used during the A∗ enumera-
tion stage to generate conformations in order of increasing lower bounds on their energies [15]. For
traditional DEE, a single matrix (specified by the minEnergyMatrixName parameter) is com-
puted and saved since energy minimization is not allowed. Once the energy matrices are computed,
doDEE can read them in every time the DEE/A∗ search is restarted, and the computation of these
matrices need not be repeated, as long as the input structure and allowed mutations (specified by
the resAllowedi parameters) remain unchanged.

In DEEPer runs, the pairwise energy matrices are handled the same way except that the energies
are between residue conformation pairs [17] instead of rotamer pairs.

Mutation Search Results

After the computation of the pairwise energy matrices is done, the program moves to the DEE
pruning stage, followed by the A∗ enumeration stage. If the DACS algorithm is applied (doDACS
in DEE.cfg is set to true), DEE pruning is first applied for the entire conformation space, until no
more dead-ending rotamers/pairs can be identified. The pruning and enumeration stages are then
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applied separately for each of the DACS partitions. Depending on whether DACS is applied and
whether DACS is performed as a distributed run, different files are generated during the mutation
search.

Mutation search on a single processor (with or without DACS)

Conformation File. Two different types of mutation search are discussed here: DEE/A∗ without
DACS (doDACS is false), and DACS on a single processor (doDACS is true and distrDACS is
false). In these cases, one conformation output file, specified by the outputConfInfo parameter in
DEE.cfg is generated during the mutation search. This file contains all conformations generated
by A∗ and within the specified energy window (the initEw parameter) from the energy of the
respective GMEC. NOTE: No structures are saved during this part of the program execution;
rather, only the conformation data necessary to generate the structures is saved, along with the
respective computed conformational energies.

Each line in the conformation file corresponds to a single rotamer-based conformation generated
by A∗. The format of each line is as follows:

c a1 a2 . . .an a
L

r1 r2 . . . rn r
L

unMinE: eu minE: em minBound: emb bestE: eb

Here, c is the conformation number, in the order generated by A∗; if DACS is applied, con-
formation numbers are partition-specific, so there might be multiple conformations with the same
conformation number (but that are part of different partitions). ak is the corresponding three-letter
amino acid name for the kth of the total of n (where n = numInAS) flexible residue positions; aL

is the three-letter name of the ligand (if present). Similarly, rk is the corresponding rotamer num-
ber for the kth flexible residue position; rL is the rotamer number of the ligand (if present). A
rotamer number is determined based on the index (starting from 0) of the given rotamer for the
given amino acid into the input rotamer library. For example, rotamer 3 of Leu corresponds to χ
angles −85 65 in the LovellRotamer.dat rotamer library (see Sec. 4.2). The value eu represents the
conformational energy before minimization (the energy of the conformation for a rigid backbone
and rigid rotamers). The value em represents the conformational energy after the respective type
of minimization (backbone or side-chain); if no minimization is allowed, em = eu. ‘minBound: emb’
is only present in the output if energy minimization is allowed and represents the computed lower
energy bound for the current conformation; this lower energy bound is used by A∗ for enumerating
conformations in order. The value eb is the best (lowest) conformational energy found in the A∗

search so far. An example (partial) outputConfInfo file (for seven flexible residue positions, an
Arg ligand, single-processor DACS, and no minimization) may look like this (lines are wrapped):

1 MET GLY ASP ARG ALA ALA MET ARG 6 0 2 18 0 0 9 31 unMinE: -273.75903 minE:
-273.75903 bestE: -273.75903

2 MET GLY ASP MET ALA ALA MET ARG 6 0 2 6 0 0 9 31 unMinE: -271.96558 minE:
-271.96558 bestE: -273.75903

3 MET GLY ASP ARG ALA ALA GLY ARG 6 0 2 18 0 0 0 31 unMinE: -271.7832 minE:
-271.7832 bestE: -273.75903

1 MET ASP SER ARG GLY ALA VAL ARG 6 3 2 18 0 0 1 29 unMinE: -276.5042 minE:
-276.5042 bestE: -276.5042

2 MET ASP SER ARG GLY ALA VAL ARG 6 3 1 18 0 0 1 29 unMinE: -276.4287 minE:
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-276.4287 bestE: -276.5042

In DEEPer, residue conformation numbers instead of sidechain rotamer numbers will be listed.
However, these will be followed by the words SC rotamers: and then the sidechain rotamers
corresponding to these residue conformations. For example, the first line of the outputConfInfo
file may look like this:

1 GLY ILE PRO PRO 0 6 0 0 SC rotamers: 0 5 0 0 unMinE: -81.32703 minE: -82.228836

minBound: -83.52793 bestE: -82.228836

NOTE: In some cases, the conformations stored in the outputConfInfo file can be a superset
of the conformations actually within initEw of the GMEC:

• If energy minimization is allowed (i.e., MinDEE, BD, or Brdee), the set of A∗-generated con-
formations may be significantly larger than the set of conformations actually within initEw
from the GMEC. This is due to the fact that, in the cases with energy minimization, A∗ enu-
merates conformations in order of increasing lower bounds on their energies. However, since
different conformations can minimize differently, the order of the lower energy bounds is not
necessarily the same as the order of the conformations when the actual minimized energies
are taken into account [15].

• If DACS is used, then additional conformations whose energy lower bounds are within initEw
of the partition-specific GMEC (but not necessarily of the overall GMEC) may also be gen-
erated and stored.

NOTE: If approxMinGMEC in DEE.cfg is set to false, then only the conformations with
actual energies within initEw of the GMEC (or the partition-specific GMEC) are stored, although a
larger number of conformations may be generated by A∗. If approxMinGMEC is set to true, then
all conformations generated by A∗ are stored, independent of the actual energies. Since approx-
MinGMEC is also used as a heuristic halting condition for the DEE/A∗ search (see Sec. 5.1.1),
requiring both that all A∗-generated conformations be saved and the provable halting condition be
used, will also require that the lambda parameter in DEE.cfg be set to some very large value
(e.g., 10000000).

After the mutation search is complete, the conformations in the outputConfInfo file can be
sorted in order of their em (minimized) energies. The conformation with the lowest em energy will
be the respective GMEC for the given problem. All (or a subset of the) conformations within
initEw of the GMEC energy can then be extracted for further analysis and structure generation
(see below).

Pruning File. In addition to the outputConfInfo conformation file, a single-processor DACS
run outputs an outputPruneInfo pruning information file. The outputPruneInfo file stores
information about the partition-specific conformation pruning achieved by DACS. This file is useful
for comparing the pruning efficiency of different algorithms, as described in [14]. The information
in this file is, however, not directly related to conformation and mutation scoring and ranking.

Mutation search with distributed DACS
When distributed DACS is performed (doDACS and distrDACS are true), one conformation

file and one pruning information file are stored for each partition that is evaluated on a separate
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processor. For each partition, these two files are saved in a directory named conf info; the names of
each such pair of files are obtained by concatenating, respectively, the outputConfInfo and out-
putPruneInfo values with a unique partition-specific index. The format of the outputConfInfo
and outputPruneInfo files is the same as with the single-processor mutation search described
above. When the computation for all partitions is done, all of the outputConfInfo files can be
concatenated and the conformations can be sorted in order of increasing em energy. The confor-
mation with the lowest em energy will be the respective GMEC for the given problem. All (or a
subset of the) conformations within initEw of the GMEC energy can then be extracted for further
analysis and structure generation (see below).

NOTE: One temporary file (filename rot outXXX, where XXX is an index unique to each
program execution) that is used for communication between the main node and the work nodes
is also output just before the start of the partition distribution. This file is automatically deleted
when the computation for all partitions is completed.

NOTE: A secondary thread is run throughout the mutation search to allow communication
between partitions. This allows updating all partitions when a new best energy is found by one
of these partitions. This way, partitions with high-energy partition-specific GMEC’s can provably
halt the computation before enumerating all conformations within initEw of the partition-specific
GMEC. For efficiency, the secondary thread is only run every few minutes, so the updates to the
different partitions can be delayed.

Resuming a mutation search. When distributed DACS is performed, an interrupted mutation
search can be resumed, so that only partitions for which the computation did not complete are re-
distributed for evaluation. When a processor completes the computation for a given partition, the
partition information is output to the file specified by the runName parameter in the DEE.cfg
file. If a mutation search is interrupted (e.g., if some work nodes crash) before the completion of
the computation for all partitions, the partial results in the runName file can be copied over to
the file specified by the resumeFileName parameter in DEE.cfg. The outputConfInfo and
outputPruneInfo files in the conf info directory must be moved to a backup directory. The
resumeSearch parameter in DEE.cfg should then be set to true, and the doDEE command
should be executed again. The distributed DACS computation then reads in the already-computed
partitions from the resumeFileName file, and restarts the computation only for the remaining
partitions. When the computation for all of the partitions is done, the outputConfInfo and
outputPruneInfo files generated after the resume (these will all be in the conf info directory)
must be moved to the backup directory where all outputConfInfo and outputPruneInfo files
before the resume were stored. This copy should overwrite all partial files in the backup directory
(corresponding to partitions for which the computation started but did not complete before the
resume) with the corresponding complete files. The outputConfInfo and outputPruneInfo
files already completed before the resume will not be modified since each partition corresponds
to files with unique filenames that are independent of whether, and how many times, the search
is resumed (as long as the search parameters remain unchanged). Finally, all of the completed
outputConfInfo files should be concatenated, and the conformations should be sorted and ranked
according to their em energy.
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Structure Generation

The computed structures for each of the total of numResults conformations from the input con-
fResFile file (both parameters are from GenStruct.cfg) are output to a directory named pdbs.
The filename of each structure is a concatenation of saveMol and the line number of the corre-
sponding conformation in the input confResFile file. NOTE: Each of the generated structures
contains a REMARK 7 line that gives the computed (minimized) energy for that structure. How-
ever, this energy does not include amino acid reference energies. This energy may thus differ from
the energy output to the corresponding outputConfInfo file if the useEref flag is set to true
during the doDEE execution.

5.1.3 Identification of current rotamers

OSPREY has a command to identify the current rotamers in the active site of a given structure
(basically the inverse of structure generation):

identifyRots System.cfg GenStruct.cfg

For each active-site residue, this command will identify and output the amino-acid type. It will
then score each rotamer of that amino-acid type by computing maxi |χi,s−χi,r|, where χi,s denotes
the i’th sidechain dihedral in the structure and χi,r denotes the ideal i’th sidechain dihedral for the
rotamer. It will then output the rotamer with the lowest score (indicating that this is the closest
ideal rotamer to the geometry observed in the structure) and the score, which is marked as “Max.
dihedral deviation.”

5.1.4 Performing Backrubs

To perform a mutation search using Brdee, an additional OSPREY command must be executed
before the execution of doDEE in order to generate a list of allowed backrubs for the selected
flexible residue positions. The list of backrubs can be generated with the following command:

precomputeBackrubs System.cfg n s br.in

The System.cfg file is as described in Sec. 5.1.1 and must have the same parameter values as
in the subsequent doDEE call. The number n determines the number of backrub steps in each
direction for the primary rotation of each flexible residue (see [13]). The number s determines the
backrub step size. The last argument (in this example, br.in) determines which file will store the
computed list of backrubs. This file will be used as input for the doDEE execution and must thus
have the same filename as the backrubFile parameter in DEE.cfg (see Sec. 5.1.1). An example
call to precomputeBackrubs is as follows:

precomputeBackrubs System.cfg 2 4.0 br.in

In this example, a list of 5 primary backrub rotations will be generated for each flexible residue,
with values −8.0, −4.0, 0.0, 4.0, and 8.0 degrees. The backrub generation algorithm then computes
the two peptide rotations for each primary rotation using the approach described in [13]. Finally, a
steric and τ -angle filter is applied to prune sets of the candidate backrubs [13]. Backrubs that pass
the pruning filters are output to the file specified by the last argument in the precomputeBackrubs

call. The format of that file is as follows. The first line in that file contains two numbers: (1) the
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number of flexible residue positions (equal to the value of the numInAS parameter in System.cfg),
and (2) the number of backrubs per residue position (equal to 2 × n + 1, where n is the second
argument in the precomputeBackrubs call). Each of the remaining lines corresponds to a single
combination of primary and flanking backrub rotation angles for each residue position (there can
be multiple backrub combinations per residue position). The format of each of these lines is the
following:

i k θc θl θr

A description of the data is as follows:

• i: the index of the current residue number into the flexible-residue array. For example, if the flexible
residue numbers are 236 239 278 299 301 322 330, then the index of 236 will be 0, while the index
of 322 will be 5. This index is automatically generated by the program and is used when the backrub
file is read by the doDEE command.

• k: the index of the current backrub. This index is generated automatically and has a range 0 . . . 2 ∗n,
where n is the second argument in the precomputeBackrubs call.

• θc: the value of the current primary rotation angle.

• θl, θr: the values of the left and right flanking rotation angles, respectively. These rotation angles are

computed as a function of the corresponding primary rotation angle.

An example file generated by precomputeBackrubs is shown here:

7 5

0 2 0.0 0.0 0.0

0 3 4.0 -1.3422085 -3.6416507

0 4 8.0 -2.6781783 -7.0035505

1 0 -8.0 2.8148565 7.038195

1 1 -4.0 1.4027587 3.3622477

1 2 0.0 0.0 0.0

2 2 0.0 0.0 0.0

2 3 4.0 -2.3724327 -2.0907638

2 4 8.0 -4.670408 -4.273453

3 1 -4.0 2.5223923 1.8658059

3 2 0.0 0.0 0.0

3 3 4.0 -2.4386685 -1.9066759

3 4 8.0 -4.8066154 -3.8650274

4 0 -8.0 6.8834524 3.2620065

4 1 -4.0 3.4216287 1.630518

4 2 0.0 0.0 0.0

4 3 4.0 -3.3753068 -1.6301426

5 2 0.0 0.0 0.0

5 3 4.0 -2.352193 -2.1507177

5 4 8.0 -4.6454926 -4.3780875

6 2 0.0 0.0 0.0

6 3 4.0 -1.0102168 -3.5866969

6 4 8.0 -1.9774139 -6.9551406

Once the list of backrubs is computed and saved, the doDEE command can be executed.
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NOTE: In some cases, the user may decide to manually edit the backrub file. In the example
file above, adding one more backrub with angles 8.0 -10.0 -5.0 for the residue with index 5, requires
that: (1) the first line in the file be changed to ‘7 6’, and (2) the following line be added immediately
after the last line for residue index 5 (starting with ‘5 4’) and before the first line for residue index
6 (starting with ‘6 2’):

5 5 8.0 -10.0 -5.0

NOTE: The second number on the first line in the file must only be increased by the maximum
number of added backrubs for any given residue position. For example, if the user adds 2, 3, 2, 1,
0, 1, and 0 backrubs respectively for the seven flexible residues in the example above, then the first
line in the backrub file must be modified to ‘7 8’.

NOTE: Deleting lines from the backrub file is also allowed, as long as the line in which the
three rotation angles are 0.0 (corresponding to the initial backbone conformation) is kept for each
of the flexible residue positions.

NOTE: The precomputeBackrubs command can also be executed before the KSMaster com-
mand for K∗ redesign (Sec. 5.2) with backrubs.

51



5.2 Redesign Using K∗

The K∗ algorithm can be used for protein-ligand binding prediction in protein redesign, (including
the design of protein-protein interactions). It has applications to enzyme redesign and inhibitor
design. K∗ requires that an initial structure of the bound protein-ligand complex exists. K∗ differs
from typical DEE/A∗ mutation searches (e.g., see Sec. 5.1) in several ways:

1. K∗ explicitly models the bound protein-ligand complex vs. the unbound (free) protein and
ligand;

2. K∗ computes partition functions over ensembles of conformations. This is in contrast to
GMEC-based algorithms where each mutant is scored and ranked based on the corresponding
single lowest-energy conformation (the GMEC for that mutant);

3. Energy minimization is performed for each of the conformations part of the K∗ ensemble.

K∗ is a provably-accurate algorithm with respect to the input model (the input structure, the
rotamer library, and the energy function) used. Enumerating all conformations for a given protein-
ligand complex is computationally infeasible. K∗ thus computes a provably-accurate approximation
to the binding constant for each candidate protein-ligand complex by evaluating only a very small
portion of candidate low-energy conformations; the contribution of the remaining conformations
is provably guaranteed to be less than the approximation accuracy. The accuracy of the binding
constant approximation is determined by the user. In computational tests, K∗ was shown to be
able to enumerate less than 0.5% of all rotamer-based conformations for a given protein-ligand
complex, while at the same time guaranteeing that the computed partial partition function was at
least 97% of the full partition function (when all rotamer-based conformations are included) [15].
Details of the K∗ algorithm can be found in [15, 3].

The basic flow of the K∗ computation is as follows:

1. First, a set of residue positions in the input structure is selected for mutation. Typically,
these residue positions are part of the protein binding/active site and are in direct contact
with the ligand.

2. A set of allowed amino acid mutations is then selected for each of the mutable residue posi-
tions.

3. Since the K∗ score computation is performed separately for each mutant, it is recommended
that the total number of candidate mutants be limited (currently, up to several tens of thou-
sands of mutants can be evaluated for K∗ in a reasonable time on a large cluster of processors).
This can be achieved by allowing only k-point mutation sequences, such that any k of the
mutable positions are allowed to mutate at the same time, while all remaining mutable posi-
tions are modeled as flexible using rotamers. All combinations of k-point mutation sequences
can be generated by K∗.

4. The list of k-point mutation sequences is then input into the K∗ volume filter, so that under-
and over-packed sequences (relative to the wildtype sequence and wildtype ligand) are pruned.
Only sequences that pass the volume filter are evaluated further.
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5. For each sequence that passes the volume filter, a provably-accurate K∗ approximation score
is computed. For each K∗ score computation, partition functions for the bound protein-
ligand complex and the free protein and free ligand are computed. For the partition function
computation, DEE is applied first as a pre-processing step to prune candidate rotamers (and
hence, conformations), followed by the A∗ search to enumerate an ensemble of low-energy
conformations. For computational efficiency, an inter-mutation pruning filter can be used as
part of K∗, so that the requirement for provable score accuracy is not enforced for low-scoring
sequences (mutation sequences with higher K∗ score are predicted to be better binders).

6. The candidate mutants are then ranked in order of decreasing K∗ scores. A set of high-scoring
mutants (e.g., the top forty mutants) is finally selected for further analysis and (possibly)
structure generation.

A K∗ mutation search can be performed by OSPREY using the following command:

KSMaster System.cfg MutSearch.cfg

The System.cfg configuration file is as described in Sec. 5.1.1. The MutSearch.cfg file is
described in detail below (Sec. 5.2.1). The names of the two configuration files specified after the
KSMaster command can be chosen by the user; for clarity, we will refer to these files as System.cfg

and MutSearch.cfg throughout this documentation. The output of the KSMaster command is also
described below (Sec. 5.2.2).

Once the K∗ score computation is complete, structures for a given mutant can be generated
using the following command:

doSinglePartFn System.cfg SinglePF.cfg

The System.cfg configuration file is the same as with the KSMaster command. The Sin-

glePF.cfg file (or the corresponding user-specified filename) is described in detail in Sec. 5.2.1
below. In effect, the doSinglePartFn command performs a partition function computation (either
for the bound or unbound state) for a given single mutation sequence. The output of the doSin-

glePartFn command is described in Sec. 5.2.2 below. The doSinglePartFn command is executed
on a single processor.

5.2.1 Configuration Files

MutSearch.cfg

A minimal file looks like this:

runName dhfr-ks-example

numMutations 2

addWT true

resAllowed0_5 val

resAllowed0_6 ile

doPerturbations false

perturbationFile defaultPerturbationFileName.pert

minimizePerturbations false

idealizeSidechains true
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selectPerturbations false

minRMSD 0

shearParams -2.5 2.5

backrubParams -2.5 2.5

RamachandranCutoff 0.02

startingPerturbationFile none

onlyStartingPerturbations false

addWTRots false

In the above file only the two positions were mutations are allowed must be defined because
addWT is set to true. In addition, the following parameters have default values.

mutFileName runName.mut

targetVolume 0.0

volumeWindow 50000000.0

doMinimize false

minimizeBB false

doBackrubs false

backrubfile empty

minEnergyMatrixName runNameminM

maxEnergyMatrixName runNamemaxM

initEw 6.0

pruningE 100.0

stericE 100.0

scaleInt false

maxIntScale 1.0

epsilon 0.03

gamma 0

repeatSearch true

lambda 0.0

useMaxKSConfs false

maxKSconfs 1000

resumeSearch false

resumeFileName empty

addWT false

addOrigrots false

saveTopConfsAsPDB false

saveTopConfsRots false

numTopConfsToSave 10

The following parameters are as described for the DEE.cfg file in Sec. 5.1.1:

doMinimize

minimizeBB

doBackrubs

backrubFile

minEnergyMatrixName
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maxEnergyMatrixName

initEw

pruningE

stericE

scaleInt

maxIntScale

ligType

addWT

resAllowed

doPerturbations

perturbationFile

minimizePerturbations

idealizeSidechains

selectPerturbations

minRMSD

shearParams

backrubParams

RamachandranCutoff

startingPerturbationFile

onlyStartingPerturbations

addWTRots

A description of the remaining parameters is as follows:

runName

The file in which partial results are stored. The format of this file is described in detail
in Sec. 5.2.2.

mutFileName

The file in which all candidate mutation sequences are stored. If not available, this file
is computed and stored dynamically using the targetVolume, volumeWindow, numMu-
tations, and resAllowedi parameters described below. The format of this file is described
in detail in Sec. 5.2.2.

numMutations

The numMutations parameter is used for generating the mutFileName file; if the
mutFileName file has already been generated, this parameter is ignored. This parameter
determines the maximum number of mutations from the wildtype, such that only up to
numMutations-point sequences are considered. In a k-point mutation search, any k of the
n flexible residue positions are allowed to simultaneously mutate, while the remaining flexible
residue positions are allowed to change their side-chain conformation (but not their amino
acid identity).

targetVolume

The targetVolume parameter is used for generating the mutFileName file; if the
mutFileName file has already been generated, this parameter is ignored. This parameter
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determines the target volume for the active site used by the K∗ volume filter (see [15]). This
target volume is computed as the sum of the volumes for the active site residues (taken
from the volFile file specified in KStar.cfg), plus the difference between the volumes for
the wildtype ligand and the target ligand. This parameter can only be used for amino acid
ligands. If the ligand is not a natural amino acid, it is recommended that the volume filter
be switched off (see Sec. 5.2.2 for details). By default this value is set to 0.0

volumeWindow

The volumeWindow parameter is used for generating the mutFileName file; if the
mutFileName file has already been generated, this parameter is ignored. This parameter is
used by the volume filter to determine which mutation sequences with the target ligand are
under- or over-packed relative to the wildtype sequence/ligand. Only mutation sequences with
volumes within volumeWindow around the targetVolume are kept for further evaluation.
As with targetVolume, this parameter can only be used for amino acid ligands. If the ligand
is not a natural amino acid, it is recommended that the volume filter be switched off (see
Sec. 5.2.2 for details). By default this value is set to a large window of 50000000

epsilon

The K∗ partition function approximation parameter (see [15] for details). This param-
eter guarantees that the computed partial partition functions will be at least (1− ε)q, where
q is the full partition function (when all rotamer-based conformations are considered). The
value of this parameter should be between 0 and 1; for example, a value of 0.03 corresponds
to a ≥ 97% approximation accuracy. By default this value is set to 0.03.

gamma

The inter-mutation approximation parameter(see [15] for details). This parameter de-
termines for which mutation sequences a provably-accurate approximation should be com-
puted. The value of this parameter should be between 0 and 1. A value of 0 guarantees
an ε-approximation for all candidate sequences; a value of 1 guarantees an ε-approximation
only for the top-scoring (best) sequence; a value of 0.01 guarantees an ε-approximation for
all sequences whose scores are within two orders of magnitude from the top-scoring sequence.
The idea is that, in general, only sequences close to the top sequences will be of interest since
they are predicted to be good binders. A provably-good approximation is thus required for
such sequences. All other sequences are guaranteed to have low scores, so the partition func-
tion/score computation can be halted early, without achieving provable guarantees. NOTE:
The use of the inter-mutation filter can result in a significant speedup. In some cases, how-
ever, provably-accurate approximations may be required even for low-scoring sequences (e.g.,
in negative design where it is important to be able to correctly predict poor interactions); in
such cases, the inter-mutation filter can be turned off by setting the gamma parameter to 0.
By default this value is set to 0.0

repeatSearch

If at the end of the A∗ conformation enumeration for a given partition function com-
putation the ε-approximation cannot be guaranteed, should the pruning/enumeration be
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repeated? The computation is repeated at most one (see [15] for details). It is recommended
to keep this parameter set to true. By default this value is set to true.

useMaxKSConfs

K∗ In some designs, it is too time-consuming to compute an ε approximation to the
partition function for a small ε, because the conformation space is too large. In such cases,
it might be desirable to compute only the top maxKSconfs conformations and heuristically
approximate the partition function using these top conformations. Set this value to true if
you wish to only use the top maxKSconfs conformations. By default this flag is set to false.

maxKSconfs

Number of top conformations to use for the partition function calculation if use-
MaxKSConfs is set to true.

saveTopConfsAsPDB

Save the top conformations from each sequence as a PDB file. By default this flag is
set to false.

saveTopConfsRots

Save the rotamers of the top conformations for each sequence. From the rotamers for
the top conformations, the genStructDEE can generate the structures. By default this flag is
set to false.

numTopConfsToSave

Number of top conformations to save, either as pdb or using the rotamer information.
It is only used if either saveTopConfsAsPDB or numTopConfsToSave are set to true.

resumeSearch

Is the current run an unfinished search, so that the resume files must be loaded and
the completed sequence scores will not have to be computed again. The resume capability is
discussed in detail in Sec. 5.2.2.

resumeFileName

What file contains the resume information?

5.2.2 Output Files

Pairwise Energy Matrices

The minEnergyMatrixName/maxEnergyMatrixName matrices generated by KSMaster are
as described for the doDEE command (see Sec. 5.1.2). As long as the mutation search parameters
remain invariant, the matrices computed by doDEE may be used in the KSMaster computation,
and vice versa. In addition to the minEnergyMatrixName/maxEnergyMatrixName ma-
trices, if the useUnboundStruct parameter in MutSearch.cfg is set to true, an additional pair
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of matrices is generated, as specified by the minEnergyMatrixNameUnbound and maxEn-
ergyMatrixNameUnbound parameters. This pair of matrices have the same format as the
corresponding minEnergyMatrixName/maxEnergyMatrixName matrices. The difference is
that minEnergyMatrixNameUnbound/maxEnergyMatrixNameUnbound are specifically
used for the unbound partition function computation in a K∗ search, based on the unboundPdb-
Name input structure. In that case, minEnergyMatrixName/maxEnergyMatrixName are
only used for the bound partition function computation. If useUnboundStruct is false, then
only the minEnergyMatrixName/maxEnergyMatrixName matrices are computed and used
both for the unbound and bound partition function computation. If doMinimize is false (i.e.,
traditional DEE is used with K∗), then only the minEnergyMatrixName and minEnergyMa-
trixNameUnbound (if useUnboundStruct is true) matrices are computed and used.

Starting with OSPREY version 2.0, all K∗ designs now have three matrices: one for each of the
unbound ligands/proteins and one for the complex. This is true if an unbound structure is used
or not. The matrix files are defined by a different prefix in each file: 0 and 1 for the unbound
partition functions and COM for the complex.

Mutation Search Results

After the computation of the pairwise energy matrices is done, the program moves to the mutation
search. The first stage in the K∗ mutation search is the computation of the list of candidate
mutation sequences. The list of candidate mutation sequences is stored in the mutFileName
file specified in MutSearch.cfg. If the mutFileName file exists in the code directory, that file
is read in by K∗ and the program continues to the next stage, the K∗ score computation. If the
mutFileName file does not exist, it is computed by K∗.

The first step in this stage is to read in the volFile file specified in KStar.cfg. This file
contains volume information for each rotamer for each amino acid type other than Pro. If this file
does not exist, it is computed by K∗. The volume computation uses pre-specified atomic radii and
is performed for each rotamer for each amino acid. Each line in the volFile file starts with the
three-letter code for a given amino acid type i, followed by ri numbers which correspond to the
computed volumes for the ri rotamers for amino acid i (the rotamers are specified by the respective
rotamer library, see Sec. 3.2.3).

Each line in the mutFileName file represents a unique candidate mutation sequence. The
set of candidate mutation sequences is determined as a function of the following parameters from
MutSearch.cfg: numMutations, resAllowed, addWT, targetVolume, and volumeWindow.
Let k be the value of numMutations and let n be the total number of mutable residue postions.
K∗ then generates all possible combinations in which the n residue positions are mutated in 1,
2, . . . , up to k positions. For each possible combination of mutated/non-mutated positions, all
residue combinations are generated using the corresponding position-specific allowed amino acid
types specified by the resAllowed parameters; if addWT is true, a position is allowed to also
keep its wildtype identity when mutated. For each possible combination of mutated/non-mutated
positions, the non-mutated positions are kept in their wildtype identity. This generates a set of
candidate mutation sequences. Each unique sequence is then subjected to the volume filter: the
sum of the amino acid volumes for the current amino acid assignment to the n positions is checked
to determine if that sum falls within the range targetVolume ± volumeWindow. If the current
sum of volumes is within that range, the corresponding mutation sequence passes the volume filter
and is kept for the following K∗ computation stage; otherwise, the mutation sequence is considered

58



as over- or under-packed relative to the wildtype sequence/ligand complex, and is thus pruned
from further consideration. Each line in the mutFileName file corresponds to a sequence that
has passed the K∗ volume filter. The format of each line is as follows:

c1 c2 a1 a2 . . .an

The values of the first two numbers c1 and c2 can be ignored (c2 represents the sum of the
volumes for the current amino acid assignment to the n mutable positions; however, this value
is not used by K∗ after the volume filter checks). The ai values give the three-letter amino acid
codes for the current amino acid assignment to the n mutable positions. An example of a partial
mutFileName file may look like this:

0.0 584.09375 ALA ALA ARG ILE ALA ALA ILE
0.0 583.9844 ALA ALA THR ILE ALA ALA TRP
0.0 581.40625 ALA ALA THR ILE ALA MET ILE
0.0 599.4219 ALA ALA THR ILE ALA PHE ILE

0.0 624.7344 ALA ALA THR ILE ALA TRP ILE

NOTE: In some cases, the user may prefer to manually generate the list of candidate mutation
sequences to be evaluated by K∗. This can be done by manually generating the mutFileName
file, as long as the format of each line (two arbitrary numbers followed by the three-letter amino
acid codes for the current mutation sequence) is observed.

NOTE: Currently, the volume filter cannot be used for redesigns with ligands that are not
natural amino acids. If the ligand is not a natural amino acid, it is recommended to set the
volumeWindow parameter to a very large value (e.g., 10000000.0), so that no mutation sequences
can be pruned by the volume filter.

After the list of candidate mutation sequences is generated and saved, each of the mutation
sequences is distributed to a separate processor for evaluation (if the number of sequences exceeds
the number of available processors, a queue is formed and sequence distribution continues until the
K∗ score computation for all sequences completes). Once the K∗ computation for a given sequence
completes, the results for that sequence are stored in the file specified by the runName parameter
in MutSearch.cfg. The format for each line in that file (corresponding to a single completed
mutation sequence) is the following (line is wrapped):

Completed mutation m Score s Volume v SlaveNum -1 Time t1 t2 InitBest s1 FinalBest s2 a1
a2 . . . an EConfInfo c1 c2 c3 c4 ELConfInfo c5 c6 c7 c8 MinEMinimized em1 em2 MinEUnMinimized

ei1 ei2 Partial q E qp Partial q EL qpl E total cp EL total cpl ESecondEw b1 ELSecondEw b2
E allPruned b3 EL allPruned b4 q L ql

Each line in the runName file contains several types of information related to the K∗ computa-
tion for the corresponding mutation sequence. However, to rank mutation sequences, it is sufficient
to only look at the Score value s (which gives the computed K∗ score for the current mutation
sequence) and the ak values, 1 ≤ k ≤ n (which give the amino acid types for the n mutable residue
positions in the current mutation sequence). Once the computation for all mutation sequences is
complete, the runName file can be read in, and sequences can be sorted according to the Score

value s. The higher the value s, the better binder the corresponding sequence is predicted to be.
The doSinglePartFn command can then be run to generate the structures from the K∗ ensem-
bles (for the bound or unbound partition function computation) for a user-selected set of the top
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mutation sequences (see below).
The rest of the data output for each mutation sequence (each line in the runName file) is

briefly described next.

• m: an index assigned by the program to each mutation sequence. This index does not have any specific
meaning and need not be unique (e.g., multiple sequences may have the same index if a mutation search
is resumed, see below).

• v: the volume for the current mutation sequence (mutable positions only), computed as described
above.

• t1, t2: the time (in minutes) for computing the partition functions for, respectively, the unbound and
bound states.

• s1: the best score found in the search at the time when the computation for the current mutation
sequence was started. Note that this score is not necessarily the overall best score, since scores are
continuously updated as more sequences complete their computation.

• s2: the best score found in the search at the point where the computation for the current mutation
sequence completes.

• c1, c2, c3, c4: the number of conformations for the unbound partition function computation that are,
respectively, enumerated by K∗, pruned in the DEE pruning stage, pruned by the steric filter, and
pruned by the A∗ filter (for details of the different filters, see [15]).

• c5, c6, c7, c8: the number of conformations for the bound partition function computation that are,
respectively, enumerated by K∗, pruned in the DEE pruning stage, pruned by the steric filter, and
pruned by the A∗ filter.

• em1 , em2 : the lowest energy after minimization for any conformation in the, respectively, unbound
and bound partition function computation.

• ei1 , ei2 : the lowest energy before minimization for any conformation in the, respectively, unbound and
bound partition function computation.

• qp: the value of the computed unbound partition function for the current mutation sequence.

• qpl: the value of the computed bound partition function for the current mutation sequence with the
ligand.

• cp: the total number of conformations for the unbound partition function computation (cp = c1 + c2 +
c3 + c4).

• cpl: the total number of conformations for the bound partition function computation (cpl = c5 + c6 +
c7 + c8).

• b1: a boolean value (true or false) that determines whether the partition function computation for the
unbound state was repeated (see the repeatSearch parameter in MutSearch.cfg).

• b2: a boolean value (true or false) that determines whether the partition function computation for the
bound state was repeated.

• b3: a boolean value (true or false) that determines whether all conformations for the current mutation
sequence were pruned in the unbound partition function computation. This can happen if, e.g., there
are no sterically-allowed conformations for the current mutation sequence.
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• b4: a boolean value (true or false) that determines whether all conformations for the current mutation
sequence were pruned in the bound partition function computation.

• ql: the value of the computed unbound partition function for the ligand.

Resuming a mutation search. In some cases (e.g., due to unexpected processor restarts),
the mutation search may be interrupted before the computation for all sequences completes. An
interrupted mutation search can be resumed, so that only mutation sequences for which the com-
putation did not complete are re-distributed for evaluation. To resume an incomplete search, the
runName file must be renamed to the filename specified by the resumeFileName parameter in
MutSearch.cfg and the resumeSearch parameter should be set to true. The completed results
from the partial runName file (which is now the resumeFileName file) are then read in, and
only the mutation sequences that are not yet computed are distributed for evaluation. The resumed
search generates a new runName file with the newly-computed sequence results. If a search must
be resumed more than once, all of the previously-completed sequence results must be concatenated
into the resumeFileName file. When the computation for all sequences completes, the resume-
FileName and runName file must be concatenated to generate the complete sequence results
file.

Structure Generation

The saveTopConfsAsPDB parameter in MutSearch.cfg should generate three dimensional protein
structures for the top conformations in PDB format.
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5.3 Residue Entropy Computation

OSPREY can apply a Self-Consistent Mean Field (SCMF) approach to compute residue entropies
for each residue position in a protein. By using SCMF, self- and pairwise rotamer energies can
be computed and used to compute rotamer, and subsequently, amino acid probabilities for any
given position in a protein [29]. Residue positions with high entropy can then be redesigned using
MinDEE/A∗ to predict mutations anywhere in a protein. This hybrid SCMF and MinDEE/A∗

approach was used in [3] to predict bolstering mutations both close to and far from an enzyme’s
active site for additional improvement in the enzyme specificity (active site mutations were first
identified using the K∗ algorithm).

The SCMF computation for a given protein can be performed by OSPREY using the following
command:

doResEntropy System.cfg ResEntropy.cfg

The System.cfg and ResEntropy.cfg configuration files are described in detail below (Sec. 5.3.1).
The output of the doResEntropy command is described in detail in Sec. 5.3.2.

NOTE: The residue entropy computation is only performed for a a single protein. If the input
structure contains a ligand, the ligand is deleted from the structure before the residue entropy
computation.

5.3.1 Configuration Files

System.cfg

A typical file will look like this:

pdbName cal_min_8A.pdb

strand0 7 81

Currently, OSPREY computes entropy for only one protein strand. The strand is defined by
the residue number range in the pdb file. pdbName is the name protein structure file and strand0
defines the range of residues.

ResEntropy.cfg

This configuration file contains the information about the SCMF residue entropy computation. A
typical file will look like this:

stericE 30.0

maxPairE 1000.0

useEref true

dist 8.0

matrixName cal_resBBPEM

rotProbFile cal_rotProb

runName cal_resEntropy

A description of the parameters is as follows:
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stericE

Rotamers with intra-rotamer plus rotamer-to-template energy greater than this thresh-
old are pruned as a preprocessing step.

maxPairE

Rotamer pairwise energies greater than maxPairE are reset to maxPairE.

useEref

Determines if amino acid reference energies are used as part of the energy function.

dist

Distance cutoff for considering two residues as interacting for the energy computation.
This parameter is also used as a cutoff for computing the number of neighboring (proximate)
residues to a given residue position (see [3, Supporting Information, Sec. S1.2.3]).

matrixName

Prefix for the filenames of the different output matrices described in Sec. 5.3.2.

rotProbFile

The file to which the computed rotamer probabilities are output. This file contains the
computed rotamer probabilities for each rotamer, for each amino acid type, for each residue
position in a protein. The residue entropies are computed using the rotamer probabilities
saved in this file. This is a binary file and is described in Sec. 5.3.2.

runName

The file to which the computed residue entropies are output. The format of this file is
described in detail in Sec. 5.3.2.

5.3.2 Output Files

Energy and Other Output Matrices

The first step in the residue entropy computation is the computation of the self- and pairwise
rotamer energies. Four different matrices are computed and stored in the main program code
folder. These matrices have filenames starting with the matrixName parameter as a prefix. The
matrix ending in ‘ dist.dat’ is a boolean matrix that determines if two residues are within the
cutoff interaction distance specified by the dist parameter. The matrices ending in ‘ intra’ and
‘ shll’ contain the intra-rotamer and rotamer-template energies, respectively, for all rotamers for
each amino acid type at each residue position. The file ending in ‘ pair’ contains a pointer to
all computed rotamer-rotamer pairwise matrices in the peme subfolder; the full rotamer-rotamer
pairwise matrix is divided into multiple smaller pairwise matrices as a way to somewhat decrease
the memory requirements for very large systems. The file ending in ‘ pair’ is the only plain-text
matrixName file; all other matrixName files are binary files.

NOTE: A file with filename specified by the runName parameter concatenated with ‘.log’

is generated during the matrix computation. This file contains information about the completed
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distributed jobs for a given matrix, and is only used to update the user for the current progress of
the computation. This file can be deleted at the end of the computation.

NOTE: The SCMF computation typically requires more memory resources (especially for very
large systems), so in some cases java may need be executed with larger values for -Xmx, e.g.,
-Xmx4096M.

NOTE: The user must make sure that all files generated by a given SCMF run (including the
files in the peme subfolder) are moved and saved to another location, in order to avoid the possibility
of overwriting or unintentionally using existing files for subsequent SCMF runs on different systems.

NOTE: Once any of the matrices described here is computed and saved, it can be reloaded and
will not require re-computation if the program execution is interrupted and needs to be restarted.
Unlike the K∗ and GMEC-based redesigns, no specific flag needs to be set for the program execution
to resume. When resumed, the program automatically reads in all computed matrices.

Residue Entropy Results

Once all of the energy matrices have been computed and stored, the program moves to the actual
residue entropy computation. At this point in the computation, the program requires only a single
processor for execution. First, the probabilities for each rotamer for each amino acid type (other
than Pro) for each non-Pro residue position in the protein are computed using SCMF. As a pre-
processing step, rotamers with intra-rotamer plus rotamer-to-template energy greater than the
value of the stericE parameter are pruned from further consideration. Pairwise rotamer energies
greater than the value of the maxPairE parameter are reset to maxPairE. The SCMF rotamer
probability computation then continues using a temperature annealing scheme that starts at 50000
and ends at 300 in steps of 100.

Once the SCMF computation is done, the computed rotamer probabilities are saved to the
file specified by the rotProbFile parameter in ResEntropy.cfg. This is a binary file that can
also be read in (once computed) if the computation is resumed. Based on the computed rotamer
probabilities, the program then computes the corresponding amino acid probabilities for each non-
Pro residue position in the input protein. Finally, using the computed amino acid probabilities,
the residue entropy of each non-Pro residue position in the protein is computed. The computed
residue entropies, as well as the amino acid probabilities for each residue position, are output to
the runName file. The format of the runName file is described next.

The first line in the runName file is a header line that contains the column headers for the
remainder of the file and has the following format:

resNum pdbResNum resDefault entropy a1 a2 . . . am numProx

Here, ai is the three-letter code for amino acid type i (for a total of m amino acid types). The
order in which the amino acid types are found in the header line depends on the order in which
the amino acid types are read in from the rotFile rotamer library (see Sec. 3.2.3). If the default
rotamer library is used, the header line in the runName file will look like this:

resNum pdbResNum resDefault entropy ALA VAL LEU ILE PHE TYR TRP CYS MET

SER THR LYS ARG HIP ASP GLU ASN GLN GLY numProx

The remainder of the runName file is organized as follows. Each line in the file corresponds
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to a residue position in the protein and has the following format:

r1 r2 d e p1 p2 . . . pm c

The data values are described as follows:

• r1: a residue index for the current residue position. This is typically different from the corresponding
residue number from the input pdb structure (see the description of r2).

• r2: the corresponding residue number as read in from the input pdb structure.

• d: the three-letter code of the wildtype amino acid identity for the current residue position.

• e: the computed residue entropy for the current residue position.

• p1, . . . , pm: for the current residue position, the computed amino acid probabilities for amino acid
types a1, . . . , am.

• c: the number of neighboring (proximate) residue positions as determined by using the dist parameter

from ResEntropy.cfg.

An example line in the runName file may look like this (line is wrapped):

144 161 ILE 1.287177995617508 0.00929384361661082 0.1865197940818237 0.0018160912871596096

0.6212177621704273 5.759059371666681E-6 0.0 0.025903650444377087 0.044798603334293544

0.06779569113561482 0.006199166859597977 0.01621958547873389 6.625486153748881E-4

3.2651327046301967E-4 7.612305618644515E-4 9.587107682972999E-5 7.080503569800633E-4

0.0033621847202647053 0.008280530237428764 0.00603312369278387 55

Residue positions can then be ordered according to their e values (the computed residue en-
tropies). Typically, residue positions with high e values are selected for a subsequent MinDEE/A∗

mutation search. Additionally, the number c of neighboring (proximate) residues can be used to fil-
ter out residue positions with too few neighboring residues (see [3, Supporting Information, S1.2.3]
for details). The MinDEE/A∗ mutation search can also be limited to include only amino acid types
with high probabilities (the pi values) for a selected residue position.
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Chapter 6

Special Types of Redesign

OSPREY is optimized for redesigning proteins, and protein-protein interactions, as well as for
designing protein-small molecule and protein-peptide interactions. For these designs, it is sometimes
necessary to model a few explicit water molecules. Currently, OSPREY cannot model flexibility in
water molecules but these can be modeled as rigid co-factors.

6.1 Modeling Explicit Waters

The EEF1 solvation model (Sec. 4.3) is the standard way of modeling solvation energies in OSPREY.
In some cases, however, explicit water molecules can also be included as part of the input structure
and used in the energy computation for the mutant structures. In the current version of OSPREY,
explicit water molecules can be modeled as rigid (virtual) cofactor residues. Several considerations
must be taken into account when modeling explicit water molecules:

• Water molecules can only be modeled as rigid: all explicit waters remain rigid in their position
from the input structure.

• All explicit waters must also include both hydrogens. The orientation of the hydrogens is also
kept rigid and must thus be optimized before starting the OSPREY mutation search.

• The three-letter code for each water molecule (residue) should be HOH. Each water molecule
must have three atoms with names: O, H1, and H2.

• It is recommended to only include water molecules that participate in important interactions,
but that are likely to remain in their input position/conformation and not be displaced by
mutated neighboring residues.

Let us model two water molecules as part of the input structure. Let these two water molecules
have residue numbers 310 and 320 (note that the residue numbers must be unique, as discussed in
Sec. 4.1) and the following coordinates (pdb format):

ATOM 15580 O HOH 310 59.519 21.013 23.619 1.00 12.33

ATOM 15581 H1 HOH 310 59.317 21.271 22.674 1.00 19.69

ATOM 15582 H2 HOH 310 60.165 20.253 23.540 1.00 19.69

ATOM 15610 O HOH 320 54.153 21.474 18.635 1.00 13.78
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ATOM 15611 H1 HOH 320 53.271 21.803 18.297 1.00 19.69

ATOM 15612 H2 HOH 320 54.628 21.145 17.819 1.00 19.69

These waters can then be included in a System.cfg file as follows:

pdbName dhfr_8A_ucp_mod.pdb

numOfStrands 1

strand0 3 151

strand1 300 300

strandMutNums 7 1

strandMut0 5 20 31 46 50 54 92

strandMut1 300

strandAA0 true

strandAA1 false

strandRotTrans0 false

strandRotTrans1 true

numCofRes 2

cofMap0 310 320

grotFile1 GenericRotamers.dat

NOTE: The considerations for the input structure described in Sec. 4.1 must be followed when
modeling explicit water molecules.
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Chapter 7

OSPREY via an Example -
redesigning a protein for small
molecule affinity

This chapter presents a detailed example of how to apply K∗ to redesign a protein’s active site in
order to compare the binding affinity of two mutations towards a known binder. The goal of this
(over-simplified) example is, however, not to present results of biomedical significance; rather, the
goal is to assist the user in setting up and applying OSPREY for their own protein design problems.
NOTE: This example describes how protein redesign can be performed using K∗. This example
does not explain why certain steps are performed. While this example captures a large portion of
the K∗ specifics, there are a number of special considerations not covered here. Moreover, DEE/A∗

and SCMF-based redesigns are not described here. The user is therefore urged to also read the
entire user manual, and especially Chapter 4, before reading through this example.

OSPREY setup

The setup for performing a K∗ redesign can be divided into several sequential steps. The details of
each step are described below. We will assume that OSPREY and all related software have been
setup and are ready for use, as described in Chapter 2. The input files for this example are included
in the example/input folder in the OSPREY distribution.

1. Select a redesign system. We choose to redesign the actives site of dihydrofolate reduc-
tase (DHFR) from Methicillin-resistant Staphylococcus aureus (MRSA) for increased binding
towards a lead inhibitor (DRG). As mentioned, this redesign has no biomedical significance.
We will only compare how 3 mutants and the wildtype bind DRG.

2. Select mutable positions. We select select 7 binding site residues for mutation: 5, 20, 31,
46, 50, 54, and 92.

3. Obtain pdb input structure. The crystal structure of DHFR in complex with DRG and
the cofactor NADPH is available (PDB id: 3F0Q [10]). We download the structure and
format it according to the instructions in Sec. 4.1. Specifically, we:
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• Add hydrogens. We use MolProbity [6] to protonate the input structure. The resulting file
is 3F0QFH.pdb in the example/input folder included with the OSPREY distribution.
NOTE: When adding hydrogens to 3F0Q, MolProbity can not add hydrognes to the
inhibitor or the NADPH cofactor; we can add these missing hydrogens using another
external program (e.g., Accelrys Discovery Studio Visualizer).

• Select a steric shell. Since DHFR has more than 150 residues, we choose to only include
a steric shell of residues close to the active site of the enzyme as part of the OSPREY
input structure. First, we select the DHFR substrate from the crystal structure. We
delete all water molecules. At this point, the current structure consists of the following:
all protein residues, the inhibitor DRG, and the NADPH cofactor. The resulting file
may look like 3F0QFH A.pdb in the example/input folder. To extract the steric shell
from this structure, we can use an external program (e.g., VMD [18]). Typically, the
shell is selected so that all residues close to the active site residues are included. For
simplicity, in this example, we choose to only include the residues within 8 Å from the
DRG substrate (this also includes the NADPH cofactor). The file resulting from this
step may look like dhfr 8A ucp mod.pdb in the example/input folder.

• Rename HETATM to ATOM. If there are HETATM lines in the input structure, re-
name HETATM to ATOM. NOTE: Remember to add two extra spaces after the
word ATOM in order to observe the standard PDB column widths. In this example,
dhfr 8A ucp mod.pdb contains HETATM lines, so this step must be applied.

• Rename HIS residues. This step is performed according to the instructions in Sec. 4.1.

• Check final structure. The final structure (dhfr 8A ucp mod.pdb in this example)
should be checked for missing atoms, protonation states, and other considerations, as
described in Sec. 4.1. Specifically, every line should be an ATOM line and the last line
should be an END line; all residues must have unique residue numbers (chain ID’s are
not recognized).

4. Select a redesign target substrate. The wildtype substrate of DHFR is dihydrofolate, a
precursor to the active form of folic acid. DRG binds DHFR in the same region as dihydro-
folate. Our choice is to redesign DHFR to bind DRG with more potency.

5. Obtain substrate coordinates. In this case, DRG is already part of the protein struture
3FOQ. However, if the user wishes to use a different ligand, it must be placed in the structure.
OSPREY does not perform docking, so the target substrate must already be docked in the
binding site. The user can either modify an existing ligand (e.g. by modifying the atoms of
DRG using a modeling program such as PyMOL [7]) or a docking program. After the substrate
has been docked, changes to the substrate conformation are allowed through rotamer swaps
and (for designs using MinDEE) side-chain dihedral minimization, as well as bounded rigid-
body rotation and translation.

6. Add missing force field parameters. The force field parameters for DRG are computed as
described in the example in Sec. 4.3 and are shown in Fig. 4.2. These parameters are added to
the all nuc94 and gr.in file as described in Sec. 4.3. Additional modifications must be made
to the parm96a.dat file (see Sec. 4.3 for details). The resulting modified all nuc94 and gr.in

and parm96a.dat files can be found in the example/input folder.
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7. Obtain DRG rotamers. Deciding the rotamers for DRG is a hard problem because DRG
has several rotatable torsional angles which result in a large space of conformations. This
space can be reduced by adding all possible conformations with a 10 degree separation between
each rotamer and then using MinDEE/A* to select the top rotamers. For this example, we
will use only one rotamer: the wildtype conformation of DRG. The DRG rotamers must be
added to the file specified by the grotFile1 parameter in System.cfg (Sec. 3.2.3). We will
assume this file is GenericRotamers.dat. The following must be added to that file, following
the instructions in Sec. 4.2 (remember to increase the first non-‘!’ line from 1 to 2):

DRG 4 10 CAH CAI CBC CAZ CAI CBC CAZ CAN CAO CAY CBB CAS CAN CAX

OAR CAA 22 130 64 167

The resulting modified GenericRotamers.dat file can be found in the example/input folder.

8. Setup configuration files. The KStar.cfg, System.cfg, and MutSearch.cfg configuration
files that will be used in this example are shown below. A detailed description of these con-
figuration files, as well as some special considerations, is given in Secs. 3.2.3, 5.1.1, and 5.2.1,
respectively. We will only note that in this example, K∗ will aim at predicting up to 2-point
mutation sequences, as determined by the numMutations parameter in MutSearch.cfg.

KStar.cfg:

dataDir /home/you/osprey2.0-releaseExample/datadir

System.cfg:

pdbName dhfr_8A_ucp_mod.pdb

numOfStrands 2

strand0 3 151

strand1 300 300

strandMutNums 7 1

strandMut0 5 20 31 46 50 54 92

strandMut1 300

strandAA0 true

strandAA1 false

strandRotTrans0 false

strandRotTrans1 true

cofMap0 301

numCofRes 1

MutSearch.cfg:

runName dhfr-ks-example

numMutations 2

doMinimize true

addWT true

addOrigRots true
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saveTopConfsAsPDB true

saveTopConfsRots true

numTopConfsToSave 10

resAllowed0_5 val

resAllowed0_6 ile

The above MutSearch defines a search where 5 of the 7 redesigned positions will not mutate,
but will be allowed to change rotamers. Two positions, Leu54, and Phe92 can mutate to Val and
Ile, respectively. This results in a search with four sequences: the wildtype, mutant L54V, mutant
F92I, and the simultaneous mutations L54V/F92I.

Performing the K∗ redesign

At this point, we have setup OSPREY for performing a K∗ redesign of DHFR for the target ligand
DRG. To perform the K∗ redesign, we execute the following OSPREY command from the shell:

mpirun -machinefile ./machines -np 5 java -Xmx1024M KStar mpi -c KStar.cfg KSMaster

System.cfg MutSearch.cfg >! logKS.out

or:

java KStar -t 5 -c KStar.cfg KSMaster System.cfg MutSearch.cfg >! logKS.out

In this example, we will be running OSPREY on 5 processors. The output files generated by
the K∗ computation for this example can be found in the example/output folder in the OSPREY
distribution. The standard output is redirected to a file called logKS.out. Next, we show the
output as seen by the user. Output generated by the K∗ computation to the logKS.out file is
shown in this font. We will also include comments explaining the logKS.out output; these
comments are in bold and enclosed in brackets: [this is a comment]. The following signifies one
or more skipped lines of output: [.....].

K∗ execution

[Upon startup, the OSPREY program information is displayed first, as described in
Sec. 3.2:]

OSPREY Protein Redesign Software Version 2.0

Copyright (C) 2001-2012 Bruce Donald Lab, Duke University

This program is free software: you can redistribute it and/or modify

it under the terms of the GNU Lesser General Public License as

published by the Free Software Foundation, either version 3 of the

License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU Lesser General Public License for more details.
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There are additional restrictions imposed on the use and distribution

of this open-source code, including: (A) this header must be included

in any modification or extension of the code; (B) you are required to

cite our papers in any publications that use this code. The citation

for the various different modules of our software, together with a

complete list of requirements and restrictions are found in the

document license.pdf enclosed with this distribution.

OSPREY running on 5 thread(s)

[Next, the program outputs parameter values that were read from the input configu-
ration files, or from the default values:]

Parameter HELECT not set. Using default value true

Parameter HVDW not set. Using default value true

Parameter HSTERIC not set. Using default value false

Parameter DISTDEPDIELECT not set. Using default value true

Parameter DIELECTCONST not set. Using default value 6.0

Parameter DODIHEDE not set. Using default value false

Parameter DOSOLVATIONE not set. Using default value true

Parameter SOLVSCALE not set. Using default value 0.5

Parameter VDWMULT not set. Using default value 0.95

Parameter STERICTHRESH not set. Using default value 0.4

Parameter SOFTSTERICTHRESH not set. Using default value 1.5

Parameter DATADIR set to /home/home1/pablo/dlab/ospreyTestRuns/osprey2.0-releaseExample/datadir

Parameter FORCEFIELD not set. Using default value AMBER

Parameter ENTROPYSCALE not set. Using default value 0.0

Parameter ROTFILE not set. Using default value LovellRotamer.dat

Parameter MUTFILENAME not set. Using default value dhfr-ks-example.mut

Parameter MINENERGYMATRIXNAME not set. Using default value dhfr-ks-exampleminM

Parameter MAXENERGYMATRIXNAME not set. Using default value dhfr-ks-examplemaxM

Parameter DOMINIMIZE set to true

Parameter MINIMIZEBB not set. Using default value false

Parameter DOBACKRUBS not set. Using default value false

Parameter REPEATSEARCH not set. Using default value true

Parameter SCALEINT not set. Using default value false

Parameter INITEW not set. Using default value 6.0

Parameter PRUNINGE not set. Using default value 100.0

Parameter STERICE not set. Using default value 100.0

Parameter TARGETVOLUME not set. Using default value 0.0

Parameter VOLUMEWINDOW not set. Using default value 50000000

Parameter RESUMESEARCH not set. Using default value false

Parameter GAMMA not set. Using default value 0

Parameter EPSILON not set. Using default value 0.3

Parameter ADDWTROTS not set. Using default value false

Parameter SAVETOPCONFSASPDB set to true.

Parameter SAVETOPCONFSROTS set to true.

Parameter NUMTOPCONFSTOSAVE set to 10.

Parameter useMaxKSconfs not set. Using default value false

Run Name: dhfr-ks-examplemax

Precomputed Min Energy Matrix: dhfr-ks-exampleminM

Precomputed Max Energy Matrix: dhfr-ks-examplemaxM
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Volume Center: 0.0

Volume Window Size: 5.0E7

Num Residues Allowed to Mutate: 2

Parameter GROTFILE1 not set. Using default value GenericRotamers.dat

Parameter COFMAP0 set to 301

Parameter COFMAP1 not set. Using default value -1

Parameter ADDWT set to true

[The program then checks if the pairwise energy matrices have been computed. If yes,
the matrices are loaded and the program execution continues to the mutation search;
if no, then the matrices are automatically computed, after loading more parameters
from the default values and the configuration files:]

Checking if precomputed energy matrix is already computed...Parameter USEUNBOUNDSTRUCT0 not set. Using default value false

Precomputed energy matrices not available..

Parameter MINENERGYMATRIXNAME not set. Using default value dhfr-ks-exampleminM

Parameter MAXENERGYMATRIXNAME not set. Using default value dhfr-ks-examplemaxM

Parameter DOMINIMIZE set to true

Parameter MINIMIZEBB not set. Using default value false

Parameter DOBACKRUBS not set. Using default value false

Parameter MINENERGYMATRIXNAME set to dhfr-ks-exampleminM_0.dat

Parameter MAXENERGYMATRIXNAME set to dhfr-ks-examplemaxM_0.dat

Parameter EREFMATRIXNAME not set. Using default value Eref

Parameter TEMPLATEALWAYSON not set. Using default value false

Parameter ADDWTROTS not set. Using default value false

Parameter ONLYSINGLESTRAND set to 0

Parameter TYPEDEP not set. Using default value false

Parameter COFMAP0 set to 301

Parameter ADDWT set to true

Run Name: dhfr-ks-example

Precomputed Minimum Energy Matrix: dhfr-ks-exampleminM_0.dat

Precomputed Maximum Energy Matrix: dhfr-ks-examplemaxM_0.dat

Num Residues Allowed to Mutate: 2

Computing _All_ Rotamer-Rotamer Energies

Starting minimum and maximum bound energy computation

Parameter ADDWT set to true

Parameter RESALLOWED0_0 not set. Using default value

Parameter RESALLOWED0_1 not set. Using default value

Parameter RESALLOWED0_2 not set. Using default value

Parameter RESALLOWED0_3 not set. Using default value

Parameter RESALLOWED0_4 not set. Using default value

Parameter RESALLOWED0_5 set to val

Parameter RESALLOWED0_6 set to ile

Number of possible mutation combinations: 21

Length of mutArray: 30

Sorting mutation list ... done

Retrieving 0 of 30

Sent to proc 1
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Retrieving 1 of 30

Sent to proc 2

Retrieving 2 of 30

Sent to proc 3

Retrieving 3 of 30

Sent to proc 4

Retrieving 4 of 30

Sent to proc 5

.......Finished: 3, Time: 0.05

Retrieving 5 of 30, Sent to proc 4

Finished: 0, Time: 0.06666666666666667

Retrieving 6 of 30, Sent to proc 1

....Finished: 5, Time: 0.05

Retrieving 7 of 30, Sent to proc 4

[.....]

[The pairwise matrix computation is divided into several parts, and each part is dis-
tributed for evaluation by a separate processor. In this example, there are a total of
29 matrix parts. We are running on a total of 5 processors, so 1 processor serves as the
main compute node and the remaining 4 processors serve as work nodes. Hence, the
computation for four matrix parts is distributed to the work nodes. Once the compu-
tation for one of these parts completes (part 3 here), the next matrix part is retrieved
and submitted to the corresponding work node. The distributed matrix computation
continues until all of the 29 jobs complete: Note that each matrix part may require a
different amount of time to complete, so a job that was distributed at the beginning of
the computation may in fact complete last, and vice versa. Once the pairwise energy
matrix computation is done, the two (when energy minimization is performed) or one
(with no energy minimization) energy matrices are output. ]

..Finished: 28, Time: 0.016666666666666666

Finished: 29, Time: 0.016666666666666666

DONE: Pairwise energy matrix precomputation..

PEM execution time: 0.39066666666666666

DONE: Pairwise energy matrix precomputation

[Starting with version 2.0, a K∗ run always must precompute 3 energy matrices: (i)
a matrix for the unbound strand0, (ii) a matrix for the unbound strand1, and (iii)
a matrix for the bound complex. The matrix for the unbound strand1 and for the
bound complex are computed and produce the following output: ]

Run Name: dhfr-ks-example

Precomputed Minimum Energy Matrix: dhfr-ks-exampleminM_1.dat
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Precomputed Maximum Energy Matrix: dhfr-ks-examplemaxM_1.dat

Num Residues Allowed to Mutate: 2

Computing _All_ Rotamer-Rotamer Energies

Starting minimum and maximum bound energy computation

Parameter ADDWT set to true

Parameter RESALLOWED1_0 not set. Using default value

Number of possible mutation combinations: 1

Length of mutArray: 3

Sorting mutation list ... done

Retrieving 0 of 3

Sent to proc 1

Retrieving 1 of 3

Sent to proc 2

...

..Finished: 0, Time: 0.0

Finished: 2, Time: 0.0

Finished: 1, Time: 0.0

DONE: Pairwise energy matrix precomputation..

PEM execution time: 0.00455

DONE: Pairwise energy matrix precomputation

done

Run Name: dhfr-ks-example

Precomputed Minimum Energy Matrix: dhfr-ks-exampleminM_COM.dat

Precomputed Maximum Energy Matrix: dhfr-ks-examplemaxM_COM.dat

Num Residues Allowed to Mutate: 2

Computing _All_ Rotamer-Rotamer Energies

Starting minimum and maximum bound energy computation

Parameter ADDWT set to true

Parameter RESALLOWED0_0 not set. Using default value

Parameter RESALLOWED0_1 not set. Using default value

Parameter RESALLOWED0_2 not set. Using default value

Parameter RESALLOWED0_3 not set. Using default value

Parameter RESALLOWED0_4 not set. Using default value

Parameter RESALLOWED0_5 set to val

Parameter RESALLOWED0_6 set to ile

Parameter RESALLOWED1_0 not set. Using default value

Number of possible mutation combinations: 28

Length of mutArray: 38

Sorting mutation list ... done

Retrieving 0 of 38

Sent to proc 1

Retrieving 1 of 38

Sent to proc 2

Retrieving 2 of 38

Sent to proc 3

...
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.Finished: 37, Time: 0.016666666666666666

Finished: 22, Time: 0.3333333333333333

Finished: 29, Time: 0.26666666666666666

DONE: Pairwise energy matrix precomputation..

PEM execution time: 0.83315

DONE: Pairwise energy matrix precomputation

[Next, the program looks for the file that contains the list of candidate mutation
sequences (see the discussion in Sec. 5.2.2 of the mutFileName file specified in Mut-

Search.cfg). If the mutFileName file exists, it is read in and the program execution
continues to the K∗ score computation for the candidate mutation sequences. If that
file does not exist, then it is computed by the program, as described in Sec. 5.2.2:]

Looking for mutation list file ... no mutation list file found. Computing one.

Starting mutation combination 0 ... Parameter ADDWT set to true

Parameter RESALLOWED0_0 not set. Using default value

Parameter RESALLOWED0_1 not set. Using default value

Parameter RESALLOWED0_2 not set. Using default value

Parameter RESALLOWED0_3 not set. Using default value

Parameter RESALLOWED0_4 not set. Using default value

Parameter RESALLOWED0_5 set to val

Parameter RESALLOWED0_6 set to ile

Parameter RESALLOWED1_0 not set. Using default value

..finished

Starting mutation combination 1 ...

....

Starting mutation combination 36 ... Parameter ADDWT set to true

Parameter RESALLOWED0_0 not set. Using default value

Parameter RESALLOWED0_1 not set. Using default value

Parameter RESALLOWED0_2 not set. Using default value

Parameter RESALLOWED0_3 not set. Using default value

Parameter RESALLOWED0_4 not set. Using default value

Parameter RESALLOWED0_5 set to val

Parameter RESALLOWED0_6 set to ile

Parameter RESALLOWED1_0 not set. Using default value

.finished

Sequences remaining after volume filter 54

Trimmed Length of mutArray: 4

4 unique mutation sequences found in volume range -5.0E7 to 5.0E7

Total number of conformations (bound and unbound) for all sequences: 277200

[As a result of the mutation list computation, we get 4 candidate mutation sequences.
The list of candidate sequences is saved to the file dfhr-ks-example.mut. Note that in this
example the volume filter is actually turned off, so no sequence pruning is performed
based on volumes. The last two lines from the output above specify the total number
of rotamer-based conformations for the bound and unbound states for all candidate
mutation sequences and the value of the computed ligand partition function.
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Next, the computation of the K∗ score for each of the 4 candidate mutation se-
quences is distributed to a separate work node for evaluation. Again, the 4 sequences
are distributed, and once the computation for one of these sequences is complete. If
more candidate sequences were available, then a a new candidate sequence would be
retrieved and sent for evaluation.]

Retrieving 0 of 4

Sent to proc 1

Retrieving 1 of 4

## CurMut: 0 Starting Sequence: LEU LEU VAL THR ILE LEU ILE DRG &&

Calculating partition function for strand: 0

Sent to proc 2

Retrieving 2 of 4

## CurMut: 1 Starting Sequence: LEU LEU VAL THR ILE LEU PHE DRG &&

Calculating partition function for strand: 0

Sent to proc 3

Retrieving 3 of 4

## CurMut: 2 Starting Sequence: LEU LEU VAL THR ILE VAL ILE DRG &&

Calculating partition function for strand: 0

Sent to proc 4

## CurMut: 3 Starting Sequence: LEU LEU VAL THR ILE VAL PHE DRG &&

Calculating partition function for strand: 0

[.....]

[The K∗ score computation for each candidate sequence generates various types of
output to the logKS.out file, including DEE pruning information and information re-
lated to the ensemble of conformations generated by A∗. Since multiple sequences
are evaluated at the same time, the output for the different sequences is intermixed.
This output is useful in some special cases but can typically be discarded. When the
K∗ computation for a given sequence completes, the results for this sequence are out-
put to the file specified by the runName parameter in MutSearch.cfg, as described in
Sec. 5.2.2. In this example, this file is dhfr-ks-example. When the K∗ computation for
all sequences completes, the following is output:]

DONE: K* computation

[To verify that the computation for all sequences has indeed completed, we can com-
pare the number of lines in the dhfr-ks-example.mut and dhfr-ks-example files - these
numbers should be equal. In this example, the number of lines in dhfr-ks-example must
be 4 - we can verify this using, e.g., wc. If the K∗ computation is interrupted, we
can resume the search using the partial results from dhfr-ks-example, as described in
Sec. 5.2.2.]

Analysis of results

At this point, we have computed K∗ scores for all candidate mutation sequences. The sequences can
now be ranked in order of decreasing K∗ scores, as described in Sec. 5.2.2. The top ten mutants,
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Rank K∗ Score 5 20 31 46 50 54 92
1 1.91E + 21 LEU LEU VAL THR ILE VAL ILE
2 2.74E + 22 LEU LEU VAL THR ILE LEU ILE
3 5.12E + 08 LEU LEU VAL THR ILE LEU PHE
4 5.47E + 00 LEU LEU VAL THR ILE VAL PHE

Table 7.1: Top ten mutants predicted by K∗ for the example redesign of GrsA-PheA for FCL. For
each of the mutants, the predicted amino acid identities at the six mutable residue positions are
shown along with the corresponding K∗ rank and computed score.

along with their K∗ scores for this example are shown in Table 7.1. NOTE: As was already
noted, the goal of the (oversimplified) example described in this chapter and the computational
predictions is to assist the user in setting up and applying OSPREY for their own system, rather
than to present results of biomedical significance.

Visualization of predicted structures

At this point, we have the top mutant predictions as determined by K∗. The saveTopConfsAsPDB

parameter activates saving PDB structures of the top conformations in the ensemble of each se-
quence. numTopConfsToSave defines the number of of top conformation structures to save. These
files are saved into the ksConfs subdirectory within the working directory:

0_LLVTILI_0

0_LLVTILI_0_000.pdb

0_LLVTILI_0_001.pdb

0_LLVTILI_0_002.pdb

0_LLVTILI_0_003.pdb

0_LLVTILI_0_004.pdb

0_LLVTILI_0_005.pdb

0_LLVTILI_0_006.pdb

0_LLVTILI_0_007.pdb

0_LLVTILI_0_008.pdb

0_LLVTILI_0_009.pdb

0_LLVTILIX_2

0_LLVTILIX_2_000.pdb

0_LLVTILIX_2_001.pdb

0_LLVTILIX_2_002.pdb

0_LLVTILIX_2_003.pdb

0_LLVTILIX_2_004.pdb

0_LLVTILIX_2_005.pdb

0_LLVTILIX_2_006.pdb

0_LLVTILIX_2_007.pdb

0_LLVTILIX_2_008.pdb

0_LLVTILIX_2_009.pdb

0_X_1

0_X_1_000.pdb

Each structure is prefixed by the mutation number, followed by the sequence in one-letter amino
acid abbreviation, a code defining which unbound or bound complex the structure contains (0 for
strand0 alone, 1 for strand1 alone, and 2 for the complex) and the number of conformation. In this
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example, we also saved the rotamer information for the top conformations, which is contained in
the files that do not contain a pdb suffix.
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Chapter 8

OSPREY via an Example:
Redesigning a protein-peptide
interface

This chapter presents an example of how to apply DEE to redesign a protein-peptide interaction. As
in the previous example, the goal of this design is not to present results of biomedical significance;
rather, the goal is to assist the user in setting up and applying OSPREY for their own protein design
problems. This example describes how protein redesign can be performed using DEE. While this
example captures a large portion of the DEE specifics, there are a number of special considerations
not covered here. The user is therefore urged to also read the entire user manual, and especially
Chapter 4, before reading through this example.

DEE setup

The setup for performing a protein-peptide DEE redesign can be divided into several sequential
steps. The details of each step are described below. We will assume that DEE and all related
software have been setup and are ready for use, as described in Chapter 2. The input files for this
example are included in the example/ppi folder in the OSPREY distribution.

1. Select a redesign system and obtain the pdb structure. We choose to redesign the
crystal structure of the PDZ3 domain of PSD-95 complexed with a peptide ligand. The pdb
ID for the crystal structure is 1TP5 and can be obtained from the PDB.

2. Preprocess the input structure. We need to format the structure according to the in-
structions in Sec. 4.1. Specifically, we:

• Add hydrogens. We use the program Reduce [33] to protonate the input structure.
The resulting file is 1TP5 H.pdb in the example/ppi folder included with the OSPREY
distribution. NOTE: When adding hydrogens to 1TP5, reduce will only add hydrogens
to N-terminal residues if the flag -Nterm is set above the residue number of the largest
N-terminal residue. In this case that is 420. (1TP5 H.pdb)

• Remove HETATM. Remove the HETATM lines from the pdb file since the water molecules
will not be explicitly considered in the design calculation. (1TP5 H noHet.pdb)
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• Rename HIS residues. This step is performed according to the instructions in Sec. 4.1.
(1TP5 H noHet rename.pdb)

• Check final structure. The final structure (1TP5 H noHet rename final.pdb in this
example) should be checked for missing atoms, protonation states, and other consid-
erations, as described in Sec. 4.1. In this example you will hopefully notice that two
residues in 1TP5 don’t actually have all of their atoms defined (Phe301 and Asp332).
Since Phe301 is at the N-terminal of the PDZ domain and will not interact strongly with
the peptide the residue can simply be removed. For an actual design it could be impor-
tant to properly model on the Asp332 using crystallography tools or even the OSPREY
software, but for this example we will simply rename the Asp332 to Ala332 since it has
enough atoms defined to make up an Ala residue. (Be sure to add hydrogens again once
the residue has been mutated to an Ala).

3. Select mutable/flexible positions. In this example we are going to design the C-terminal
residues on the peptide and allow certain interacting residues on the protein PDZ domain
to flex (change rotamers) during the search. First, we select the 3 most C-terminal residues
on the peptide (423, 424, 425). Next we choose the interacting residues by finding residues
on the PDZ domain that have side chains that interact with the 3 residues we are mutating.
This can be done a number of ways, but we use the program Probe [32] to find interacting
residues. The residues that interact are: 323, 325, 326, 327, 340, 342, 372, 379, 380.

4. Setup configuration files. The KStar.cfg, System.cfg, and MutSearch.cfg configuration
files that will be used in this example are shown below. A detailed description of these con-
figuration files, as well as some special considerations, is given in Secs. 3.2.3, 5.1.1, and 5.2.1,
respectively.

KStar.cfg:

dataDir /home/you/osprey2.0-releaseExample/datadir

System.cfg:

pdbName 1TP5_H_noHet_rename.pdb

numOfStrands 2

strand0 302 415

strand1 420 425

strandMutNums 9 3

strandMut0 323 325 326 327 340 342 372 379 380

strandMut1 423 424 425

strandAA0 true

strandAA1 true

strandRotTrans0 false

strandRotTrans1 false

MutSearch.cfg:
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runName PDZexample

numMutations 3

doMinimize true

addWT true

addOrigRots true

resAllowed1_0 ALA VAL LEU ILE PHE TYR TRP CYS MET SER THR LYS ARG HIE HID ASP GLU ASN GLN GLY

resAllowed1_1 ALA VAL LEU ILE PHE TYR TRP CYS MET SER THR LYS ARG HIE HID ASP GLU ASN GLN GLY

resAllowed1_2 ALA VAL LEU ILE PHE TYR TRP CYS MET SER THR LYS ARG HIE HID ASP GLU ASN GLN GLY

iMinDEE true

Ival 0.5

initEw 0.2

approxMinGMEC true

lambda 1

algOption 1

The above MutSearch defines a search where the residues on the PDZ domain will not mutate,
but will be allowed to change rotamers. The residues on the peptide (423 424 425) can mutate
to all amino acids except Pro. iMinDEE is set to true to efficiently prune the continuous side-
chain rotamers. To print out all conformations that are within 0.2 kcal/mol of the lowest energy
conformation we set initEw = 0.2. Finally, to reduce the runtime of this example we use the
approxMinGMEC flag and to speed up the DEE calculation algOption 1 is used instead of the
default level 3. The approxMinGMEC flag will enumerate all conformations with lower bounds within
lambda of the lowest bound conformation. To guarantee that the lowest energy conformation is
found approxMinGMEC should be set to false, but for this example a lambda of 1 is sufficient. Also,
to get more rotamer pruning algOption could be set to its default value.

Performing the K∗ redesign

At this point, we have setup OSPREY for performing a DEE redesign of a peptide bound to a
PDZ domain. To perform the DEE redesign, we execute the following OSPREY command from
the shell:

mpirun -machinefile ./machines -np 5 java -Xmx1024M KStar mpi -c KStar.cfg doDEE

System.cfg MutSearch.cfg >! logDEE.out

or:

java KStar -t 5 -c KStar.cfg doDEE System.cfg MutSearch.cfg >! logDEE.out

In this example, we will be running OSPREY on 5 processors. The output files generated by
the DEE computation for this example can be found in the example/ppi/sampleOut folder in the
OSPREY distribution. The standard output is redirected to a file called logDEE.out. Next, we
show the output as seen by the user. Output generated by the DEE computation to the logDEE.out

file is shown in this font. We will also include comments explaining the logDEE.out output;
these comments are in bold and enclosed in brackets: [this is a comment]. The following signifies
one or more skipped lines of output: [.....].
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K∗ execution

[The DEE computation must compute pairwise energy matrices to start so the begin-
ning output will be the similar to Sec. 7. Please refer to that section for information
on the initial output.]
[.....]

5 4 7 7 4 5 8 5 27 194 194 194

Pruning all rotamers incompatible with the template..

Number of rotamers pruned due to incompatibility with the template: 127

5 1 5 2 4 4 3 5 25 142 188 143

[The first line shown here shows the number of rotamers available for each residue
position. Then we see that 127 rotamers have been pruned by the steric filter and the
next line shows the number of remaining rotamers at each residue position after the
steric filter has been applied.]

Starting DEE cycle run: 1

Starting pruning with DEE (simple Goldstein)

Number of rotamers pruned this run: 335

DEE: The minimum difference is 0.688448429107666

Number of rotamers pruned this run: 35

DEE: The minimum difference is 0.688448429107666

Number of rotamers pruned this run: 1

DEE: The minimum difference is 0.688448429107666

Number of rotamers pruned this run: 0

DEE: The minimum difference is 0.688448429107666

Starting pruning with DEE (mb pairs)

Current run: 1

Pos1 0: 1 2 3 4 5 6 7 8 9 10 11

Pos1 1: 2 3 4 5 6 7 8 9 10 11

Pos1 2: 3 4 5 6 7 8 9 10 11

Pos1 3: 4 5 6 7 8 9 10 11

Pos1 4: 5 6 7 8 9 10 11

Pos1 5: 6 7 8 9 10 11

Pos1 6: 7 8 9 10 11

Pos1 7: 8 9 10 11

Pos1 8: 9 10 11

Pos1 9: 10 11

Pos1 10: 11

Pos1 11: Number of pairs pruned this run: 159

DEE: The minimum difference is 0.6745893955230713
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[.....]

Num pruned rot this run: 541

Num pruned pairs this run: 318

Starting DEE cycle run: 2

Starting pruning with DEE (simple Goldstein)

Number of rotamers pruned this run: 0

DEE: The minimum difference is 0.673398494720459

[.....]

Num pruned rot this run: 0

Num pruned pairs this run: 0

[The above section is output from the DEE algorithms used to prune rotamers from the
search space. The DEE algorithm consists of running DEE cycles which each consist of
applying several DEE criteria to see if rotamers can be pruned from the search. Each
DEE cycle consists of several individual DEE criteria including Goldstein pruning
and DEE Pairs pruning. Each individual criterion is applied to the design system
iteratively until no more rotamers can be pruned using this technique. Above you
can see that in the first DEE cycle the Goldstein criteria was run 4 times until no
more rotamers could be pruned. At the end of each DEE cycle the number of pruned
rotamers and pairs are printed and if any pruning occurred another DEE cycle begins.]

curLevel 0

LEU(5 Rot): 0 2 0 true 0 2 1 true 0 2 2 true 0 2 3 true 0 2 4 false

NumWTRots: 1

curLevel 1

PHE(4 Rot): 1 4 0 false 1 4 1 true 1 4 2 true 1 4 3 true

NumWTRots: 1

curLevel 2

ASN(7 Rot): 2 18 0 false 2 18 1 true 2 18 2 true 2 18 3 true 2 18 4 false 2 18 5 false 2 18 6 false

NumWTRots: 4

curLevel 3

ILE(7 Rot): 3 3 0 false 3 3 1 false 3 3 2 true 3 3 3 true 3 3 4 true 3 3 5 true 3 3 6 true

NumWTRots: 2

curLevel 4

[.....]

[Before A∗ is conducted the above list of rotamers are printed to show which rotamers
have been pruned and which rotamers are still available for the search. The curLevel

is the index for the mutation residue whose rotamers are being printed. Rotamers are
printed by amino acid type and for each type a value of true means that the rotamer
has been pruned and a value of false means the rotamer hasn’t been pruned. The
three numbers printed before each boolean value correspond to the mutated residue
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index (i.e. curLevel), the amino acid type index used by OSPREY, and the rotamer
number (order taken from rotamer library data file) respectively.]
[The K∗ score computation for each candidate sequence generates various types of
output to the logDEE.out file, including DEE pruning information and information
related to the ensemble of conformations generated by A∗. Since multiple sequences
are evaluated at the same time, the output for the different sequences is intermixed.
This output is useful in some special cases but can typically be discarded. When
the K∗ computation for a given sequence completes, the results for this sequence are
output to the file specified by the runName parameter in MutSearch.cfg, as described
in Sec. 5.2.2. In this example, this file is PDZexample. When the K∗ computation for
all sequences completes, the following is output:]

ASTAR PRUNING INFO: Total Rots before pruning for each residue:

5 4 7 7 4 5 8 5 27 194 194 194

Total number of rotamers before pruning: 654

ASTAR PRUNING INFO: Total Rots non-pruned for each residue

1 1 4 2 2 3 2 2 16 33 31 7

Total number of rotamers after pruning: 104

[Summary of the pruning is also printed. The first row of numbers corresponds to
the starting number of rotamers at each mutable or flexible residue position, and the
second row shows the available number of rotamers for each residue position after all
pruning has occurred.]

[.....]
confNum: 1

curConf: 0 0 2 1 0 0 1 1 11 2 4 0

actualConf: 4 0 5 1 1 1 4 4 19 19 30 3

curAANum: 2 4 18 3 4 2 14 2 11 4 6 1

curRot: 4 0 5 1 1 1 4 4 19 3 2 2 -1328.9928 -1311.6372 -1311.6372

[.....]

[As A∗ enumerates conformations it prints out information related to each of these con-
formations. The confNum is the conformation number that A∗ is currently on. curConf

and actualConf are related to internal indexing the OSPREYprogram uses. curAANum

lists the amino acid index for each mutable residue, and curRot lists the rotamer num-
ber for each mutable residue of the current conformation. At the end of the curRot

line the minimum energy bound, and actual energy of the current conformation are
printed as well as the best energy found so far during the search.]

Enumeration/DACS time: 8.6839

DEE execution time: 9.049316666666666

DEE done

Total execution time: 9.094133333333334

[.....]

[This is a summary of execution times for A∗ enumeration and the total time of
DEE/A∗. Since we ran iMinDEE a second round of DEE/A∗ is conducted based on
the criteria outlined in [11].]
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Rank Energy 423 424 425
1 −1323.0 MET TRP VAL
2 −1322.8 MET TYR VAL
3 −1322.7 MET TYR VAL
4 −1322.5 MET TRP VAL
5 −1322.5 MET TYR VAL

Table 8.1: Top five conformations predicted by OSPREYfor the example redesign of a PDZ-peptide
interaction. For each of the conformations, the predicted amino acid identities for the peptide
residues are shown along with the corresponding K∗ rank and computed score.

Analysis of results

At this point, we have computed the lowest energy sequences and conformations for the PDZ-
peptide system (example/ppi/sampleOut/c PDZexample). The conformations can now be ranked
in order of decreasing energies. The top five conformations, along with their designed peptide
sequences are shown in Table 8.1. NOTE: As was already noted, the goal of the (oversimplified)
example described in this chapter and the computational predictions is to assist the user in setting
up and applying OSPREY for their own system, rather than to present results of biomedical
significance.

Visualization of predicted structures

At this point, we have the top mutant predictions as determined by DEE. We can now generate and
visualize the top predicted conformations. To do this, we can create a file (example/ppi/top confs)
with the top five conformations from the example/ppi/sampleOut/c PDZexample file. We must
now add the following flags to the MutSearch.cfg file:

confResFile top_confs

numResults 5

Now we can run the following command to generate the top conformations.

java KStar -c KStar.cfg genStructDEE System.cfg MutSearch.cfg

The side-chain minimized and unminimized structures for the top conformations will be put in
the pdbs directory.

With this, we conclude the example of how to perform a DEE redesign for a given system. This
example covers some of the specifics of using the OSPREY software. However, the user is urged to
read the entire user manual since the other OSPREY commands, as well as some other details not
relevant to the example described in this chapter, are not described here. Further details on the
algorithms used in OSPREY can be found in our publications [3, 15, 12, 13, 14, 11, 27, 28].
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Appendix A

OSPREY Class Summary

This Appendix is intended to serve as a starting point for users interested in modifying and ex-
tending the OSPREY source code. A summary of the OSPREY classes is as follows:

• Amber96ext: This class handles the energy computation for a given molecule. The Amber
force field parameters are read in and saved upon initialization. The EEF1 solvation param-
eters are also read in using the EEF1 class functions. The energy (including electrostatic,
vdW, and solvation) and gradient computation for the full molecule or a selected subset of
the molecule atoms is performed by this class.

• Amber96PolyPeptideResidue: This class contains hard-coded templates for the different
amino acid types. These templates are used when performing residue mutations.

• AminoAcidTemplates: This class reads from three data files specifying amino acid residues, N-
terminal amino acid residues, and C-terminal amino acid residues. Information read includes
element type, atom type, limited connectivity, and partial charge. By matching these amino
acid templates to actual residues in a molecule, the corresponding template atom types and
partial charges can be assigned to the matched residues.

• Atom: Handles functions and data associated with atoms. Example functions include adding
a bond between atoms, computing torsion, computing atom distance, etc. Some of the data
members include the atom name, radius, mass, coordinates, and bond information.

• Backbone: Handles the backbone representation for the protein; Applies (phi,psi) changes to
the molecule; Assumes that the order of the atoms for the phi angle is C(i-1), N(i), CA(i),
C(i), and for the psi angle: N(i), CA(i), C(i), N(i+1).

• Backrub: Implements a backrub perturbation for DEEPer calculations.

• BackrubMinimizer: Handles two types of energy minimization: (1) the minimization required
for computing the pairwise energy matrices; (2) the minimization of a full conformation: the
side-chain dihedrals are kept rigid, while the backbone is allowed to move using backrub
motions. Currently, Backrub minimization can be applied only to the system strand of the
molecule; the ligand (if present) is allowed to rotate and translate.

• Backrubs: Handles the application of the Richardsons’ Backrub motions for a given residue
in a protein.
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• BBMinimizer: Handles two types of backbone energy minimization for BD: (1) the min-
imization required for computing the pairwise energy matrices; (2) the minimization of a
full conformation: the side-chain dihedrals are kept rigid, while the backbone dihedrals are
allowed to move within given limits.

• BoundFlags: Applies the Bounding Flags pruning criteria: computes a lower bound on the
energy of all conformations that contain a given rotamer pair (ir,js), for each rotamer pair.

• CommucObj: The CommucObj class is a data structure used in communication between the
master and slave nodes. It is basically just a data container. It allows the master node to
specify what type of search the slave should perform and it allows the slave to return the
result of the computation to the master.

• ConfPair: This class is used to store conformations (defined by their rotamer numbers) and
the energy of each conformation. Objects of this class can be sorted by energy so that only
the top conformations are stored and later saved to a PDB in KSParser.

• DEE: Base class containing common data and functionality for other DEE classes.

• DEEGoldstein: Performs simple Goldstein DEE rotamer pruning.

• DEEGoldsteinPairs: Performs DEE Goldstein pairs rotamer pruning.

• DEEGoldsteinTriples: Performs DEE Goldstein triples pruning.

• DEEIndirect: Performed indirect pruning.

• DEESplit1f: Performs full split-DEE (conformational splitting) with 1 plit position.

• DEESplit2f: Performs full split-DEE (conformational splitting) with 2 plit positions.

• EEF1: Manages the EEF1 solvation parameters; EEF1 handles only natural amino acids,
so solvation energies are computed for proteins and ligands (natural amino acids) only, and
not cofactors; Some important notes about assumptions of the EEF1 model are given in the
comments to getSolvationParameters().

• EnvironmentVars: This is a “global variable” static class. OSPREY stores here configuration
variables that are global and do not change.

• ExpansionQueue: This queue is ordered in terms of increasing f(n) values of the nodes in the
A* expansion tree; only the visible nodes are contained in the queue.

• ExpFunction: Manages the computation of exp(x) for large values of x, using BigDecimal; For
large values of x, the standard Math.exp(x) cannot be used, since it only has double precision;
Implements pow() for integer powers of a BigDecimal number and an approximation to the
natural logarithm of a BigDecimal number.

• ForceField: Interface for different types of force fields (currently not used).

• FullStructureSwitch: Implements a full structure switch perturbation.
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• GenericResidueTemplates: This class reads from a generic residue file that includes element
type, AMBER atom type, limited connectivity, and partial charge. This file is analogous
to AminoAcidTemplates.java; instead of amino acid parameters, parameters for general com-
pounds and nucleic acids (referred to as ‘generic residues’) are read. By matching these generic
residue templates to actual generic residues in a molecule, the corresponding template atom
types and partial charges can be assigned to the matched residues. The format of the input
parameter file is similar to the PARM AMBER datafiles, identical to the all amino94.in.

• KSParser: The main class that sets up and handles the basic OSPREY computation and
related functions. The OSPREY functions include: doDEE - perform DEE/A* redesign (this
includes MinDEE, BD, and BRDEE); genStructDEE - generate structures for a selected set
of the top doDEE conformations; precomputeBackrubs - precompute a list of allowed back-
rubs for each flexible residue position (used by BRDEE); KSMaster - perform K* redesign;
doSinglePartFn - generate (bound or unbound) structures for the K* ensemble of a given
protein-ligand complex; doResEntropy - use SCMF to compute the residue entropy for each
(non-Pro) residue in a protein.

• KStar: This is the main class for the KStar program; essentially just a wrapper for the
KSParser class.

• KSthread: Thread that is run when KStar uses threaded computation instead of mpi.

• LoopClosureAdjustment: Implements a loop closure adjustment or a secondary structure
adjustment perturbation.

• MinDEEIntervals: Computes the single and pair interval terms in the MinDEE/BD/BRDEE
criteria. This class is not used for traditional DEE.

• Molecule: Handles functions and data associated with molecules. Handles rotations/translations
of (parts of) molecules. Manages the data associated with a molecule; handles changes to
the molecule (e.g., coordinate changes, deletion or addition of residues, etc.). Determines the
bond information for the molecule.

• MPIToThread: This class is a wrapper for all of the mpi calls so that if a threaded computation
is used the threads are queried like they are compute nodes.

• MSAStar: Uses A* search for single or multiple mutation sequences simultaneously to re-
turn the minimum-energy conformation; each consecutive run returns the next lowest-energy
conformation, in order.

• MSMinBounds: Performs two different operations, depending on the input parameters: 1)
Applies the Bounds/MinBounds pruning criteria: computes a lower bound on the energy
of all conformations that contain a given rotamer ir, for each rotamer; 2) Computes: (a) a
lower bound on the energy of all conformations that contain a pruned rotamer, and (b) all
conformations that are pruned due to unallowed sterics.

• MutationManager: The MutationManager class maintains a list of mutations to be tested,
maintains their scores, prints a log file, and generally manages the mutations to test.

89



• OneMutation: Handles the data for a single mutation sequence. Contains the amino acid
identities for the given sequence and can contain the computed score. Implements a method
for comparing two sequences that is used for sorting all sequences with respect to different
criteria.

• PairwiseEnergyMatrix: Stores interaction energies for pair of rotamers, as well as the intra-
energies of the rotamers and interaction energies of the template with the rotamers and with
itself.

• ParamSet: Handles reading in and managing parameter/value pairs from the input configu-
ration files.

• PartialStructureSwitch: Implements a partial structure switch perturbation.

• PDBChemModel: Reads a structure from a PDB file. Also performs autofixing.

• PertFileHandler: Reads and writes perturbation files.

• Perturbation: Handles functions and data associated with a perturbation, for DEEPer calcu-
lations.

• PerturbationSelector: Implements the automatic perturbation selector module for DEEPer.

• PMinimizer: This is a subclass of SimpleMinimizer that minimizes with respect to perturba-
tion parameters as well as sidechain dihedrals. Used instead of SimpleMinimizer for DEEPer
calculations.

• ProbeStericCheck: Implements a steric check for atom pairs based on the Richardsons’ Probe
approach.

• ProlineFlip: Implements a proline flip perturbation.

• PrunedRotamers: Stores the information about whether a rotamer is pruned or not.

• QueueNode: Handles the data for a single node in the A* queue.

• RamachandranChecker: Provides functionality for checking if a backbone conformation is
Ramachandran-allowed; used in automatic perturbation selection for DEEPer.

• ReducedEnergyMatrix: Compact representation of the pairwise energy matrix, holding only
information for unpruned rotamers. Used in A*.

• Residue: Handles functions and data associated with residues.

• ResSymmetry: Provides functionality related to symmetries of amino acids; used to identify
the current rotamers in a structure.

• RotamerLibrary: This class implements a rotamer library reader. It reads from an input file
that contains rotamer information for amino acid types or other generic residues.
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• RotamerSearch: This class provides a variety of tools and search algorithms for doing rotamer-
based searching over molecular conformations. Contains functions for computing the pairwise
energy matrices and for performing DEE/A* and K* (with different types of minimization)
mutation searches. The functions in this class are typically called after the necessary setup
in KSParser.java is performed.

• RotMatrix: This class implements rotation matricies.

• RyanComparable: Interface for comparing objects.

• RyanQuickSort: This class implements quick sort; sorted objects must implement RyanCom-
parable.

• SamplingEEntries: Handles data storage for elements in the pairwise energy matrices.

• SaveMolecule: Writes a structure to a PDB file.

• Shear: Implements a shear perturbation.

• SimpleMinimizer: This class implements a simple energy minimization routine for the side-
chains only. Handles the computation of the Amber dihedral energy penalties (for minimizing
away from the initial rotamer dihedrals). Additionally there is a special residue, the ligand,
that can translate and globally rotate.

• StericCheck: Implements functions for checking the steric overlap for specified parts of a given
structure at different stages of the A* expansion of the conformation tree.

• Strand: Handles functions and data associated with strands.

• StrandRCs: Subclass of StrandRotamers handling residue conformations instead of rotamers
(basically StrandRotamers for DEEPer).

• StrandRotamers: This class handles rotamer assignment and maintenance for a given strand.
Performs rotamer swaps and amino acid mutations for this strand.

• SturmSolver: Solves high-degree polynomial equations. Used for loop closure adjustment and
secondary structure adjustment perturbations. This class and the class TripeptideClosure are
based on C code released with [5].

• ThreadElement: Handles all of the messages (ThreadMessages) that have been sent to the
slave thread.

• ThreadMessage: Mimics an mpi message. When running in threaded mode each thread acts
like a compute node so these objects are passed instead of mpi messages.

• TripeptideClosure: Identifies alternate conformations of a tripeptide with specified bond an-
gles and lengths and ω dihedrals. Used for loop closure adjustment and secondary structure
adjustment perturbations. This class and the class SturmSolver are based on C code released
with [5].

• VolModule: This class computes a crude molecular volume for a specified molecule.
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