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Preface

When I first started teaching automata theory in 1989, I taught it the traditional way

as it had been taught to me. Students “programmed” finite automata, pushdown au-

tomata, and Turing machines by writing them down using pencil and paper, either in

formal notation or as a transition diagram. Their answers were almost always wrong,

since it was too tedious for them to check. I wanted students to be able to check their

answers and interact with these automata. I wanted them to be able to design their own

additional problems and be able to receive feedback on them. I began designing a tool

for experimenting with pushdown automata, and over the years, with the help of many

undergraduate and graduate students, FLAP was created and eventually evolved into

JFLAP.

Susan Rodger

This book is a hands-on guide through the Java Formal Language and Automata Package

(JFLAP), an interactive visualization and teaching tool for formal languages. This book is intended

as a supplement to an undergraduate automata theory course or an undergraduate compiler course.

This book is not a textbook! We assume the user is using a textbook along with our book. Our

book guides users interactively through many of the concepts in an automata theory course or the

early topics in a compiler course, including descriptions of algorithms JFLAP has implemented and

sample problems for reinforcement of concepts. However, our book assumes that the user has read

briefly about these concepts first in an automata theory textbook or compiler textbook.

JFLAP allows users to create and operate on automata, grammars, L-systems, and regular

expressions; the term structure is used to refer to any single automaton, grammar, L-system, or

regular expression. JFLAP offers the following major groups of operations to apply to structures:

Explore the Language of Structures JFLAP has the ability to simulate input strings on non-

deterministic automata, build parse tables and parse trees for grammars, and render suc-

cessive expansions of L-systems. The automata represented in JFLAP are finite automata

(FA), pushdown automata (PDA), and multitape Turing machines. The parsing algorithms

in JFLAP are brute-force parsing, LL(1) parsing, and SLR(1) parsing.

ix
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Convert Between Equivalent Structures A wide range of conversion abilities are available,

e.g., regular expression to FA, nondeterministic FA to deterministic FA (DFA), PDA to

grammar, grammar to PDA, DFA to minimized DFA, context-free grammar to Chomsky

Normal Form grammar, and others.

Miscellaneous Analysis of Structures JFLAP also offers a few sundry analysis tools to display

properties of structures, like highlighting λ-transitions, highlighting nondeterministic states,

and determining the equivalence of two FAs.

In addition to designing the structures listed above, our book guides the user through interactive

alternative perspectives that would be difficult to do with pencil and paper. Here we list several

examples from the book.

• In Chapter 2 users convert a deterministic finite automaton (DFA) to a minimal DFA. During

the conversion, users must determine whether or not two states p and q are distinguishable.

With JFLAP users make two copies of the DFA — one with p a start state and the other with

q a start state — and run both DFAs on the same set of input strings to determine whether

the states are distinguishable.

• In Chapter 6 users parse context-free grammars using a brute-force parser. To determine the

language of a grammar, users enter each variable’s productions separately (when possible)

and determine the language of each variable first, then put them together for the language of

the grammar.

• In Chapter 8 users parse a grammar with an SLR(1) parser. They then build an NPDA

that models the SLR(1) parsing process for this grammar and run the NPDA with the same

strings. The NPDA is likely nondeterministic, so the students guide the run with lookaheads.

JFLAP uses general definitions of its structures to allow it to fit with a range of textbooks.

We mention some of these definitions here. Definitions for each structure are in the corresponding

chapter. Instructors might prefer to require students to use a subset of the JFLAP definition if

that fits with their textbook.

• Finite automata allow users to enter strings of length zero or greater. Instead, an instructor

might want to require students to enter strings of length zero or one.

• Pushdown automata can pop zero or more symbols from the stack in each transition. An

instructor might want to require students to always pop one symbol.

• Turing machine movements for the tape head are Right, Left, and Stay. An instructor might

want to require students to use only Right and Left.
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Organization

This book covers topics from a formal languages and automata theory course, with additional

topics on parsing and L-systems. We find that undergraduate students need to see an application

to understand why this material is important. With SLR(1) parsing, students see the use of DFAs

and PDAs. L-systems are included as an alternative grammar that results in interesting visual

pictures.

We recommend chapters for an automata theory course and for the first part of a compiler

course. Both courses should have students look at the JFLAP Startup section following the preface

before reading the chapters.

For an automata theory course, the minimal coverage would be Chapters 1–6 and 9. Our book

covers automata before grammars, so if your textbook covers grammars before automata then for

regular languages you should cover Sections 3.1 and 3.2, Chapters 1 and 2, and Sections 3.3 and 3.4,

in that order. If context-free grammars are covered before PDA in your textbook, then cover them

in the order 6.1, 5, 6.2 and 6.3. Optional topics include Chapters 7, 8, 10, and 11. If instructors

want to cover SLR(1) parsing only, but not LL(1) parsing, then cover Sections 8.1 and 8.3.

For a compiler course, related chapters on parsing are Chapters 1 and 2, Sections 3.1–3.3,

Chapter 5, Sections 6.1 and 6.2, and Chapters 8 and 11. Skip Section 8.2 if you are not covering

LL(1) parsing. Chapter 11 is optional but provides some interesting thoughts on how one parses

other types of grammars, including the “parse tree” for unrestricted grammars in JFLAP. This is

not really a tree, but rather a directed acyclic graph.

We now give a brief description of the highlights of each chapter.

Chapter 1, Finite Automata, guides the user through editing and simulating both determinis-

tic and nondeterministic automata.

Chapter 2, NFA to DFA to Minimal DFA, guides the user through transforming an NFA

into a DFA and then a minimal state DFA. In the NFA to DFA algorithm, a DFA state

represents corresponding states reachable from the NFA. In the DFA to minimal DFA algo-

rithm, states are grouped into sets of indistinguishable states using a tree method.

Chapter 3, Regular Grammars, guides the user through editing and parsing grammars. Its

conversion algorithms between FA and right-linear grammars are standard.

Chapter 4, Regular Expressions, has conversion algorithms that use generalized transition

graphs (GTG), wherein a transition label can be a regular expression. The regular expression

to NFA algorithm starts with a GTG with one transition containing the regular expression

and de-expressionifies one operation at a time until the result is an NFA. The FA to regular

expression algorithm starts with an FA represented as a GTG with a transition between every
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pair of states (using ∅ if there was no transition). The algorithm removes one state at a time,

replacing transitions with regular expressions, until there are only two states remaining.

Chapter 5, Pushdown Automata, introduces the editing and simulation of NPDAs.

Chapter 6, Context-Free Grammars, revisits the brute-force parser and goes into detail in

terms of how it works. Two algorithms are presented. The CFG to NPDA algorithm uses the

model for LL parsing. Students do not need to know LL parsing for this chapter. The NPDA

to CFG algorithm can easily result in a rather large grammar with many useless productions,

and thus seems magical to students. After the conversion students test the same strings in

both the original NPDA and the resulting CFG.

Chapter 7, Transforming Grammars, covers the transformation of a CFG to Chomsky Nor-

mal Form. Several transformations occur including removing λ-productions, unit produc-

tions, and useless productions. Students test the same strings in the transformed and original

grammars.

Chapter 8, LL and SLR Parsing, describes FIRST and FOLLOW sets that are needed in pars-

ing, and the two parsing methods LL and SLR. For both LL and SLR parsing, students are

shown how to convert a CFG to an NPDA for that method, how to build the parse table,

and how to compare the NPDA with parsing. In parsing a string, students can view either

the derivation or a parse tree.

Chapter 9, Turing Machines, shows how to edit and simulate a one-tape Turing machine first,

then expands to multi-tape Turing machines, including an example of a universal Turing

machine.

Chapter 10, L-systems, describes how to edit L-systems and use them to produce plants, frac-

tals, and other graphical structures.

Chapter 11, Other Grammars in the Hierarchy, describes how to use the brute-force parser

to parse strings with unrestricted and context-sensitive grammars, and some insight about

how to structure these grammars so brute-force parsing is not totally intractable.

JFLAP Software

JFLAP and all files referenced in this book are available at www.jflap.org and are free! We

recommend that files be used in conjunction with the text.
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JFLAP Startup

Running JFLAP

Download JFLAP and the files referenced in this book from www.jflap.org to get started.

JFLAP is written in Java to allow it to run on a range of platforms. JFLAP requires that

your computer have Java SE 1.4 or later installed. JFLAP works with Java 1.5. For the latest

version, visit http://java.sun.com/. Mac OS X’s latest Java release, if not already preinstalled,

is available from http://www.apple.com/java/, or from Software Update.

With Java SE 1.4 or later installed on your computer, you may attempt to run JFLAP. JFLAP

is distributed as an executable .jar (Java ARchive) file. JFLAP may be run as either an application

or applet. The following table lists how to run the JFLAP.jar executable .jar as an application on

your platform of choice.
Windows Double click on JFLAP.jar; the file will appear as JFLAP if suffix hiding is

on.

Unix & Linux From a shell with the JFLAP.jar file in the current directory, enter the

command java -jar JFLAP.jar

Mac OS X The Windows and Unix directions will work on a Mac.

JFLAP Interface Primer

We cover universal elements of the JFLAP interface here. To begin, start JFLAP. When JFLAP

has finished loading, a window will appear similar to that shown in Figure 1. This window offers a

choice of major structures if you wish to create a new structure; alternatively, the File menu allows

you to open an existing saved structure or quit JFLAP.

Throughout this book we shall review the creation of these structures. However, right now we

are going to open a JFLAP saved file of an existing finite automaton (FA). From the File menu,

choose Open. JFLAP allows users to save and open files that contain a single structure. Select

and open the file ex0.1a. A new window will appear with an FA.

We refer to all the things you can do to a structure as operators. (It is not necessary to under-

stand what the operators are doing at this point; our purpose is to describe JFLAP’s interface.)

xiv
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Figure 1: The window that appears when you start JFLAP.

Operators are typically activated through the menu items. Choose the menu item Test : High-

light Nondeterminism. (This activates an operator that shades nondeterministic states in an

automaton, in this case q0 and q1.) Next, choose the menu item Test : Highlight λ-Transitions.

(This activates an operator that highlights λ-transitions in an automaton, in this case the arc

labeled λ.) We chose these two operators because they require no intervention from the user.

Figure 2: An illustration of the window for a structure, with three tabs active.

The window for a structure consists of a menu bar that contains operators you may apply to the



xvi JFLAP STARTUP

structure, and a tabbed interface below the menu bar. Note that JFLAP keeps everything related

to a structure in a single window, and uses tabs to manage multiple operators active at the same

time. The results of the two operators we invoked are displayed in tabs, so there are currently three

tabs: Editor, Nondeterminism, and λ-Transitions. In Figure 2, the Nondeterminism tab

is selected, indicating that the interface for the “highlight nondeterminism” operator is currently

active and displayed. To switch to another operator, click on its tab. (Note that you cannot switch

to the Editor tab at this time. This is because the other two currently active operators depend

on the automaton not changing.)

We will now remove the Nondeterminism and λ-Transitions tabs. To get rid of a tab, select

the menu item File : Dismiss Tab. This will remove the currently active tab. When it is gone,

remove the other tab as well. (JFLAP prevents removal of the Editor tab.)

As a last step, peruse the contents of the File menu. Use New when you want to create a new

structure; when New is selected, JFLAP will display the window shown in Figure 1 that allows

you to choose a type of structure to create. The Open, Save, and Save As menu items allow

you to read and write structures to files like any other application that deals with documents. The

Close item will close the window of the structure. The Print item will print the currently active

tab. Quit will stop JFLAP entirely.



Chapter 1

Finite Automata

A finite automaton is the first type of representation for a regular language that we will examine.

In this chapter we will construct a deterministic finite automaton (DFA) in JFLAP, illustrate

several methods of simulating input on that automaton, discuss nondeterministic finite automata

(NFAs) in JFLAP, and present simple analyses that JFLAP may apply to automata. We present a

standard definition of a DFA in Sections 1.1–1.4, and show in the optional Section 1.5 how JFLAP

handles a more general definition of a DFA with multiple character transitions.

1.1 A Simple Finite Automaton

Figure 1.1: A finite automaton (FA), which recognizes the language of any number of a’s followed

by any odd number of b’s.

In this section you will learn how to build automata in JFLAP by way of constructing, with

help, the DFA that recognizes the language of strings of any number of a’s followed by any odd

number of b’s (e.g., ab, bbb, aabbbbb). This section will teach the essentials of automaton editing

in JFLAP: creating and deleting states and transitions, moving existing states, editing existing

transitions, and setting states to be initial and final. When you are done, you will have a machine

like that pictured in Figure 1.1!

The first step is, of course, to start JFLAP. Once JFLAP is running, you begin building an FA

by clicking on the button labeled Finite Automaton. A window will appear with (from top to

bottom) a menu, a tab that says Editor, a tool bar, and a large blank area at the bottom.

1
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1.1.1 Create States

All automata require a set of states. Before you can create states you must first activate the State

Creator tool: click on the qi button below the window’s menu bar. This button will now appear

shaded to indicate that tool is active.

The large blank area below the tools, called the canvas, is where the automaton is created and

edited. Now that the State Creator tool is active, click on the canvas to create a state. A state will

appear under the location where you clicked. As you will see, states in JFLAP are yellow circles

with some identifying text inside. Click three more times in three other locations to create three

more states. There will now be four states on the canvas, with the text q0, q1, q2, and q3 to identify

each of them.

1.1.2 Define the Initial State and the Final State

All automata require an initial state and a set of final states. In this automaton we will make q0
the initial state, and q1 the single final state. Select the Attribute Editor tool, by clicking the

button. Two of this tool’s many functions are to define an initial state and to define the set of final

states. (This tool’s other functions are described in Section 1.1.5.)

Now that the Attribute Editor tool is selected, right-click on q0 (or, control-click if you are a

Macintosh user with a single mouse button). A pop-up menu above the state will appear with

several items, including two items Final and Initial. Select the item Initial. The state q0 will

now have a white arrowhead appear to its left to indicate it is the initial state. Similarly, right-click

on the state q1, and select the item Final. The state q1 will now have a double outline instead of

a single outline, indicating that this state is a member of the set of final states.

You may find it necessary to set a final state as nonfinal. To illustrate how, right-click on q1

once you have marked it as final. Notice that the item Final now has a check mark next to it.

Select the item Final again. This will toggle q1 out of the set of final states. Before you proceed,

you must of course put q1 in the set of final states again!

1.1.3 Creating Transitions

We will now create transitions. In this machine, three transitions are necessary: three on b from q0

to q1, q1 to q2, and back again from q2 to q1, and a loop transition on a for state q0. We will create

others for illustrating some special features, and for later illustration of the Deleter tool.

To create these transitions, select the Transition Creator tool, denoted by the a icon. The

first transition we are going to create is the b transition from q0 to q1. Once the Transition Creator

tool is selected, press the mouse cursor down on the q0 state, drag the mouse cursor to the q1 state,

and release the mouse button. A text field will appear between the two states. Type “b” and
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press return. A new b transition from q0 to q1 will appear. By the same method, create the two b

transitions from q1 and q2 and from q2 and q1.

Tip As an alternative to pressing return, you can stop editing a transition merely by doing

something else like clicking in empty space (but not on a state!), or creating another

transition by dragging between two other states. If you wish to cancel an edit of a

transition, press Escape.

The next transition is q0’s loop transition on a. Creating loop transitions on a state is just like

other transitions: you press the mouse on the start state and release the mouse on the end state.

However, because the start and end states are the same for a loop transition, this is the same as

clicking on the state. So, click on state q0, and enter “a” and press return, just as you did for the

b transitions.

Lastly, create three transitions from q0 to q3, the first on the terminal a, another on b, and a

third on c. Notice that JFLAP stacks the transition labels atop each other.

Tip If you are in the process of editing a transition from a state qi to a state qj and you

wish to create another transition from state qi to state qj without having to use the

mouse, press Shift-Return. This creates a new transition from qi to qj in addition to

ending your editing of the current transition.

1.1.4 Deleting States and Transitions

You probably noticed that the automaton built requires three states, not four. This fourth state q3
and the transitions going to it are unneccessary and can be removed. Deleting objects has a tool

all its own: click the ☠ button to activate the Deleter tool.

First, we want to remove the transition on b from q0 to q3. To delete this transition, click on

the b. The b transition will be gone, leaving the a and c transitions. You can also click on the

transition arrow itself to delete a transition: click on the arrow from q0 to q3, and notice that the a

transition disappears. The c transition remains. When you click on the arrow, the transition with

the label closest to the arrow is deleted.

Deleting states is similar. Click on the state q3. The state q3 will disappear, and notice that the

c transition is gone as well. Deleting a state will also delete all transitions coming from or going

to that state. You should now be left only with the other three states and the transitions between

them.

1.1.5 Attribute Editor Tool

We already used the Attribute Editor tool in Section 1.1.2, but it has many other functions

related to modification of attributes of existing states and transitions. Select the Attribute Editor
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tool once again as we walk through examples of its use.

Setting states as initial or final

This tool may set states as initial or final states as described in Section 1.1.2.

Moving states and transitions

When you initially placed the states for the FA built earlier you may not have arranged them in

a logical order. To move a state, press on the state and drag it to a new location. Dragging a

transition will likewise move its two associated states. Attempt this now by dragging states and

transitions.

Editing existing transitions

To edit an existing transition, simply click on it! Try clicking the transition from q0 to q1. The

same interface in which you initially defined this transition will appear on the transition and allow

you to edit the input characters read by that transition.

Labels

When you set the state q0 as the initial state and the state q1 as a final state, perhaps you noticed

the menu item Change Label. Right-click on q2 and select Change Label. A dialog box will

appear, asking for a label. When processing input, while the machine is in state q2, we shall have

processed an even number of b’s, so enter “even # of b’s”. A box will appear under the state with

this label. By a similar token, label q1 “odd # of b’s”. To delete an existing label from a state

choose the menu item Clear Label from the same menu. Alternatively, the menu item Clear All

Labels will delete all labels from all states.

If you right-click in empty space, a different menu will appear, with the item Display State

Labels. This will initially have a check mark next to it to indicate that it is active. Select it.

The labels will become invisible. Hover the mouse cursor over q2; after a short time, a tool-tip will

appear to display the label even # of b’s. Right-click in empty space once more, and reactivate

Display State Labels; the labels will appear again.

Automatic layout

Right-click in empty space again. Notice the menu item Layout Graph. When selected, JFLAP

will apply a graph layout algorithm to the automaton. While usually not useful for automata you

produce yourself, many of JFLAP’s algorithms automatically produce automata, often with large

numbers of states. If you find JFLAP’s first attempt at automatic layout inappropriate, this may

alleviate the tedium of moving those states yourself.
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Figure 1.2: In the midst of the simulation of aabbb on our FA.

Tip In addition to activating a tool by clicking on its button in the toolbar, there are also

shortcut keys available for quickly switching tools. For example, hover the mouse over

the State Creator tool qi ; after a little while a tool-tip will appear with the text (S)tate

Creator. The parentheses enclosing the S indicate that this is the shortcut key for the

State Creator tool. Note that in spite of appearances, shortcut keys are really lower

case, so do not press Shift when typing the shortcut key for a tool!

1.2 Simulation of Input

In this section we cover three of JFLAP’s methods to simulate input on an automaton: stepping

with closure, fast simulation, and multiple simulation. The fourth, stepping by state, is discussed

briefly in Section 1.3.

1.2.1 Stepping Simulation

The stepping simulation option allows you to view every configuration generated by an automaton

in its attempt to process an input string. Figure 1.2 shows a snapshot of a stepping simulation of

the input string aabbb on the automaton you built in Section 1.1, also stored in file ex1.1a. The top

portion of the window displays the automaton, with the state in the active configuration shaded
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darker. The portion below the automaton displays the current configuration. In Figure 1.2, notice

the configuration is in state q0, and that the first two characters aa are grayed-out, indicating that

they have been read, while the three characters bbb are not grayed-out, indicating that they remain

to be read.

Try stepping

We shall walk through the process of stepping through input in an automaton. First, select the

menu item Input : Step with Closure. A dialog box will ask for input for the machine: enter

“aabbb” and press Return or click OK.

Your window will now appear similar to Figure 1.2. The single configuration displayed will be

on the initial state q0, and have the unprocessed input aabbb.

The tool bar at the bottom is your interface to the simulator. Click Step. The old configuration

on q0 has been replaced with a new configuration, again on the state q0, but with the character

a read. Notice that the first character a in the input has been lightened a bit to indicate that it

has been read. Click Step twice more, and it will go from q0 to q0 again, and then to q1, with the

input bb remaining.

Some of the operations in the tool bar below the configuration display act only on selected

configurations. Click on the configuration; this will select it (or deselect it if it is already selected).

A selected configuration is drawn shaded. Click Remove. Unfortunately, this deletes the only

configuration! The simulator is useless. Oops! Click the Reset button; this will restart the

simulation, so you can try again.

With the simulation back to its original state, click Step repeatedly (five times) until all the

input is read. The configuration at this point should be drawn with a green background, indicating

that it is an accepting configuration, and that the machine accepts the input. FA configurations

are accepting configurations if all the input is read and it is in a final state. The configuration’s

input is entirely gray, indicating that all the input has been read.

One can Trace a configuration to see its ancestry from the initial configuration. Do not select

a configuration; press Trace instead. An error message indicates that Trace requires a selected

configuration! Now select the single configuration, and click the Trace button. A window will show

the ancestry of this configuration, starting with the initial configuration on top and the selected

configuration on the bottom. When you’ve had a chance to look over the trace of the configuration,

close this window.

To return to the editor, choose File : Dismiss Tab to dismiss the simulator.
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Figure 1.3: The result of performing a fast simulation of aabbb on the automaton.

Failure

On the flip side of an accepting configuration is a rejected configuration. A rejected configuration

is one which (1) does not lead to any more configurations and (2) is not accepting. Run a stepping

simulation again, except this time with the input aabb. Since this has an even number of b’s the

machine will not accept it. Click Step repeatedly, and note that eventually the configuration will

turn red. This indicates that it is a rejected configuration.

1.2.2 Fast Simulation

Stepping through simulation of input is fine, but Fast Run will reveal if the automaton accepts

a string and, if it does, the series of configurations leading to that string’s acceptance without the

bother of having to repeatedly step through the machine watching for accepting configurations.

Choose Input : Fast Run. When prompted for input, enter the same “aabbb” string. The

result after JFLAP determines that the machine accepts this input is shown in Figure 1.3. The trace

of configurations, from top to bottom (i.e., from initial to accepting configuration), is displayed.

Alternatively, if the machine did not accept this input, JFLAP would report that the string was

not accepted.

Notice the two buttons near the bottom of the dialog box. I’m Done will close the display.

Keep Looking is useful for nondeterministic machines and is covered later in Section 1.3.2.
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Figure 1.4: An example of simulating multiple entries. The second-to-last input is the empty string,

entered with Enter Lambda.

1.2.3 Multiple Simulation

The third method for simulating input on an automaton is Multiple Run. This method allows

one to perform multiple runs on a machine quickly. Select Input : Multiple Run now. (Your

display will not resemble Figure 1.4 exactly, but do not worry!) The automaton is displayed to the

left, and on the right is an empty table where you may enter inputs for multiple runs. One enters

inputs in the Input column. Select the upper-left cell of this table, enter the input “aabbb”, then

press return. Notice that instead of one row there are now two: the table will grow to accommodate

more entries as you enter them.

Continue entering various inputs you wish to test on the machine; whichever you choose is up

to you. If you wish to make a lambda entry—that is, test to see if the automaton accepts the

empty string—then while entering an input, click the Enter Lambda button near the bottom of

the window, and that input field will hold the empty string. When you have entered all inputs and

wish JFLAP to simulate all these strings, click Run Inputs. Notice that the Result column is

now full of Accept and Reject entries, indicating whether an input was accepted or not. View

Trace will show the trace of the last configuration generated for each selected run in the table.

Clear will clear the table of all inputs.

Tip For convenience, the multiple run simulator will remember all inputs entered by the

user between machines. For example, suppose you have one automaton, and perform

multiple runs on that machine. If you later perform multiple run simulation on a different

automaton those same inputs will appear.
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1.3 Nondeterminism
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Figure 1.5: An NFA that accepts the language of a series of a’s followed by a series of b’s, where

the number of a’s is nonzero and divisible by 2 or 3, and the number of b’s is divisible by 2 or 3.

In this section we will talk about NFAs in JFLAP, using the automaton pictured in Figure 1.5

as our example.

Either of two conditions imply that an FA is nondeterminstic. The first condition is, if the FA

has two transitions from the same state that read the same symbol, the FA is considered an NFA.

For example, q1 of the FA in Figure 1.5 has two outgoing transitions on a. The second condition

is: if the FA has any transitions that read the empty string for input, the FA is nondeterministic.

1.3.1 Creating Nondeterministic Finite Automata

Creating an NFA is much the same as creating a DFA. Select File : New, and then select Finite

Automaton to get a new window. In this window we will create the automaton shown in Figure 1.5,

that accepts the language anbm, where n > 0 and is divisible by 2 or 3 and m ≥ 0 and is divisible

by 2 or 3. The first step is to create the thirteen states of the automaton, and to make q0 the initial

state and make q6 and q11 the final states.

Note that JFLAP numbers states in the order that you create them: the first state is q0, the

second q1, and so on. It is important to respect this order: the following discussion assumes that

you create the states in such an order that they are numbered as they are in Figure 1.5.

Notice the four transitions in Figure 1.5 with a λ (the Greek letter lambda). These λ-transitions

are transitions on the empty string. To enter a λ-transition, create a transition, but leave the
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Figure 1.6: Step with closure simulation of aaaabb on our NFA after two steps.

field empty. When you finish editing, a transition with the label λ will appear. Create the four

λ-transitions from q3 and q9 to q6 and q11.

Once you have created the λ-transitions, create the other transitions on the symbols a or b.

1.3.2 Simulation

During simulation, input on a deterministic machine will produce a single path of configurations,

while input on a nondeterministic machine may produce multiple paths of configurations. JFLAP’s

simulators have features to deal with this possibility.

Stepping simulation: Step with Closure

Select the menu item Input : Step with Closure and input the string “aaaabb”, that is, four

a’s followed by two b’s. This is a string that will eventually be accepted since the number of a’s

is nonzero and divisible by 2 and the number of b’s is divisible by 2. After you enter this input,

you should see the familiar step simulator, with a starting configuration on q0 with all the input

remaining to be processed. Click Step once to move this configuration to q1. However, if you click

Step a second time you will see a rather unfamiliar sight, as shown in Figure 1.6.

Notice that there are four configurations in your simulator. This is because your machine is
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nondeterministic: The last configuration was on q1 with the unread input aaabb, and q1 has a

transitions to q2 and q9. However, what two configurations on q6 and q11? These configurations

are due to the λ-transitions. When a configuration proceeds to a state qi, Step with Closure

creates configurations not only for qi, but for all states reachable on λ-transitions from qi. The set

of states reachable from qi on λ-transitions is called the closure of qi. So, when the configuration

in q9 with the remaining input aabb was created, configurations for q6 and q11 were created as well

because the closure of q9 includes q6 and q11.

As you may have figured out, of these two paths of configurations, the only one that will

eventually lead to an accepting configuration is the configuration on q9. Click on this configuration

to select it. With the configuration selected, click Freeze. The configuration will appear tinted light

ice blue! Now try stepping again: While the other configurations move on (and are rejected), that

configuration will not progress! Frozen configurations do not progress when the simulator steps.

With that configuration still selected, click Thaw. Thaw “unfreezes” selected configurations.

Click the Step button once more, and the now unfrozen configuration will continue, and one of its

nondeterministic paths will be accepted.

Select the accepting configuration and click Trace to view the series of configurations that led

to the accepting configuration. Notice that there is a configuration from q10 directly to q11, even

though there is no transition from q10 to q11. In stepping by closure one does not explicitly traverse

λ-transitions in the same sense that one traverses regular transitions: Instead, no configuration was

ever generated for q9, and the simulator implicitly traversed the λ-transition.

When you have finished, dismiss the simulator tab.

Stepping simulation: Step by State

Select the menu item Input : Step by State, and input the string “aaaabb”. In stepping by

state, the closure is not taken, so the simulator explicitly traverses λ-transitions. If you step twice,

you will have configurations in q2 and q9, but not the configurations in q6 and q11 that we saw when

stepping by closure.

Notice that the unread input on the q9 configuration is aabb. If you step again, the configuration

on q9 will split into three configurations, two of which are on q6 and q11. The λ-transition was taken

explicitly over a step action. If you continue stepping until an accepting configuration is encountered

and run a trace, the configuration after q10 is on q9, which then proceeds to q11 after explicitly

taking the λ-transition.

Though stepping by state is in some ways less confusing, stepping with closure is often preferred

because it guarantees that each step will read an input symbol.
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a

b

b
bb

q3q1 q2q0

Figure 1.7: Another FA, which also recognizes the language of the automaton in Figure 1.1.

Fast simulation

The fast simulator has some additional features specifically for nondeterminism. Select Input :

Fast Run, and enter the string “aaaaaabb”. Once you enter this, JFLAP will display one trace of

accepting configurations.

The button Keep Looking is useful for nondeterministic machines, where multiple branches

of configurations may accept the same input. Note that there are six a’s. Since six is divisible by

both two and three, there will be two paths of configurations that accept this input: one path leads

through state q3 (which verifies that the number of a’s is divisible by three), and another path

leads through state q9 (which verifies that the number of a’s is divisible by two). The trace through

either q3 or q9 should be visible now. Click Keep Looking, and it will search for and display

the trace through the other state. Click Keep Looking again. JFLAP will display a message, 2

configurations accepted, and all other possibilities are exhausted, which indicates that no

other accepting configurations are possible.

Multiple simulation

Nondeterministic machines may produce multiple configuration paths per run. However, the mul-

tiple run simulator’s ability to view traces of selected runs will present only a single trace for each

run. Specifically, this feature displays only the trace of the last configuration generated for a run.

This means that for an accepting run JFLAP displays the trace of the first accepting configuration

encountered, and further for a rejecting run displays the trace of the last configuration rejected,

which may not provide enough information. Viewing a run in the stepwise simulator can give a

more complete picture if you want to debug a nondeterministic machine.

1.4 Simple Analysis Operators

In addition to the simulation of input, JFLAP offers a few simple operators from the Test menu

to determine various properties of the automaton.
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1.4.1 Compare Equivalence

This operator compares two finite automata to see if they accept the same language. To illustrate

how this works, we shall load an automaton that recognizes the same language as the automaton

we have abused throughout much of this chapter: the automaton shown in Figure 1.7, stored in

file ex1.4a. Open this file. Also, open the file ex1.1a; this contains the automaton of Figure 1.1.

You will now have two windows, one with the original automaton of Figure 1.1 (presumably

titled ex1.1a), the other with the automaton of Figure 1.7 (presumably titled ex1.4a). Choose the

menu item Test : Compare Equivalence from the ex1.4a window. A prompt will appear where

you may choose from the names of one other automaton (i.e., the title of another automaton’s

window) from a list. After you select the original automaton’s window’s name (again, presumably

ex1.1a), click OK. You will then receive a dialog box telling you that they are equivalent! Dismiss

this dialog. Edit the Figure 1.7 automaton so that the b transition from q0 to q1 is instead an a

transition (so that the automaton now recognizes strings with any nonzero number of a’s and an

even number of b’s), or make whatever other change is to your liking so that the automaton no

longer recognizes the same language as the original. Repeat the test for equivalence, and this time

you will receive a notice that it does not accept the same language.

Close the two files, but do not save the changes from the modified ex1.4a.

1.4.2 Highlight Nondeterminism

This operator will show the user which states in an automaton are nondeterministic states. Consider

again the automaton in Figure 1.5, stored in the file ex1.3a. Load this file. The state q1 is obviously

nondeterministic, and JFLAP considers all states with outgoing λ-transitions to be nondeterministic

states, so q3 and q9 are nondeterministic. Select Test : Highlight Nondeterminism: a new view

will display the automaton with these states highlighted.

1.4.3 Highlight λ-Transitions

This operator will highlight all λ-transitions. Here we use the same automaton we built in Sec-

tion 1.3.1, the automaton shown in Figure 1.5 and stored in the file ex1.3a;. Load this file if it is

not already present. When you select Test : Highlight λ-Transitions, a new view will display

the automaton with the four λ-transitions highlighted.

1.5 Alternative Multiple Character Transitions∗

JFLAP provides a more general definition of an FA, allowing multiple characters on a transition.

This can result in simpler FAs. Pictured in Figure 1.8 is a five-state NFA that accepts the same

language as the thirteen-state NFA in Figure 1.5. Notice that the six transitions that are not
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Figure 1.8: An NFA equivalent to that of Figure 1.5.

λ-transitions are on multiple symbols, for example, aaa from q0 to q1. A configuration may proceed

on an n character transition of s1s2 . . . sn if the next unread input symbols are s1, s2, and so on

through sn.

We will now run a simulation on this NFA. Load the file ex1.5a, select Step With Closure,

and enter the same aaaabb string we used in Section 1.3.2. After you enter the input, you will see

the familiar step simulator, with a starting configuration on q0 with all the input remaining to be

processed. Click Step once and you will see six configurations! There are two configurations for

q3, one closure from q1 and one closure from q2. Note that these two configurations have different

amounts of remaining input since the transitions to q1 and q2 process a different amount of input.

Similarly, there are two configurations for q4. Stepping twice more results in acceptance in q3.

By allowing multiple character transitions, the first condition for FA nondeterminism in Sec-

tion 1.3 changes. The first condition is now the following: if the FA has two transitions from the

same state that read strings A and B, where A is a prefix of B, the FA is considered an NFA. For

example, note that q0 is a nondeterministic state: it has two transitions, one from aaa and the

other from aa; aa is a prefix of aaa, so the FA is nondeterministic. The NFA would use both of

these transitions while simulating the string aaaabb.

1.6 Definition of FA in JFLAP

JFLAP defines a finite automaton M as the quintuple M = (Q,Σ, δ, qs, F ) where

Q is a finite set of states {qi|i is a nonnegative integer}
Σ is the finite input alphabet

δ is the transition function, δ : D → 2Q where D is a finite subset of Q× Σ∗

qs ∈ Q is the initial state

F ⊆ Q is the set of final states

Users reading only Sections 1.1–1.4 will want to use a simpler definition of δ. In that case, for
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a DFA δ is the transition function δ : Q × Σ → Q, and for an NFA δ is the transition function

δ : Q× Σ ∪ {λ} → 2Q.

For those users reading Section 1.5, note that JFLAP allows for multiple characters on a tran-

sition. These multiple character transitions complicate the definition of the transition function’s

domain: the set Q × Σ∗ is of infinite cardinality, though the transition function requires a finite

domain. Σ∗ means a string of 0 or more symbols from the input alphabet.

1.7 Summary

In Section 1.1 you learned how to create a deterministic finite automaton (DFA) in JFLAP. The

editor for an automaton has a tool bar along the top portion of the window, and the automaton

display on the bottom portion of the window. You create states with the qi tool, create transitions

with the a tool, delete states and transitions with the ☠ tool, and edit attributes (position, labels,

setting final and initial) of existing states and transitions with the tool.

In Section 1.2 you learned how to simulate input on automata. Each simulator accepts an input

string and determines if the automaton accepts that input. The step simulator is useful if you

are interested in seeing every configuration generated by a machine as it attempts to read your

input. The fast simulator is useful if you are interested only in those configurations that led to

an accepting configuration. The multiple input simulator is useful if you are interested in running

many inputs on an automaton quickly.

In Section 1.3 you learned about creating and simulating input on a nondeterministic finite

automaton (NFA). Leaving the field blank when creating a transition will produce a λ-transition.

While simulating input, the step simulator may display multiple configurations at once as the

machine follows different paths attempting to read the input. The fast simulator can search for

multiple branches of nondeterminism accepting the same input.

In Section 1.4 we presented three analysis operators available from the Test menu. Compare

Equivalence checks if two finite automata accept the same language. Highlight Nondetermin-

ism highlights nondeterministic states, and Highlight λ-Transitions highlights λ-transitions.

In Section 1.5 we presented an alternative definition of an FA that allows for multiple characters

on a transition. This can lead to an FA with a smaller number of states.

In Section 1.6 we presented JFLAP’s formal definition of a finite automaton, which corresponds

to Section 1.5. We also presented a simpler definition corresponding to Sections 1.1–1.4.

1.8 Exercises

1. Build FAs with JFLAP that accept the following languages:

(a) The language over Σ = {a} of any odd number of a’s.
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(b) The language over Σ = {a} of any even number of a’s.

(c) The language over Σ = {a, b} of any even number of a’s and any odd number of b’s.

(d) The language over Σ = {a, b} of any even number of a’s and at least three b’s.

(e) The language over Σ = {a, b} where the number of a’s and b’s are both either even or

odd.

2. We present here a series of FAs where the author of each FA has made an incorrect claim

about the language it recognizes. For each FA, we list the file name where the FA is stored

and the claimed language it recognizes. For each FA you must: (i) Produce six strings that

are either in the indicated language but are not accepted by the FA, or that are accepted by

the FA and are not in the language; simulate these strings on the FAs as well. (ii) Modify

the FA so that it actually recognizes the language we claim it does. (iii) Simulate those six

strings again to show that they are now either accepted or rejected if they either are or are

not in the language respectively. It helps to use the fast simulator so that your test strings

are saved from (i) to (iii).

(a) The FA in ex1.6a recognizes the language of any string over the alphabet Σ = {a, b}
with exactly two b’s.

(b) The FA in ex1.6b recognizes the language of any string of a’s of some length divisible

by 2 or 3.

(c) The FA in ex1.6c recognizes the language of any string over the alphabet Σ = {a, b, c}
with at least three b’s or at least three c’s.

(d) The FA in ex1.6d recognizes the language of any string over the alphabet Σ = {a, b, c}
with at least two b’s or at least three c’s.

3. We present here a series of FAs. We then describe the language we want the FA to recognize.

You must describe the changes necessary to make the FA recognize the desired language. Edit

the FA to make these modifications in JFLAP, and run several simulations of strings in (and

out) of the language to determine if they are accepted or rejected.

(a) The FA in ex1.6e accepts the language of any odd number of a’s. We want the language

of any even number of a’s.

(b) The FA in ex1.1a accepts the language of any number of a’s followed by any odd number

of b’s. We want the language of any nonzero number of a’s followed by any odd number

of b’s.

(c) The FA in ex1.6f accepts the language over Σ = {a, b, c} of a followed by any odd

number of b’s followed by c, repeated any number of times. We now want instead the

FA where instead of one c, there can be any even number of c’s.
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(d) Now, we want the DFA that accepts the language of Exercise 3c!

4. Consider the five regular language definitions given below under the alphabet Σ = {a, b}:

(a) Where aa is not a substring.

(b) Where aa and aaa are not substrings.

(c) Where aa and aba are not substrings.

(d) Where aa and abaa are not substrings.

(e) Where aaa and aab are not substrings.

Separate these five languages into groups that you believe all accept the same language. Build

the five automata that recognize these languages, and use JFLAP to confirm your suspicion

that they are or are not the same language.

5. Consider the five regular language definitions given below under the alphabet Σ = {a}:

(a) {a`|` ≡ 0 (mod 6), ` 6≡ 0 (mod 4)}

(b) {a`|` ≡ 0 (mod 3), ` 6≡ 0 (mod 2)}

(c) {a`|` ≡ 0 (mod 2), ` ≡ 0 (mod 3), ` 6≡ 0 (mod 4)}

(d) {a`a`|` ≡ 0 (mod 3), ` 6≡ 0 (mod 2)}

(e) {a`|` ≡ 0 (mod 3), ` 6≡ 0 (mod 6)}

Separate these five languages into groups that you believe all accept the same language. Build

the five automata that recognize these languages, and use JFLAP to confirm your suspicion

that they are or are not the same language.

6. Consider the set of 17 strings

S = {bid, pad, hin, bat, pin, pit, hid, han, pid,

pan, hat, ban, bad, bit, pat, hit, had}

If S had one more string, you could build a DFA with only eight transitions that recognizes

the language S. What is this string?

7. (a) Suppose we have Σ = {0, 1} as our input alphabet and we want to accept the language

of strings a0b0c0a1b1c1 . . . anbncn such that the binary sum

an . . . a1a0

+ bn . . . b1b0

cn . . . c1c0

is correct,

carries and all. Is the language regular? If not, why not? If it is, build a DFA that

recognizes the language in JFLAP.
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(b) Repeat part (a), but with the language of strings anbncn . . . a1b1c1a0b0c0.

(c) Repeat part (a), but with the language of strings a0 . . . anb0 . . . bnc0 . . . cn.

8. Given two FAs A with language LA and B with language LB, you can use JFLAP’s Compare

Equivalence operator to determine whether or not LA = LB. Can you devise a general

method using JFLAP to determine whether LA ⊆ LB (i.e., B accepts every string A accepts)

using Compare Equivalence? (Yes, part of your instructions may, indeed must, involve

editing A or B. Your method must produce the right answer for any two FAs!)



Chapter 2

NFA to DFA to Minimal DFA

This chapter shows how each NFA can be converted into an equivalent DFA, and how each DFA

can be reduced to a DFA with a minimum number of states. Although an NFA might be easier to

construct than a DFA, the NFA is usually not efficient to run, as an input string may follow several

paths. Converting an NFA into an equivalent DFA ensures that each input string follows only one

path. The NFA to DFA algorithm in JFLAP combines similar states reached in the NFA into one

state in the DFA. The DFA to minimum state DFA algorithm in JFLAP determines which states

in the DFA have similar behavior with respect to incoming and outgoing transitions and combines

these states, resulting in a minimal state DFA.

2.1 NFA to DFA

In this section we use JFLAP to show how to convert an NFA into an equivalent DFA. The idea

in the conversion is to create states in the DFA that represent multiple states in the NFA. The

start state in the DFA represents the start state in the NFA and any states reachable from it on

λ. For each new state in the DFA and each letter of the alphabet, one determines all the reachable

states from the corresponding NFA states and combines them into a new state for the DFA. This

state in the DFA will have a label that will contain the state numbers from the NFA that would

be reachable in taking the same path.

2.1.1 Idea for the Conversion

Load the NFA in file ex2.1a as shown in Figure 2.1. We will refer to this example in explaining

the steps in converting this NFA to a DFA.

First examine the choices that occur when the NFA processes input. Select Input : Step with

Closure and enter the input string “aabbbaa” and press return. Clicking Step once shows that

processing a can result in arriving in both states q0 and q1. Clicking Step six more times shows

19
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Figure 2.1: Example from file ex2.1a.

that there are always three configurations (one of which is rejected), and results in two paths of

acceptance in states q2 and q3.

The states in the constructed DFA will represent combined states from the NFA. For example,

processing an a resulted in either state q0 or q1. The DFA would have a state that represents both

of these NFA states. Processing aabbbaa resulted in reaching final states q2 and q3. The DFA would

have a state that represented both of these NFA states. Dismiss the tab for the step run (select

File : Dismiss Tab) to go back to the NFA editor.

2.1.2 Conversion Example

Now we will convert the NFA to a DFA (select Convert : Convert to DFA), showing the NFA

on the left and the first state of the DFA on the right. The initial state in the DFA is named q0

and has the label 0, meaning it represents the q0 state from the NFA.

Tip The NFA may be tiny. Adjust the size in one of two ways: either resize the window,

or drag the vertical bar between the NFA and the DFA to the right. In addition, the

states in the DFA can be dragged closer to each other, resulting in larger states.

We will now add the state that is reachable from q0 on the substring a. Select the Expand

Group on Terminal tool {}
?. Click and hold the mouse on state q0, drag the cursor to where you

want the next state, and release it. When prompted by Expand on what terminal?, enter “a”

and press return. When prompted by Which group of NFA states will that go to on a?, enter

the numbers of the states that are reachable from q0 on an a. In this case enter “0,1”. (These NFA

states could also be entered with a blank separator and with or without the q, such as “q0,q1”.)

The new state q1 appears in Figure 2.2.

Use the Attribute Editor tool you learned about in Chapter 1 to move states around if you

don’t like their placement.

Try expanding DFA state q0 on the terminal b. Since there are no paths from NFA state q0 on
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a
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0
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0,1

Figure 2.2: Expansion of state q0 on a.
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0,1
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1,2

Figure 2.3: Expansion of a and b from state q1.

a b, a warning message is displayed.

Next expand the DFA state q1 on the terminal a. Note that DFA state q1 represents both states

q0 and q1 from the NFA. In the NFA, state q0 on an a reaches states q0 and q1, and state q1 on an a

reaches no state. The union of these results (0, 1) are the states reachable by DFA state q1, which

happens to be the DFA state q1. Upon the completion of the expansion a transition loop labeled

a is added to DFA state q1. Now expand DFA state q1 on b. The result of these two expansions is

shown in Figure 2.3. Why is DFA state q2 a final state? If a DFA state represents any NFA state

that is a final state, then the substring processed is accepted on some path, and thus the DFA state

also must be a final state. NFA state q2 is a final state, so DFA state q2 (representing NFA states

q1 and q2) is a final state.

Expand DFA state q2 on a. This state is represented by NFA states q1 and q2. NFA state q1
does not have an a transition. NFA state q2 on an a reaches state q3 and due to the λ-transition

also reaches state q2.

Note In using the Expand Group Terminal tool, if the destination state already exists, then

drag to the existing state and you will be prompted only for the terminal to expand.

Thus, to add a loop transition, just click on the state.

Expand DFA state q2 on b by clicking on state q2. You are prompted for the b, but not the

states reachable, as that is interpreted as your selected state (itself in this case). The resulting

DFA is shown in Figure 2.4.

There is another way to expand a state—the State Expander tool
qi qj

qk . When one selects this

tool and clicks on a state, all arcs out of the state are automatically expanded. In Figure 2.5 state

q3 was selected and expanded on both a and b, resulting in a new state q4.

Is the DFA complete? Select the Done? button. If the DFA is not complete, a message

indicating items missing is displayed. At this time, one transition is missing.
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Figure 2.4: Expansion of a and b from state q2.
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Figure 2.5: State Expander tool applied to state q3.

a

a b

b b

a b

a
q0

0

q1

0,1

q2

1,2

q3

2,3

q4

1

Figure 2.6: The completed DFA.

Expand DFA state q4 on b by going back to the Expand Group on Terminal tool. Note that q4
on b goes to the existing DFA state q2. Click on state q4, drag to state q2, and release. You will be

prompted for the terminal only.

Is the DFA complete? Select the Done? button. The DFA is complete and is exported to a

new window. The complete DFA is shown in Figure 2.6. Alternatively, the Complete button can

be selected at any time during the construction process and the complete DFA will be shown.

The constructed DFA should be equivalent to the NFA. To test this, in the DFA window select

Test : Compare Equivalence. Select file ex2.1a, the name of the NFA, and then press return.

The two machines are equivalent.

2.1.3 Algorithm to Convert NFA M to DFA M ′

We describe the algorithm to convert an NFA M to a DFA M ′. We first define the closure of a set

of states to be those states unioned with all states reachable from these states on a λ-transition.
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1. The initial state in M ′ is the closure of the initial state from M .

2. For each state q′ in M ′ and each terminal x do the following:

(a) States q and r are states in M . For each state q that is in state q′, if q on an x reaches

state r on an x, then place state r in new state p′.

(b) p′ = closure(p′)

(c) If another state is equivalent to state p′ (represents the same states from M), then set

p′ to the state already existing.

(d) Add the transition to M ′: q′ to p′ on an x.

3. Each state q′ in M ′ is a final state if it contains a final state from M .

2.2 DFA to Minimal DFA

In this section we show how to convert a DFA to a minimal state DFA. Consider two states p and q

from a DFA, each processing a string starting from their state. If there is at least one string w such

that states p and q process this string and one accepts w and one rejects w, then these states are

distinguishable and cannot be combined. Otherwise, states p and q “act the same way,” meaning

that they are indistinguishable and can be combined.

2.2.1 Idea for the Conversion

Load the DFA in Figure 2.7 (file ex2.2a). We will refer to this example to explain the steps to

convert this DFA to a minimal state DFA.

We would like to examine pairs of states to see if they are distinguishable or not. To do this we

will need two separate windows for this DFA. JFLAP lets you open only one copy of each file, so if

you try to open the same file again, JFLAP will show just the one window. Instead we will make

a duplicate copy of this file by saving it with a different name (select File : Save as and type

the filename “ex2.2a-dup”). The current window is now associated with the duplicate file. Load

the original file ex2.2a again and it will appear in a separate window (possibly on top of the first

window). Move the two windows so you can see both of them.

We will examine the two states q0 and q1 to see if they are distinguishable. In one of the

windows, change the start state to q1. Examine the two DFA. Are there any strings that one DFA

accepts and the other DFA rejects?

We will examine several strings to see if there is any difference in acceptance and rejection. In

both DFA windows, select Input : Multiple Run. In both windows, enter the following strings

and any additional ones you’d like to try: “a”, “aab”, “aaaab”, “baa”, “baaa”, and “bba”. Select
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Figure 2.7: Example from file ex2.2a.

Run Inputs and examine the results. Do the strings have the same result in both DFAs? There

is at least one string in which the result is Accept for one DFA, and Reject in the other DFA.

Thus the two states q0 and q1 are distinguishable and cannot be combined.

Now we will examine the two states q2 and q5 to see if they are distinguishable. Dismiss the tab

in both windows to go back to the DFA window. In one window change the start state to q2, and

in the other window change the start state to q5. Select Input : Multiple Run again. Notice

that the strings from the last run still appear in the window. Select Run Inputs to try these

same strings. Type in additional strings and try them as well. Are these states distinguishable

or indistinguishable? They are distinguishable if there is one string that accepts in one and does

not accept in the other. All strings must be tested to determine if the states are indistinguishable.

Clearly it is impossible to test all strings, so a reasonable test set should be created.

2.2.2 Conversion Example

We go through an example of converting a DFA to a minimum state DFA. Remove the previous

windows (without saving them) and load the file ex2.2a again, which should have the start state

q0. Select Convert : Minimize DFA. The window splits into two showing the DFA on the left

and a tree of states on the right.
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Figure 2.8: Initial split of final and nonfinal states.

We assume that all states are indistinguishable to start with. The root of the tree contains all

states. Each time we determine a distinction between states, we split a node in the tree to show

this distinction. We continue to split nodes until there are no more splits possible. Each leaf in the

final tree represents a group of states that are indistinguishable.

The first step in distinguishing states is to note that a final and a nonfinal state are different.

The former accepts λ and the other does not. Thus the tree has already split the set of states into

two groups of nonfinal and final states as shown in Figure 2.8.

For additional splits, a terminal will be selected that distinguishes the states in the node. If

some of the states in a leaf node on that terminal go to states in one leaf node and other states on

that same terminal go to states that are in another leaf node, then the node should be split into

two groups of states (i.e., two new leaf nodes).

Let’s first examine the leaf node of the nonfinal states (0, 1, 2, 4, 5, 7). What happens for each

of these states if they process a b? State q0 on a b goes to state q2, state q1 on a b goes to state

q0, and so on. Each of these states on a b goes to a state already in this node. Thus, b does not

distinguish these states. In JFLAP, click on the tree node containing the nonfinal states. (Click on

the circle, not the label or the word Nonfinal.) The states in this node are highlighted in the DFA.

Try to split this node on the terminal b. Select Set Terminal and enter b. A message appears

informing you that b does not distinguish these states.

Again select Set Terminal and enter the terminal a. Since a does distinguish these states, the

node is split, resulting in two new leaf nodes. The set of states from the split node must be entered

into the new leaf nodes, into groups that are indistinguishable. A state number can be entered by

first selecting the leaf node it will be assigned to, and then clicking on the corresponding state in

the DFA. Click on the left leaf node and then click on state q0 in the DFA. The state number 0

should appear in the leaf node, as shown in Figure 2.9.

State q0 on an a goes to state q5, which is in the node we are splitting. Note that states q1, q4,

and q7 on an a also go to a state in the node we are splitting. Add all of them to the same new leaf
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Figure 2.9: Split node on a.
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Figure 2.10: Node (0, 1, 2, 4, 5, 7) split on a.

node as 0 by clicking on these states in the DFA. The remaining states, q2 and q5 on an a, go to a

final state, thus distinguishing them. Click on the right new leaf node, and then click on states q2
and q5 to enter them into this node, resulting in the tree shown in Figure 2.10. To see if we have

done this correctly, click on Check Node. Figure 2.10 shows the resulting tree after splitting this

node on a.

We must continually try to split nodes on terminals until there is no further splitting. Each

time we split a node, we have created new groups that might now allow another group to be split

that could not be split before.

Next we try to split the leaf node with states 0, 1, 4, and 7. Which terminal do you try? In this

case either a or b will cause a split. We will try a. Select Set Terminal and enter a. Enter the

split groups. State q0 on an a goes to state q5, which is in leaf node group 2, 5, and states q1, q4,
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Figure 2.11: The completed tree of distinguished states.
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Figure 2.12: The states for the minimum DFA.

and q7 on an a go to states in the leaf node we are splitting. Let’s enter these states a different way.

Select Auto Partition and the states will automatically be entered in as shown in Figure 2.11.

When the tree is complete (as it is now, convince yourself that none of the leaf nodes can be

further split), then the only option visible is Finish. Select Finish and the right side of the window

is replaced by the new states for the minimum DFA. There is one state for each leaf node from the

tree (note the labels on the states correspond to the states from the original DFA), as shown in

Figure 2.12. You may want to rearrange the states using the Attribute Editor.

Now add in the missing arcs in the new DFA using the Transition Creator tool. In the

original DFA there is an a from state q0 to state q5, so in the new DFA a transition is added

from state q1 (representing the old state q0) to state q2 (representing the old state q5). Selecting

Hint will add one transition for you and selecting Complete will complete the DFA, as shown in

Figure 2.13. Selecting Done? will export the new DFA to its own window.
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Figure 2.13: The minimum DFA.

The minimum state DFA should be equivalent to the original DFA. Test this using the Test :

Compare Equivalence option.

Note When you select a node and select Set Terminal, the node you select is split and two

children appear. It is possible that the node to be split might need more children; that

is, there may be 3 or more distinguished groups split on this terminal. In that case,

you must add the additional leaf nodes by selecting the Add Child option for each

additional child desired.

2.2.3 Algorithm

We describe the algorithm to convert a DFA M to a minimal state DFA M ′.

1. Create the tree of distinguished states as follows:

(a) The root of the tree contains all states from M

(b) If there are both final and nonfinal states in M , create two children of the root—one

containing all the nonfinal states from M and one containing all the final states from

M .

(c) For each leaf node N and terminal x, do the following until no node can be split:

i. If states in N on x go to states in k different leaf nodes, k > 1, then create k children

for nodeN and spread the states fromN into the k nodes in indistinguishable groups.

2. Create the new DFA as follows:

(a) Each leaf node in the tree represents a state in the DFA M ′ with a label equal to the

states from M in the node. The start state in M ′ is the state that contains the start

state from M in its label. A state in M ′ is a final state if it contains a final state from

M in its label.
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Figure 2.14: DFA from file ex2.3a.

(b) For each arc in M from states p to q, add an arc in M ′ from the state that has p in its

label to the state that has q in its label. Do not add any duplicate arcs.

2.3 Exercises

1. Convert the NFAs in the given files into DFAs.

(a) ex2-nfa2dfa-a

(b) ex2-nfa2dfa-b

(c) ex2-nfa2dfa-c

(d) ex2-nfa2dfa-d

(e) ex2-nfa2dfa-e

(f) ex2-nfa2dfa-f

2. Consider the language L = {w ∈ Σ∗ | w does not have the substring aabb}, Σ = {a, b}.

Load the DFA in file ex2.3a shown in Figure 2.14. This DFA recognizes L.

Also load the file ex2.3b. It is the NFA shown in Figure 2.15 that attempts to recognize L,

but fails.

Give an input string that shows why this NFA is not equivalent to this DFA.

3. Consider the DFA in file ex2-dfa2nfa. This DFA was converted from an NFA and the labels

show the states of the original NFA. That NFA did not have any λ-transitions. Create the

original NFA.
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Figure 2.15: NFA from file ex2.3b.

4. Convert the DFAs in the given files into minimal state DFAs.

(a) ex2-dfa2mindfa-a

(b) ex2-dfa2mindfa-b

(c) ex2-dfa2mindfa-c

(d) ex2-dfa2mindfa-d

(e) ex2-dfa2mindfa-e

5. Consider the DFA in file ex2.3c. Explain why it is not a minimal DFA.

6. Consider the DFA in file ex2-dfa2mindfa-test. States q2 and q8 are distinguishable. Make

a copy of this file and make q2 the start state in one and q8 the start state in the other.

Give five input strings that are accepted by both of these DFAs and one input string that

distinguishes the two DFAs, thus distinguishing states q2 and q8 in the original DFA. You can

confirm your answer by running the DFAs on the input strings.



Chapter 3

Regular Grammars

In this chapter we go beyond JFLAP’s handling of automata and look at regular grammars. Regular

grammars are equivalent in power to the FAs we have studied, and are another representation of

regular languages. We enter a right-linear grammar into JFLAP, and show how to parse strings on

that grammar and convert that grammar into an equivalent FA. We also show how to convert an

FA to a right-linear grammar.

3.1 Grammar Editing

Figure 3.1: The editor for a grammar where a right-linear grammar has been entered.

We shall now enter a right-linear grammar, a type of regular grammar. You may recall that in

a right-linear grammar all productions must have at most one variable in the right side, and this

variable must be to the right of any terminals. For example, if we consider uppercase letters as

variables and lowercase letters as terminals, A→ abcB, A→ λ, A→ B, and A→ def could all be

productions in a right-linear grammar. However, A→ Babc, A→ BC, and A→ abcBC could not

31
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be productions in a right-linear grammar.

Note There are two types of regular grammars: right-linear and left-linear. In a left-linear

grammar all productions must have at most one variable in the right side, and this

variable must be to the left of any terminals. JFLAP handles both of these types

in addition to many other classes of grammars, and does not restrict the user during

editing: it is up to the user to make sure that the grammar meets the restrictions of

the type of grammar they are attempting to enter.

Start JFLAP. When you are at the list of choices of structure for creating a new document,

choose Grammar. A window similar to that shown in Figure 3.1 will appear, though without any

productions entered.

There are some necessary notes specific to JFLAP’s representation of grammars:

• Symbols in the grammar are always represented as single characters.

• A symbol in the grammar is a variable if and only if it is an uppercase letter; otherwise it is a

terminal. For Example, JFLAP considers 4, q, and # terminals, and T , W , and F variables.

• When entering a grammar you do not enter the start variable explicitly. Rather, the start

variable is assumed to be the variable in the left side of the first production.

Consider the grammar of Figure 3.1 with this in mind. The set of variables is {S,A,B,C}, the

start variable is S, and the set of terminals is {a, b, q, v, x, y}. The last production A → λ is the

only λ-production in the grammar.

Now enter the grammar of Figure 3.1 into your window. Each row in the table corresponds to

a production, where you enter the left side of a production in the left cell and the right side of a

production in the right cell. Click on the left cell to select it and type “S”. Next, click on the right

cell to select it and type “aA”. You have now entered the production S → aA. Notice that the

table automatically extends itself: The table will grow when you edit the last row. On the next

row, enter the production S → bA. In addition to clicking on cells to select them, you may also use

the tab key: click on the left cell of this row and enter “S”, but instead of clicking on the right cell,

type the tab key twice to select the right cell and type “bA”. Press tab again; the left cell of the

next row will be selected, and you may enter another production! Continue entering productions

up to the seventh production, the B → y production.

On the last row you will enter the production A→ λ, a λ-production. To do this, enter A into

the left cell, but leave the right cell blank. The right field is really empty, but will display with a

λ to signify that it is a λ-production.

Note Entering grammars into JFLAP is the same whether you are entering regular grammars

(as we do in this chapter) or any other class of grammar.
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Figure 3.2: This shows the brute-force parser after a string has been entered and the derivation

table expanded.

3.2 Brute-Force Parser

As with finite automata, there are a number of actions that you can apply to a regular grammar.

Peruse the menus’ contents, but do not select any items. While the contents of the File and Help

menus remain the same, the Input and Convert menus have markedly different items! JFLAP

customizes the operators you may apply to a system based on its type. Obviously, Minimize DFA

cannot be applied to a grammar; by the same token, LL(1) Parse cannot be applied to an FA.

In this section, we shall use the Brute Force Parse operator on the right-linear grammar we

built in Section 3.1. In a nutshell, JFLAP’s parsers attempt to find a sequence of substitutions in

the grammar that derive a given string, called a sentence, from the start variable. The brute-force

parser is JFLAP’s most näıve parser and works merely by repeatedly replacing symbols starting

with the start variable until it just happens to stumble on the string the user entered. After deriving

the sentence from the start variable with the grammar, the parser allows the user to step through

replacements of variables by productions, showing the intermediate steps of the derivation. These

intermediate steps are called sentential forms and include variables as well as terminals, whereas

the final sentence and final step of the derivation contains only terminals.

If you do not have the grammar of Section 3.1 open in JFLAP, load the file ex3.1a. Choose
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Input : Brute Force Parse from the menu. You will see a view similar to that of Figure 3.2.

The top portion of the window contains controls and your interface with the parser. The bottom-

left portion displays the grammar. The bottom-right portion displays the grammar expansion to

whatever string you input.

JFLAP allows you to view the derivation of a string graphically and nongraphically. The graphic

view is the default, but we want the nongraphic view. Click the button Noninverted Tree, and

you will see a pop-up menu with another option, Derivation Table. Select Derivation Table.

The window will more closely resemble that shown in Figure 3.2.

Enter “bab” in the text field next to the Input label; this is the string you wish the parser to

attempt to generate with the grammar.

Press Return, or press the Start button near the top tool bar. The parser will attempt to parse

the string. After searching for a short time, the message String rejected will appear, to indicate

that JFLAP has concluded that it is impossible to generate bab with our grammar.

Now replace your previous input with “aqvx”, and again press Return (or again press Start).

This time, JFLAP will be able to successfully generate your input string aqvx with the grammar.

JFLAP will display the message String accepted below the Input field.

Since the parse was successful, we may view the derivation. In the bottom-right table you see

the first sentential form, S, in the “Derivation” column. To view successive sentential forms, press

the Step button. The first step will expand S by the production S → aA into aA. At the bottom

of the window it says Derived aA from S; the table the production used in the expansion is

shown in the Production column, and the resulting sentential form is shown in the Derivation

column. If you press Step again, the A will be expanded to B by A→ B so that aA becomes aB.

If you press Step again, the sentential form aB will be expanded by B → qvC to aqvC. Lastly,

pressing Step again will expand the sentential form aqvC by C → x to the sentence aqvx. The

derivation is now complete, as shown in Figure 3.2.

3.3 Convert a Right-Linear Grammar to an FA

This section describes JFLAP’s conversion of a right-linear grammar into an equivalent FA. The

grammar and the generated FA will recognize the same regular language.

The idea behind the conversion from a right-linear grammar to an FA is that variables in a

right-linear grammar can be functionally similar to states in an FA. As an example, consider again

the grammar from Figure 3.1, saved in the file ex3.1a, and consider again parsing the string aqvx

with that grammar as we did in Section 3.2. We started the derivation with the variable S, similar

to having a configuration in the initial state S with no input read. When we expand on the

production S → aA, it is similar to reading a and moving to state A. The next derivation step on

the production A → B is similar to moving from state A to state B without reading any input,
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Figure 3.3: The finished conversion of the grammar of Figure 3.1 to an FA.

i.e., a λ-production from state A to state B. The next derivation step on the B → qvC production

is similar in an FA to reading qv from the input and moving from state B to state C. Lastly, the

expansion on the C → x production is similar to reading x and moving into a final state, at which

point the derivation is complete since there are no more variables.

Put more generally, a production A → αB is rather like a transition in an FA from a state A

to a state B on the string α. A production A→ β is rather like a transition in an FA from a state

A to a final state on the string β.

Figure 3.3 shows the finished conversion of the right-linear grammar to an FA. Select the menu

item Convert : Convert Right-Linear Grammar to FA from the grammar in the file ex3.1a.

We now will go through the steps in the conversion of the right-linear grammar from Section 3.1

into an FA. Figure 3.3 shows the generated FA. Load the grammar from Section 3.1 if it is not

currently loaded, and select the menu item Convert : Convert Right-Linear Grammar to FA.

Your window should appear similar to Figure 3.3, with the grammar displayed to the left (but with

no boxes checked yet) and an automaton editor displayed to the right (but with no transitions).

Notice that every state except the final state is labeled with a single variable from the grammar; a

state labeled with A indicates that this state corresponds to the variable A in the grammar.

Your goal is to create the FA’s transitions. Each transition you create corresponds to a single
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production. The first production we will convert is S → aA: Create a transition from state S to

state A on the terminal a. When you create this transition, note that the box in the Created

column next to S → aA is now checked. Next we want to create the C → x production. This

production has no variables in the right side; any derivation on this production must be the final

derivation, so this is akin to moving to the final state in an FA. Create a transition on x from the

C state to the final state. The next production we will convert is A→ B. That production has no

terminals, so neither shall the transition: create a λ-transition from state A to state B. The next

production we will convert is B → qvC, with the two terminals qv. Create a transition on qv from

state B to state C.

To illustrate the converter’s error handling, attempt to enter a wrong transition: create a

transition on xyz from A to S. There is no production A→ xyzS, so this transition is not in the

FA. When you stop editing the transition a dialog box will appear to tell you that the transition is

not in the converted grammar.

Click on the Done button above the automaton editor. You are not done, and a dialog will

appear saying that 4 more transitions must be added. Next, examine the table in the left

portion of the window. Four of the eight productions should have their corresponding transitions

created in the automata. In the table, click on a row of a converted production to select it. Notice

that in the automaton editor the transition corresponding to that transition now appears highlighted

in red! Next, select the row for the production S → bA; its corresponding transition does not exist

yet. Once this row is selected, click the Create Selected button above the automaton editor. The

corresponding transition from S to A on b will appear. Three more transitions remain. Next, click

the Show All button above the automaton editor, and those three transitions will be created. The

Show All button will complete the conversion entirely.

Since you have finished the conversion, press the Export button. Your finished DFA will appear

in a new FA window.

Note If you want an FA with at most one symbol on each transition, you can modify the FA

after it has been exported. For each transition that has n symbols, add n − 1 states

between those two states and add a path of n transitions through these new states

such that each transition reads exactly one symbol. For example, in the example we

just converted, add one state q5 between q3 and q2, a transition on q from q3 to q5, a

transition on v from q5 to q2, and remove the transition qv.

3.3.1 Algorithm to Convert a Right-Linear Grammar to an FA

1. Start with a right-linear grammar G = (V, T, S, P ); V is the set of variables, T is the set of

terminals, S is the start variable, and P is the set of productions.
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2. Produce an FA M = (Q,Σ, δ, q0, F ) with |Q| = |V |+ 1, so there is one more state in M than

there are variables in G. The initial state is q0. Let Σ = T , and let F = {qf} so that qf is

the only final state. |δ| = |P |, so there are exactly as many transitions as productions (we

describe δ in step 4).

3. Suppose the existence of a bijective mapping σ : V → (Q − F ), where σ(S) = q0. That is,

(a) each variable corresponds to a unique nonfinal state in the FA so that for any variable A,

σ(A) = qA is the corresponding state in the FA, (b) the grammar’s start variable corresponds

to the FA’s initial state, and (c) no variable corresponds to the final state.

4. For each production p ∈ P :

(a) If p is of the form A→ αB, where A,B ∈ V and α is a possibly empty string of terminals,

add a transition to M from σ(A) to σ(B) on α.

(b) If p is of the form A → β, where A ∈ V and β is a possibly empty string of terminals,

add a transition to M from σ(A) to qf on β to δ.

3.4 Convert an FA to a Right-Linear Grammar

This section describes JFLAP’s converter to produce a right-linear grammar that generates the

same languages that a given FA recognizes.

The idea behind the conversion of an FA to a right-linear grammar follows nearly identical

logic to converting a right-linear grammar to an FA, as described at the beginning of Section 3.3.

The same analogy between states and variables, and transitions and productions, is made. The

converter first assigns to each state a variable, with the converter assigning the start variable S to

the initial state of the automata. In the former conversion, recall that a production A → xyzB

would result in a transition from state A to state B on xyz; in this new conversion, a transition

from state A to state B on xyz results in a production A→ xyzB.

The one caveat comes from the final state. In the previous conversion from a right-linear

grammar to an FA, unlike all other states the final state did not correspond to a variable in the

grammar. The final state was the destination for transitions resulting from productions with no

variable on the right side, that is, productions that imply the end of a string. However, a general

FA differs: It may have transitions from a final state to a different state. Being in the final state

does not necessarily mean that we have reached the end of the string. This means that in the

conversion to a grammar, a final state must correspond to a variable since further expansion of the

string is possible. On the other hand, a configuration in the final state could indicate that we have

reached the end of the string. Therefore, for every final state with a corresponding variable F , we

must include the production F → λ.
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3.4.1 Conversion

y

λ
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qv
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b

x

q2

q1 q0

q3

q4

Figure 3.4: The starting FA we are converting to a right-linear grammar.

Open the file ex3.4a, which holds the FA pictured in Figure 3.4. This FA was the result of the

example conversion described in Section 3.3. We are going to convert this FA back to a right-linear

grammar.

Choose the menu item Convert : Convert to Grammar. Your window will resemble Fig-

ure 3.5, though without any productions in the right portion of the window. Note the new labels

on the states in the left portion of the window: when you choose to convert to a grammar, each

state is assigned a unique variable, displayed in a label for the state.

The method for conversion is fairly simple. Each transition and each final state corresponds to

a production in the grammar. When you click on a transition or final state, its production will be

shown in the right portion of the window.

Try clicking on the transition on a from q1 to q0. Since the variable for state q1 is S and

the variable for q0 is A, the corresponding production displayed will be S → aA. Next, click the

λ-production from q0 to q3. The state q0’s variable is A and q3’s variable is C, and since λ represents

the empty string the corresponding production is A → C; C prefixed by the empty string is C,

after all.

Next click on the final state q4. As mentioned before, the production for a final state is a

λ-production on its variable, to indicate that the derivation of a string over this grammar could

end with this variable. The state q4’s variable is D, so the production will be D → λ.

Tip Select one of the productions in the table to the right. The corresponding transition,

or final state, for that production will be highlighted.

The Hint button near the top of the window will show a production for an item that has not

yet been added to the table. Click Hint. A production will be added to the grammar, and the FA
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Figure 3.5: The finished conversion of the FA of Figure 3.4 to a right-linear grammar.

transition, or final state, to which it corresponds will be highlighted in the left table.

To highlight all objects remaining in the automaton that have not yet had their production

created, click the What’s Left button. The grammar should now have four of the productions.

There are nine items in the FA to convert, so five items should be highlighted in the FA. To simply

create them all with no more fanfare, click the Show All button: all productions remaining will

be added to the grammar.

Now that you have finished the conversion, press the Export button. The right-linear grammar

produced by the conversion will appear in a new window.

3.4.2 Algorithm to Convert an FA to a Right-Linear Grammar

1. Start with an FA M = (Q,Σ, δ, qi, F ); Q is the set of states, Σ is the alphabet, δ describes

M ’s transitions, qi is the initial state, and F is the set of final states.

2. Produce a grammar G = (V, T, S, P ) with |V | = |Q| so there are as many variables in G as

states in M . Let T = Σ. Also, |P | = |δ| + |F |, so there are exactly as many productions as

transitions and final states (we populate P in step 4).
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3. Suppose the existence of a bijective mapping τ : Q → V , where τ(qi) = S. That is, (a)

each state corresponds to a unique variable in the grammar, and (b) the FA’s initial state

corresponds to the grammar’s start variable.

4. The set of productions P = Pt ∪ Pf , where:

(a) δ′ = {(qi, qj , α)} for all qi, qj ∈ Q, and all α ∈ Σ∗ for which there is a transition from qi

to qj on α; δ′ lists all transitions of M . Then, Pt = {(τ(qi) → ατ(qj)) | ∀ (qi, qj , α) ∈ δ′}.
Put another way, for every transition from qi to qj on α, for the variable A = τ(qi)

corresponding to qi and the variable B = τ(qj) corresponding to qj , add the production

A→ αB to the grammar.

(b) Pf = {(τ(qf ) → λ) | ∀ qf ∈ F}. Put another way, for every final state qf , for its corre-

sponding variable C = τ(qf ), add the production C → λ.

3.5 Definition of Regular Grammar in JFLAP

JFLAP defines a regular grammar G as a quadruple G = (V, T, S, P ) where

V is the finite set of variables, which JFLAP restricts to a subset of the uppercase alphabetic

letters;

T is the finite set of terminals where T ∩ V = ∅, which JFLAP restricts to a subset of all

characters that are not uppercase alphabetic letters;

S ∈ V is the start variable; and

P is the finite set of productions. P ⊂ {A→ T ∗B|A,B ∈ V } ∪ {A→ T ∗|A ∈ V } for a right-

linear grammar, or P ⊂ {A→ BT ∗|A,B ∈ V }∪{A→ T ∗|A ∈ V } for a left-linear grammar. P 6= ∅.
One does not explicitly set the start variable in JFLAP; rather, the left side of the first produc-

tion in the list of productions is assumed to be the start variable.

3.6 Summary

In Section 3.1 we learned that users enter grammars into JFLAP via a table. The left column

of the table holds the left sides of productions, and the right column holds the right sides of

productions. Each character corresponds to a single symbol in the grammar. JFLAP considers

uppercase alphabetic characters as variables and all other characters as terminals.

A user may use one of JFLAP’s parsers to detect whether and determine how a grammar derives

a particular string. Section 3.2 taught how to use JFLAP’s brute-force parser. The brute-force

parser is JFLAP’s most näıve parser; it works by exhaustively replacing symbols until it stumbles

upon the string you are attempting to derive, or until it decides such a derivation is impossible.
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In Section 3.3 we explored a converter of JFLAP’s that produces an FA equivalent to a given

right-linear grammar. The basic idea is that in a right-linear grammar, variables are functionally

similar to states and productions are functionally similar to transitions. The user edits the FA

by adding transitions to the FA that correspond to the productions in the grammar, until all

productions have a corresponding transition.

In Section 3.4 we learned about JFLAP’s converter that produces a right-linear grammar equiv-

alent to a given FA. Similar to the previous converter, this converter works on the principle that

states and variables, and transitions and productions, are functionally similar. However, because

of the possibility in an FA of the existence of transitions from a final state in addition to possibly

seeing the end of a string, we also produce λ-productions for each final state.

Section 3.5 presented JFLAP’s formal definition of a regular grammar.

3.7 Exercises

1. Load the regular grammars in the given files. For each grammar list five strings they accept,

five strings they do not accept, and give a description in words of the language they represent.

(a) ex3.reggrm-a

(b) ex3.reggrm-b

(c) ex3.reggrm-c

(d) ex3.reggrm-d

(e) ex3.reggrm-e

(f) ex3.reggrm-f

2. Create right-linear grammars that generate the following languages. Hint: Test input strings

that should be accepted and rejected.

(a) Σ = {a, b}. The language is strings with an even number of a’s that have exactly one b.

For example, accepted strings include aba, b, aaaabaa, and aaaba, and rejected strings

include abab and aaab.

(b) Σ = {a, b}. The language is strings with an even number of a’s followed by three or

fewer b’s. For example, accepted strings include aab, bbb, aaaabb, and aaaa, and rejected

strings include aabbbb and aabaab.

(c) Σ = {a, b}. The language is strings in which each b cannot be adjacent to another b. For

example, accepted strings include aba, b, aabaaabaa, and baaaba, and rejected strings

include aaabba and babb.
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(d) Σ = {a, b}. The language is strings in which the number of a’s is a multiple of three.

For example, accepted strings include ababa, bb, aaa, and aababb, and rejected strings

include aababa and aaaaba.

(e) Σ = {a, b}. The language is strings in which every a must have a b adjacent to it on

both sides. For example, accepted strings include bababab, bab, bbab, and babbbabb, and

rejected strings include abab and baab.

(f) Σ = {a, b}. The language is strings in which every other a starting with the first a

must immediately be followed by a b. For example, accepted strings include babaab, bab,

abaabbabab, and abbaab, and rejected strings include ababa and aab.

3. The collegiate parasite Carl S. Student wants his parents to buy him a car. His father produces

a “transcript string” of all the grades Carl has ever received in his entire life, an arbitrarily

long single string made up of symbols from Σ = {a, b, c, d, f} in no particular order. An a is

a high grade and an f is failure. His father produces a simple criterion: if Carl received fewer

than four d grades, he shall get a car, otherwise he shall not. An f grade counts as a single

d grade.

His father asks you to design a right-linear grammar where the grammar generates the tran-

script string if and only if Carl gets the car. Hint: You can check if a right-linear grammar

generates a string with the brute-force parser, or by converting the grammar to an FA and

checking if the FA accepts the string.

(a) Design a right-linear grammar to the above specifications.

(b) Carl’s initial reaction to this was to provide a succinct, heartfelt plea for his father to

adopt less draconian methods, indirectly appealing to notion that the alienating presence

of the generational gap between father and son may have led to the father to be unduly

harsh. Specifically: “Mellow out, old dude.” The father then decides to make an f grade

count as two d’s. Adopt the grammar accordingly.

(c) With slightly more tact, Carl was able to successfully argue with his father that an a

grade should mitigate a d grade. Why can’t this language be expressed with a right-linear

grammar?

4. Consider the grammars in the given files. Determine if the grammar is regular. If it is not

regular, convert it to a regular grammar that represents the same language. Hint: Test input

strings that should be accepted and rejected in both grammars.

(a) ex3.isregular-a

(b) ex3.isregular-b
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(c) ex3.isregular-c

(d) ex3.isregular-d

(e) ex3.isregular-e

5. Convert the following right-linear grammars to FAs. The last three have productions with

multiple terminals.

(a) ex3.rg2fa-a

(b) ex3.rg2fa-b

(c) ex3.rg2fa-c

(d) ex3.rg2fa-d

(e) ex3.rg2fa-e

(f) ex3.rg2fa-f

6. Convert the following FAs to regular grammars. The last two have transitions with multiple

terminals.

(a) ex3.fa2rg-a

(b) ex3.fa2rg-b

(c) ex3.fa2rg-c

(d) ex3.fa2rg-d

(e) ex3.fa2rg-e

(f) ex3.fa2rg-f

(g) ex3.fa2rg-g

7. Consider the simple right-linear grammar in the file ex3.6a.

(a) Use the brute-force parser to parse the string aaaaaa on the grammar. There are many

ways to generate this string, with various combinations of expansions on the productions

S → aS and S → aaS. What do you notice about the productions used in the derivation?

Repeat the experiment with aaaaaaaaaa (ten a’s). Do you notice the same phenomenon?

(b) We now want to count the number of ways to generate some of these strings; the brute-

force parser will find only one, but we convert the grammar to an equivalent FA and use

the fast simulator. Convert the right-linear grammar to an FA. Let a` be the string of

a’s of length `. Run the fast simulator described in Section 1.2.2 on the strings a0 = λ,

a1 = a, etc., through a6 = aaaaaa, and count the number of ways the fast simulator
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finds to accept each of these strings. Remember, you can keep pressing Keep Looking

until the final summary message appears saying how many accepting configurations it

found.

(c) Let An be the number of ways the FA can accept (equivalently, that the grammar can

generate) the string an. We have A0, A1, . . . , A6. Present a recursive formula for An,

that is, determine a formula for An in terms of values of Ai, where i < n. Hint: Use

a counting argument. If we use the production S → aaS, how many ways are there to

generate the rest of the string without the aa?

(d) Load the right-linear grammar in the file ex3.6b. Let Bn be the number of ways to

generate an with this new grammar. Using your knowledge in determining a recursive

formula for An, determine a recursive formula for Bn. Hint: If you convert this to an

FA, the number of accepting configurations during simulation of an is the same as the

number of ways to generate an. For various an, do a fast simulation as described in

Section 1.2.2 to count accepting configurations. You can manually find specific Bn this

way until you see the pattern.

8. Consider the conversion of a right-linear grammar to an FA. Sometimes the conversion of a

right-linear grammar will result in a DFA, and sometimes it will result in an NFA, depending

on the structure of the grammar. In this problem we explore theoretical properties of JFLAP’s

converter of right-linear grammars to FAs.

(a) In Chapter 1 we explored a DFA that accepted the language over Σ = {a, b} of any

number of a’s followed by any odd number of b’s. Can you create a right-linear grammar

that generates this language and converts directly to a DFA? If you can, create the

grammar with JFLAP and convert it to a DFA.

(b) Consider a second language, the language over Σ = {a, b, c} of any number of a’s followed

by any odd number of b’s, and finally suffixed with a single c. Can you create a right-

linear grammar that generates this language and converts directly to a DFA? If you can,

create the grammar with JFLAP and convert it to a DFA.

(c) What is the general characteristic of a language for which one may construct a right-

linear grammar that converts directly to a DFA? Hint: The string aabbb is in the first

language. Does any other string in that language start with aabbb? The string aabbbc is

in the second language. Does any other string in the language start with aabbbc?



Chapter 4

Regular Expressions

In this chapter we introduce a third type of representation of regular languages: regular expressions

(REs). We describe how to edit REs, convert an RE to an equivalent NFA, and convert an FA to

an equivalent RE, and then give JFLAP’s formal definition of an RE.

4.1 Regular Expression Editing

Figure 4.1: The editor for REs where the RE (q+a)+b∗+cd has been entered.

In this section we learn how to edit REs. Start JFLAP; if it is already running, choose to create

a new structure via the menu item File : New. Select Regular Expression from the list of new

structure choices. A window will appear that is similar to Figure 4.1. Since an RE is essentially a

string, JFLAP’s RE editor consists of a small text field in the middle of the window.

JFLAP’s REs use three basic operators. To clarify, these are not operators in the JFLAP sense,

but rather the mathematical sense (e.g., pluses and minuses). The three operators in order of

decreasing precedence are: the Kleene star (represented by the asterisk character *), the concate-

nation operator (implicit by making two expressions adjacent), and the union operator (also called

the “or” operator, represented by the plus sign +). You may use parentheses to specify the order

45
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of operations. Lastly, the exclamation point (!) designates the empty string, and is an easy way

to enter λ.

A few examples of REs will help clarify JFLAP’s operators’ precedence. The expression a+b+cd

describes the language {a, b, cd}, whereas abcd describes the singleton language {abcd}. The expres-

sion a(b+c)d describes the language {abd, acd}, whereas ab+cd describes the language {ab, cd}. The

expression abc∗describes the language {ab, abc, abcc, abccc, . . .}, whereas(abc)∗describes the language

{λ, abc, abcabc, abcabcabc, . . .}. The expression a+b∗describes the language {a, λ, b, bb, bbb, . . .}, while

(a+b)∗ describes the language {λ, a, b, aa, ab, ba, bb, aaa, aab, . . .}. The expression (!+a)bc describes

the language {bc, abc}; recall that ! is the user’s way of entering λ.

In this chapter we restrict ourselves to languages over lowercase letters, but JFLAP allows any

character except *, +, (, ), or ! as part of an RE’s language. Specifically, beware that the space

key is a perfectly legal character for a language. For example, a ∗ where a space follows the a (so

a is followed by any number of spaces) is distinct from a∗ (any number of a’s). Note that none of

the regular expressions in this chapter or its exercises have spaces in them, so do not type them in.

We are going to enter the RE (q+a)+b∗+cd, a very simple RE that indicates that we want a

string consisting of either q or a, or of any number of b’s, or the string cd. Type this RE into the

text field.

4.2 Convert a Regular Expression to an NFA

Since REs are equivalent in power to FAs, we may convert between the two. In this section we will

illustrate the conversion of an RE to an NFA. For this example we use the RE defined in Figure 4.1,

the expression(q+a)+b∗+cd, also stored in file ex4.1a. In the window with the RE, select the menu

item Convert : Convert to NFA to start the converter.

(q+a)+b*+cd
q0 q1

Figure 4.2: The starting GTG in the conversion.

For the purpose of the converter, we use a generalized transition graph (GTG), an extension of

the NFA that allows expression transitions, transitions that contain REs. In a GTG, a configuration

may proceed on a transition on a regular expression R if its unread input starts with a string s ∈ R;

this configuration leads to another configuration with the input s read. We start with a GTG of

two states, and a single expression transition with our regular expression from the initial to the

final state. The idea of the converter is that we replace each transition with new states connected

by transitions on the operands of that expression’s top-level operator. (Intuitively, the top-level
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operator is the operator in an expression that must be evaluated last. For example, in ab+c, the

top-level operator is + since the concatenation operator has higher priority and will be evaluated

before the +.) We then connect these operands with λ-transitions to duplicate the functionality

of the lost operator. In this way, at each step we maintain a GTG equivalent to the original RE.

Eventually all operators are removed and we are left with single character and λ-transitions, at

which point the GTG can be considered a proper NFA.

Tip You may use the Attribute Editor tool at any point to move states around. In addition

to moving states manually, with this tool the automatic graph layout algorithm may be

applied, as described in Section 1.1.5.

4.2.1 “De-oring” an Expression Transition

(q+a)

b*

cd

q0
q1

q7

q3

q5

q6

q4

q2

Figure 4.3: The GTG after “de-expressionifying” the first transition, but before we add the sup-

porting λ-transitions.

To start converting, select the De-expressionify Transition tool ba

a+b

. With this tool active, click

on the (q+a)+b∗+cd transition. The GTG will be reformed as shown in Figure 4.3. Note that the

transition has been broken up according to the top-level + union operator, and that the operands

that were being “ored” have now received their own transitions. The De-expressionify Transition

tool ba

a+b

determines the top-level operator for an expression, and then puts the operands of that

operator into new expression transitions.

Note the labels near the top of the converter view: De-oring (q+a)+b*+cd, and 6 more

λ-transitions needed. These labels give an idea of what you must do next.

In this case, you must produce six λ-transitions so that these new six states (q2 through q7) and

their associated transitions act like the + union operator that we have lost. To add these transitions,

select the Transition Creator tool a . To approximate the union functionality, you must add six

λ-transitions, three from q0 to q2, q4, and q6, and three more to q1 from q3, q5, and q7. Intuitively,

in going from q0 to q1, a simulation may take the path through the (q+a) expression transition or
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Figure 4.4: The converter window in the midst of “de-oring” the first transition. All the λ-

transitions for this de-oring have been added, except the transition from q7 to q1.

the b∗ expression transition or the cd expression transition. In short, these λ-transitions help to

approximate the functionality of the lost + operator on these operands. Use the Transition Creator

tool a to create these. All transitions are λ-transitions, so JFLAP does not bother asking for

labels. As you add transitions, the label at the top of the window decrements the number of

transitions needed. Figure 4.4 shows an intermediate point in adding these transitions, with only

the transition from q7 to q1 not created. When you finish adding these transitions to the GTG,

JFLAP allows you to “de-expressionify” another transition.
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λ
λ

λ

c

λ

d

λ

λ

(q+a )

b*
q0

q1

q10

q7

q3

q5

q6

q4

q2

q11

q9q8

Figure 4.5: The beginning of de-concatenating the expression transition cd. States and transitions

extraneous to the de-concatenating are cropped out.

4.2.2 “De-concatenating” an Expression Transition

Once you finish “de-oring” the first transition, you have three expression transitions. We will

reduce cd next; the top-level operator for this expression is the concatenation operator. Select

the De-expressionify Transition tool ba

a+b

once more, and click on the cd transition. In Figure 4.5

you see the result. Note that JFLAP informs us that we are De-concatenating cd and that we

have 3 more λ-transitions needed; similar to de-oring, de-concatenating requires the addition

of λ-transitions to approximate the lost concatenation operator.

We require three λ-transitions: one from q6 to q8, another from q9 to q10, and a last one from

q11 to q7. Configurations on q6 will have to satisfy the c expression (between q8 and q9), and

then satisfy the d expression (between q10 and q11) before proceeding to q7. This arrangement is

functionally equivalent to c concatenated with d.

A remedy of errors

Select the Transition Creator tool a . Instead of adding the right transitions, let’s add an incorrect

transition! Create a transition from q6 to q10. With this transition, the configuration can proceed

from q6 to the d portion, bypassing c. This is incorrect. A dialog box will report A transition

there is invalid, and the transition will not be added.

Although checking for wrong transitions is universal to the converter no matter what operator

you are splitting on, the de-concatenating process has some additional restrictions. Add a transition

from q11 to q7. This is perfectly valid! However, JFLAP reports in a dialog, That may be

correct, but the transitions must be connected in order. In this case, this means you must

first connect q6 to q8, and then q9 to q10, and only then may you connect q11 to q7. Add these

transitions now.

The relevant portion of the automaton will resemble Figure 4.6. Since you have finished the de-

concatenation of cd, you may now reduce another expression transition. Select the De-expressionify

Transition tool ba

a+b

again. Recall that the converter recursively breaks down expression transitions

until they are either one character or λ-transitions. If you click on the c transition, the message
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b*

λ

(q+a )

c

λ

λ

λ

d
λ

λ

λ

λ
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q0
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Figure 4.6: The finished de-concatenating of the expression transition cd.

That’s as good as it gets appears to inform you that you needn’t reduce that transition.

4.2.3 “De-staring” a Transition

λ

λ
λ

λ
d

λ

(q+a )

λ
c

λ

λ

b

λ
q0

q13

q1

q10

q7

q3

q5

q6

q4

q2

q11

q12

q9q8
Figure 4.7: The beginning of de-staring the expression transition b∗. States and transitions extra-

neous to the de-staring are cropped out.

We will reduce the b∗ transition next. With the De-expressionify Transition tool ba

a+b

active, click

the b∗ transition. Kleene stars may have only one operand, in this case b. As we see in Figure 4.7, the

b has been separated into a new portion of the automaton. JFLAP tells us that we are De-staring

b* and that there are 4 more λ-transitions needed.

Similar to concatenations and ors, we must add λ-transitions to duplicate the functionality of

the Kleene star. The four transitions that JFLAP wants are from q4 to q12 and q13 to q5 (to allow

configurations to read a b from their input), and another from q4 to q5 (to allow zero b’s to be

read), and the last from q5 to q4 (to allow for repeat reading of b). Select the Transition Creator

tool a , and add these transitions so the relevant portion of the GTG resembles Figure 4.8.

b
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q10
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q6

q4

q2

q11

q12

q9q8
Figure 4.8: The finished de-staring of the expression transition b∗.
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4.2.4 Surrounding Parentheses

The only remaining existing transition incompatible with an NFA is the (q+a) transition, which has

surrounding parentheses. The parentheses are the top-level operator since they indicate that their

contents must be evaluated first, and only when that evaluation finishes do the parentheses finish

evaluating. However, when the parentheses surround the entire expression, they are completely

unnecessary. Activate the De-expressionify Transition tool ba

a+b

, and click on the (q+a) transition.

The surrounding parentheses will disappear, leaving you with q+a. No λ-transitions are needed.

λ

q

λ
λ

λ
λ

λ

λ

λ

c

λ

λ

d

b
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Figure 4.9: The finished de-oring of the expression transition q+a.
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Figure 4.10: The NFA that recognizes the language (q+a)+b∗+cd.

To finish, use the De-expressionify Transition tool ba

a+b

tool once more to break q+a by the +

operator. Connect λ-transitions similar to the procedure described in Section 4.2.1, so that the

relevant section of the GTG resembles Figure 4.9, and overall the automaton resembles Figure 4.10.

The GTG is now a proper NFA, so the conversion to an NFA is finished! You may press the Export

button to put the automaton in a new window.
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4.2.5 Automatic Conversion

Dismiss the Convert RE to NFA tab now. Once you have returned to the RE editor, select the

menu item Convert : Convert to NFA. We shall convert the same RE again, but we’ll do it

automatically this time!

Once you see the converter view with the GTG as pictured in Figure 4.2, press Do Step. A step

in this conversion is the reduction of a single expression transition. There is only one expression

transition, the (q+a)+b∗+cd transition, so that is reduced and the requisite λ-transitions are added

without intervention from the user.

The second option is Do All; this is functionally equivalent to pressing Do Step until the

conversion finishes. This is useful if you want the equivalent NFA immediately. Press Do All; the

finished NFA will appear in the window, ready to be exported.

4.2.6 Algorithm to Convert an RE to an NFA

1. Start with an RE R.

2. Create a GTG G with a single initial state q0, single final state q1, and a single transition

from q0 to q1 on the expression R.

3. Although there exists some transition t ∈ G from states qi to qj on the expression S longer

than one character, let φ be the top-level operator of the expression S, and let [α1, α2, . . . , αψ]

be the ordered list of operands of the operator φ (since parenthetical and Kleene star operators

take exactly one operand ψ = 1 in those cases).

(a) If φ is a parenthetical operator, replace t with an expression transition on α1 from qi to

qj .

(b) If φ is a Kleene star operator (*), create two new states qx and qy for G, remove t, and

create an expression transition on α1 from qx to qy, and create four λ-transitions from

qi to qx, qy to qj , qi to qj , and qj to qi.

(c) If φ is a union operator (+), remove t, and for each k from 1 through ψ (i) create two

new states qxk and qyk , (ii) create an expression transition on αk from qxk to qyk , and

(iii) create two λ-transitions, from qi to qxk and from qyk to qj .

(d) If φ is a concatenation operator, remove t, and for each k from 1 through ψ (i) create two

new states qxk and qyk , (ii) create an expression transition on αk from qxk to qyk , and

(iii) if k > 1 create a λ-transition from qyk−1
to qxk . Finally, create two λ-transitions,

one from qi to qx1 and another from qyψ to qj .

4. The GTG is now a proper NFA. The conversion is finished.
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4.3 Convert an FA to a Regular Expression

The conversion of an FA to an RE follows logic that is in some respects reminiscent of the RE to

NFA conversion described in Section 4.2. We start with an FA that we consider a GTG for the

purposes of conversion. We then remove states successively, generating equivalent GTGs until only

a single initial and single final state remain. JFLAP then uses a formula to express the simplified

GTG as a regular expression.

ca

e

b
a

b

d

cq1
q2

q0

Figure 4.11: The FA we convert to an RE.

In this walk-through we convert the automata pictured in Figure 4.11 to a regular expression.

This automata is stored in the file ex4.3a. Open this automata. Choose the menu item Convert

: Convert FA to RE to begin converting. Your window will resemble Figure 4.12.

4.3.1 Reforming the FA to a GTG

The algorithm to convert an FA to an RE requires first that the FA be reformed into a GTG with

a single final state, an initial state that is not a final state, and exactly one transition from qi to qj
for every pair of states qi and qj (i may equal j).

Reform FA to have a single noninitial final state

There are two things wrong with our FA’s final states: there are two final states, and one of them

is also the initial state. We must reform the automaton so that it has exactly one final state and

ensure that that final state is not the initial state. To do this JFLAP first requires that a new state

be created: select the State Creator tool qi , and click somewhere on the canvas to create a new

state. (Similar to the conversion from an RE to an NFA, this converter also displays directions

above the editor. At this stage it tells you Create a new state to make a single final state.)
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Figure 4.12: The starting window when converting an FA to an RE.

Once this new state is created, the FA will resemble Figure 4.13. Note that this new state is the

final state, and those states that were previously final states are now regular states and have been

highlighted. JFLAP directs you to put λ-transitions from old final states to new. Select

the Transition Creator tool a and create transitions from each of the highlighted states to the

new final states. JFLAP assumes that every transition is a λ-transition and does not query for the

transition label. As you create each λ-transition, the source state will be de-highlighted. When

you finish, your FA will resemble Figure 4.14.

Collapse multiple transitions

One of the requirements of this algorithm is that for every pair of states qi and qj there must be

exactly one transition from qi to qj . Half of this requirement is that there cannot be more than
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b
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c

cb

a

a

e

q0

q1

q2

q3

Put !-transitions from old final states to new.
Make Single Noninitial Final State

Figure 4.13: The FA after a new final state is created.

a

ba

!

b

!

d

c

c

e

q0

q1

q2

q3

Use the collapse tool to turn multiple transitio...

Reform Transitions

Figure 4.14: The FA after the λ-transitions have been made from the old final states to the new

final state.

one transition from qi to qj . Consider the two loop transitions for q1 on d and e. We can satisfy

the requirement by replacing these two transitions with the single expression transition d+e, which

indicates that we may proceed on either d or e.

Select the Transition Collapser tool , and click on either the d or e. When you click on

a transition that goes from qi to qj , this tool reforms all transitions from qi to qj into a single
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c

!

a

b

!

a

b

d+e

c

q0

q1

q2

q3

Put empty transitions between states with no tr...

Reform Transitions

Figure 4.15: The GTG after the d and e loop transitions on q1 are combined into d+e.

transition where the labels of the removed transitions are separated by + operators. The new

transition will be either d+e or e+d, either of these is equivalent, of course, but for the sake of

this discussion’s simplicity we assume the result was d+e. With this step, our GTG is no longer a

proper FA. The GTG is shown in Figure 4.15.

In general, if more than one pair of states have more than one transition, use the Transition

Collapser tool on their transitions as well.

Add empty transitions

Recall once more that every pair of states qi and qj must have exactly one transition from qi to

qj . This means that if no transition exists, an empty transition (on the empty set symbol ∅) must

be created! Select the Transition Creator tool a again, and create a transition from q0 to q2. A

transition on ∅ will appear.

The essential distinction between GTGs and FAs is that FA transitions describe a single string,

while GTG transitions describes sets of strings. In this particular case, we are creating transitions

on the empty set of strings, hence transitions on ∅. Similar to the earlier creation of λ-transitions,

JFLAP assumes you are creating empty transitions. As you proceed, JFLAP will inform you how

many more empty transitions are required. Seven are required in all: from q0 to q2, q1 to q3, q2 to

q0, q3 to q0, q3 to q1, q3 to q2, and a loop transition on q3 (q3 to q3). When you finish, your GTG

will resemble Figure 4.16.
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d+e
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Use the collapse state tool to remove nonfinal, ...

Remove States

Figure 4.16: The FA after the addition of empty transitions.

4.3.2 Collapse Nonfinal, Noninitial States

Now we have a GTG with a single final state, an initial state that is not a final state, and for every

pair of states qi and qj there is exactly one transition from qi to qj . The next step is to iteratively

remove every state in the GTG except the final state and the initial state. As each state is removed,

we adjust the transitions remaining to ensure the GTG after the state removal is equivalent to the

GTG before the state removal.

Figure 4.17: The window that shows the replacement transitions when removing a state.
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The states can be collapsed in any order. However, to understand the following discussion, you

will need to collapse states in the given order. Select the State Collapser tool
qi qi

qk qk

qj . Once selected,

click first on state q2. A window like the one shown in Figure 4.17 appears that informs you of the

new labels for transitions before the collapse occurs. Let rij be the expression of the transition from

qi to qj . The rule is, if we are removing qk, for all states qi and qj so that i 6= k and j 6= k, rij is

replaced with rij +rikr
∗
kkrkj . In other words, we compensate for the removal of qk by encapsulating

in the walk from qi to qj the effect of going from qi to qk (hence rik), then looping on qk as much

as we please (hence r∗kk), and then proceeding from qk to qj (hence rkj). Lastly, note that ∅ obeys

the following relations: if r is any regular expression, r + ∅ = r, r∅ = ∅, and ∅∗ = λ.

Select the row that describes the new transition from q1 to q1 (the loop transition on q1),

d+e+ca∗c. The transitions from which this new transition is composed are highlighted in the GTG.

There are two paths that must be combined into one expression transition, the walk from q1 to q1,

d+e, and the alternative walk from q1 to q1 that goes through q2, ca∗c. More formally, r1,1 = d+e,

r1,2 = r2,1 = c, and r2,2 = a, so the new transition is r1,1 + r1,2r
∗
2,2r2,1 = d+e+ca∗c as JFLAP

indicates.

The rules for operations on the empty set are more unfamiliar. Select the row that describes

the new transition from q0 to q1. There are two paths that must be combined into one expression

transition, the walk from q0 to q0, b, and the alternative walk from q0 to q1 that goes through

q2, ∅a∗c. More formally, r0,1 = b, r0,2 = ∅, r2,2 = a, and r2,1 = c, so the new transition is

r0,1 + r0,2r
∗
2,2r2,1 = b+∅a∗c. The concatentation of any expression with the empty set is the empty

set, so ∅a∗c = ∅, so b+∅a∗c = b+∅. The union of the empty set with any expression is that expression,

so b+∅ = b, which is the new expression from q0 to q1.

a+b(d+e+ca*c)*b

!+b(d+e+ca*c)*ca*

ø

ø

q0

q3

(a+b(d+e+ca*c)*b)*(!+b(d+e+ca*c)*ca*)

Generalized Transition Graph Finished!

Figure 4.18: The finished GTG after the removal of q2 and q1.

Inspect all the other replacements to see if you can figure out the formula, and then reduce it to

the label shown in Figure 4.17. Then click Finalize. The transitions listed will be replaced, and q2
will be removed. Repeat this process with q1. Note there are only four replacements, and some of

the labels are quite long. (You might have to resize the window to see the complete labels.) When

q1 is removed, your GTG will resemble Figure 4.18.
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4.3.3 Regular Expression Formula

At this point your GTG should have two states—one final and one initial—and resemble Figure 4.18.

Let rxy be the expression of the transition from qx to qy. For a GTG in this form, where qi is the

initial state and qj is the final state, the equivalent RE r is given by equation 4.1.

r =
(
r∗iirijr

∗
jjrji

)∗
r∗iirijr

∗
jj (4.1)

The conversion is now finished, and JFLAP displays the RE of equation 4.2, derived from

equation 4.1.

(a+b (d+e+ca∗c)∗b)∗(λ+b (d+e+ca∗c)∗ca∗) (4.2)

At this point, you may press Export to put the finished RE in a new window.

Note If for your input FA any of these steps are unnecessary, JFLAP will skip over them. In

the extreme case, if you have an FA with two states (one initial, the other final), and

with four transitions (a loop on the initial, a loop on the final, another from the initial

to final, and a last one from the final to the initial), JFLAP will skip everything and

display the finished RE!

4.3.4 Algorithm to Convert an FA to an RE

1. Start with an FA, though we consider it a GTG G for the purpose of the algorithm.

2. Let F be the set of G’s final states, and q0 be its initial state. If |F | > 1 or F = {q0}, create

a new state qf , produce λ-transitions for every qi ∈ F from qi to qf , and make qf the only

final state.

3. Let S be the set of G’s states. For every (qi, qj) ∈ S × S, let L = {`1, `2, . . . , `n} be the set

of expressions of transitions from qi to qj . Let e = ∅ if |L| = 0 and e = `1 + `2 + · · · + `n

otherwise, and replace all transitions from qi to qj with a single transition from qi to qj on

the expression e.

4. Let T be the set of G’s nonfinal, noninitial states. Let rxy be the expression of the transition

from qx to qy. For every qk ∈ T , for every (qi, qj) ∈ (T − {qk})× (T − {qk}) replace rij with

rij + rikr
∗
kkrkj , and finally remove qk from G. (Note: If r is any regular expression, r+ ∅ = r,

r∅ = ∅, and ∅∗ = λ.)

5. G now has two states: the initial state q0 and single final state qf . The equivalent regular

expression is r =
(
r∗00r0fr

∗
ffrf0

)∗
r∗00r0fr

∗
ff .
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4.4 Definition of an RE in JFLAP

Let Σ be some alphabet. The set of all possible regular expressions is given by R.

R = {∅, λ} ∪ Σ ∪ {ab|a, b ∈ R} ∪ {a+b|a, b ∈ R} ∪ {a∗|a ∈ R} ∪ {(a)|a ∈ R}

4.5 Summary

In Section 4.1 we learned how to edit regular expressions (REs). JFLAP respects the following

operators in order of decreasing precedence: the Kleene star (the * character), concatenation

(implicit by making two expressions adjacent), and lastly, union (the + character). Parentheses

may be used to specify the order of operations. The character ! is used to enter the empty string.

All other characters may be used as alphabet symbols, including spaces.

In Section 4.2 we learned how to use JFLAP to convert an RE to an NFA. We use the idea of

a generalized transition graph (GTG), which is essentially an FA that allows regular expressions

in transitions (called expression transitions). The converter starts with a two-state GTG, with a

transition on the starting regular expression from the initial to final state. While there are expres-

sion transitions, JFLAP will break the transition into subcomponents that contain the operands of

the top-level operator of the expression; the user is responsible for connecting the subcomponents

with λ-transitions to duplicate the lost functionality of the operator. The converter finishes when

all transitions are single-character or λ-transitions.

In Section 4.3 we learned how to use JFLAP to convert an FA to an RE. We start by considering

the FA as a GTG, and reforming the GTG so it has a single final state and a nonfinal initial state,

and so that for any two states in the GTG there is exactly one transition from the first state to

the second state. We then successively remove all states but the final and initial state; with each

removal JFLAP adjusts the remaining transitions to duplicate the functionality of the lost state

and its transitions so that each GTG is equivalent to the original FA. Eventually, only the initial

and final states remain, to which JFLAP applies a known formula to derive the final RE equivalent

to the FA.

In Section 4.4 we presented JFLAP’s formal definition of an RE.

4.6 Exercises

1. Using JFLAP, first convert the following REs to NFAs. Then run the multiple run tester and

list six input strings that are in the language.

(a) abc+a∗
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(b) a∗b∗+c

(c) (ab+λ)b

(d) (a+c)a∗

(e) (a+bc+d)

(f) (cd+b)∗

(g) (a+b)∗cd

2. Write a regular expression for each of the following languages. Enter it in JFLAP, quickly

convert it to an NFA (select Do All), and then use the multiple run window to verify the

strings below. You should check additional strings as well.

(a) Σ = {a, b}. The language is strings with an even number of a’s followed by an odd

number of b’s. For example, accepted strings include aab, b, aaaab, and aaaabbb, and

rejected strings include aba and aaab.

(b) Σ = {a, b}. The language is strings with an even number of a’s that have exactly one b.

For example, accepted strings include aba, b, aaaabaa, and aaaba, and rejected strings

include abab and aaab.

(c) Σ = {a, b}. The language is strings with zero or more a’s followed by three or fewer b’s.

For example, accepted strings include aab, bbb, aaaabb, and aaaa, and rejected strings

include aabbbb and aabaab.

(d) Σ = {a, b}. The language is strings in which every a must have a b adjacent to it on

both sides. For example, accepted strings include bababab, bab, bbab, and babbbabb, and

rejected strings include abab and baab.

(e) Σ = {a, b}. The language is strings in which every pair of adjacent a’s is followed by a

b. For example, accepted strings include bababab, baab, aabbaab, and aaba, and rejected

strings include aaab and baaa.

(f) Σ = {a, b}. The language is strings in which every a is followed by an odd number of b’s.

For example, accepted strings include bb, bbbab, abbbab, and babbbababbb, and rejected

strings include ba, abbab, and bbbabb.

(g) Σ = {a, b}. The language is strings in which every group of adjacent b’s is divisible by

two or three. For example, accepted strings include bbabb, bbbbbb, abbba, and bbbbaabbba,

and rejected strings include ba, abbab, and bbbbb.

3. Revisit the example in Section 4.3 with ex4.3a in which q2 is removed first. In the process of

removing q2, how many new labels are empty transitions? Now redo the example and remove

q1 first. In the process of removing q1, how many new labels are empty transitions?
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4. Convert the following FAs to REs.

(a) ex4.nfa2re-a

(b) ex4.nfa2re-b

(c) ex4.nfa2re-c

(d) ex4.nfa2re-d

(e) ex4.nfa2re-e

(f) ex4.nfa2re-f

(g) ex4.nfa2re-g

(h) ex4.nfa2re-h

5. Load file ex4.1a and convert it to an FA. Then convert the FA back into a regular expression

by first converting it to a DFA, then a minimial state DFA, and then a regular expression.

The original RE and the resulting RE are different. Explain.

6. Load file ex4.3a and convert it to an RE. Then convert the resulting RE to a FA, then a

DFA, and then a minimal state DFA. What do you observe about the original DFA and the

resulting minimal state DFA?



Chapter 5

Pushdown Automata

A pushdown automaton (PDA) is the first type of representation for a context-free language (CFL)

that we will examine.

In this chapter we will construct a pushdown automaton (PDA), simulate input on that au-

tomaton, discuss strategy in constructing nondeterministic pushdown automata (NPDA), and then

give JFLAP’s formal definition of a PDA.

5.1 A Simple Pushdown Automaton

Constructing a PDA is similar to constructing an FSA, as you did in Chapter 1; the main difference

is in the transitions. A PDA has additional memory in the form of a stack. Symbols can be pushed

onto and off of the stack. A transition must now encode two inputs (what must be read from input

and the top of the stack before you can take this transition) and one output (what must be pushed

onto the stack if you decide to take this transition).

A transition for a PDA is defined in JFLAP as X,Y ;Z where X represents the input symbols

to be processed, Y represents the stack symbols that must be on the stack and are popped off the

stack, and Z represents the stack symbols that are pushed onto the stack. Note that the comma

separates the two inputs (what must be matched if this transition is to be taken) and the semicolon

separates the inputs from the output.

For example, the transition a, ab; cd from state q1 to q2 would be represented in JFLAP as

shown in Figure 5.1. This transition is interpreted as “if a is the next symbol in the input and ab

(with a on top of b) is on the top of the stack, then process the input symbol a, pop ab off the

stack, and push cd (first push d, then c) onto the stack.”

63
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a , ab ; cd
q1 q2

Figure 5.1: A transition on a PDA.

b , Z ; Z

b , Z ; Zb , a ; !a , a ; aa

b , a ; !a , Z ; aZ
q0 q1 q2 q3

Figure 5.2: A simple PDA.

Figure 5.3: The transition text fields.

5.1.1 Building the NPDA

Let’s now create the NPDA shown in Figure 5.2. Start JFLAP and click on the button labeled

Pushdown Automaton. The Editor tab that appears looks identical to the editor for the FSA.

There will be only a few differences.

Start by creating four states using the State Creator tool qi . Add transitions by selecting the

Transition Creator tool a and add a transition from q0 to q1 (click on q0 and drag to q1). When

you release the mouse note that three adjacent text fields appear. For the DFA there was only

one text field. In the PDA there are three inputs that must be entered: input symbol(s), stack

symbol(s) to pop, and stack symbol(s) to push, as shown in Figure 5.3. We want to enter the

transition a, Z; aZ. Type “a” and press Tab. Note that the a is entered and the next field is ready

for input. Type “Z” (note that this is the capital letter Z), press Tab, type “aZ”, and press Enter.

Note that the comma and semicolon are automatically added to the transition.

Add the remaining five transitions (leave a field blank for λ); make q0 the initial state and q3

the final state.

5.1.2 Simulation of Input

What is the language represented by this PDA? Let’s step through a simulation of an input string.

Select Input : Step with Closure and enter the input string aaabbbbb. The initial configuration



5.2. NONDETERMINISTIC PDA 65

Figure 5.4: The initial configuration.

is shown in Figure 5.4 and includes the current state q0, the input string, and the stack (shown

below the input string). The stack is always “empty” when a trace starts. The stack actually has

a bottom-of-stack marker Z (the capital letter Z) so there is a symbol to test to see if the stack

is empty or not. Be careful! The Z can be removed, but if you do, you cannot check to see if the

stack is empty.

Click Step and the first a in the input string has been processed (it is now shaded gray), the

Z was popped off the stack, but then put back on with an a on top of it. The transition from q0

to q1 could also have been written as a, λ; a. (See Section 5.3 for different definitions of PDAs.)

Click Step two more times and there will be a total of three a’s on top of the stack; one for

each a in the input string. Click Step three more times, and each a is matched with a b. For each

b grayed-out an a is popped off the stack.

There are still two more b’s to be processed. Click Step two more times and the b’s are processed

and the string is accepted.

What is the language accepted by this PDA? Try testing additional strings if you don’t see it

right away. For example, does this PDA accept bbaaa, aabb, aaabb, ababb, and bbb? Don’t forget

that you can test many input strings at the same time by selecting the multiple simulation input

method.

The language accepted by this PDA is those strings with a’s first followed by b’s such that there

is at least one a and there are more b’s than a’s. Another way to write this is {anbm | n > 0 and

n < m}. This example is also stored in the file ex5.1.

5.2 Nondeterministic PDA

A PDA is nondeterministic if there is a state with more than one choice of transition for its

move. Remember that an FSA is nondeterministic if there is a state with either a λ-transition

or two outgoing transitions from the same state with the same symbol. For an NPDA to be

nondeterministic, there is a state with either a λ-transition (λ, λ;λ) or two outgoing transitions

from the same state with the same symbols for the input symbol and the symbols to pop. For

example, the two transitions a, b;λ and a, a;λ outgoing from the same state do not make a PDA

nondeterministic since the symbol to pop from the stack is different. The two transitions a, ba; b

and a, ba;λ outgoing from the same state do make a PDA nondeterministic.
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a , a ; aa

a , Z ; aZ
q0 q1

Figure 5.5: Push all the a’s on the stack.

We will build in stages an NPDA using JFLAP that accepts the language {anbm | n > 0, n ≤
m ≤ 3n}. First think about how you would build a deterministic PDA for this language. Is it

possible? For each a processed, you must know how many b’s (1, 2, or 3) will be processed. But

you do not know the number of b’s per a unless you can examine the whole string. A PDA can

examine and process only one input symbol at a time. Thus, no deterministic PDA can be built

that accepts this language. We must build an NPDA. In this NPDA there will be choices of paths

that can be taken, such that for a valid input string, one of those paths will lead to acceptance.

Let’s now build the NPDA. First let’s discuss the possible strings in the language. They include

aabb, aabbb, aabbbb, aabbbbb, and aabbbbbb. All the a’s come first and for each a there must be one

to three b’s. It is also a good idea to discuss strings not in the language. They include bba (a’s not

first), bab (a’s not first), abbbb (too many b’s), aa (there must be at least one b), and bb (there must

be at least one a).

Since all the a’s come first, create states that push all the a’s onto the stack. This NPDA is

shown in Figure 5.5.

How do we continue so that for each a there will be one to three b’s? After all the a’s are pushed

on we must have three paths that pop one a and end up at the same point; one path for reading

one b, one path for reading two b’s, and one path for reading three b’s. These three paths are added

in Figure 5.6, with all three paths ending at q2. Note in each path that only one a is popped from

the stack.

At the point where the three paths end, we need to have three loops: one for matching one a

with one b, one for one a with two b’s, and one with one a with three b’s. These three loops are

added in Figure 5.7. Note that only two transitions were added, as one transition can be used for

the loop for two b’s and three b’s.

When the stack is empty, the string is accepted if all the input has been processed. Add one

final state and arc as shown in Figure 5.8. This example is also stored in file ex5.2.

Which states are nondeterministic? In JFLAP select Test : Highlight Nondeterminism to

show which states are nondeterministic.

There are several path choices in this NPDA. Let’s simulate a string on the NPDA. Select Input

: Step with Closure and enter the input string a4b10.
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b , a ; !

a , Z ; aZ

b
 ,
 a

 ;
 !

b , a ; a

b
 ,
 a

 ;
 a

b , a ; !

a , a ; aa

b , a
 ; !

q0 q1 q2

q3 q4

Figure 5.6: Pop one a and process 1, 2, or 3 b’s.

b , a ; a

b , a
 ; a

b , a ; !

b
 ,
 a

 ;
 a

b
 ,
 a

 ;
 !

b , a ; !

b , a
 ; !

a , a ; aa

a , Z ; aZ
q0 q1 q2

q3 q4

Figure 5.7: Three loops added.

a , Z ; aZ

b , a ; a

b , a
 ; !

! , Z ; Z

b
 ,
 a

 ;
 !

b , a ; !a , a ; aa

b
 ,
 a

 ;
 a

b , a
 ; a

b , a ; !
q0 q1 q2

q3 q4

q5

Figure 5.8: A nondeterministic PDA.
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Figure 5.9: Possible configurations after six steps.

With nondeterminism, the number of configurations can grow at a rapid rate. Click on Step

nine times and see all the configurations! It is helpful in tracing NPDAs to remove configurations

you think are unlikely to succeed, and freeze selected configurations so you can focus on a smaller

number of configurations.

Let’s restart the trace by clicking on Reset. Click on Step four times and all the a’s are pushed

onto the stack. Click on Step two more times and there are now four possible configurations, as

shown in Figure 5.9.

Can any of these configurations no longer possibly succeed? The rightmost configuration has

already pushed two a’s off the stack and there are eight b’s left, so this configuration will eventually

lead to failure since there are more than three b’s for each remaining a. Although JFLAP will

automatically remove this configuration later when it fails, it can be removed now by selecting it

first and then selecting Remove. This will reduce the number of configurations later to examine as

this configuration would have generated several more configurations, all that would eventually fail.

Continue stepping through, trying to keep the number of choices down by removing or freezing some

configurations. There are several possible solutions, as there are several combinations of matching

two of the a’s with three b’s each and two of the a’s with two b’s each.

5.3 Definition of an NPDA in JFLAP

JFLAP gives a general definition of an NPDAM to be defined as a septupleM = (Q,Σ,Γ, δ, qs, Z, F )

where:

Q is a finite set of states {qi|i is a nonnegative integer}
Σ is the finite input alphabet

Γ is the finite stack alphabet

δ is the transition function, δ : Q× Σ∗ × Γ∗ → finite subsets of Q× Γ∗

qs ∈ Q is the initial state

Z is the start stack symbol (must be capital Z)

F ⊆ Q is the set of final states

The definition of δ in JFLAP is general to allow JFLAP to work with many definitions of an

NPDA. Zero or more symbols can be read as input, zero or more symbols can be popped from the

stack, and zero or more symbols can be pushed onto the stack. In defining an NPDA you do not
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need to define the input symbols and stack symbols explicitly, but they are determined based on

the labels you enter in the transactions. The bottom-of-stack marker is set in JFLAP to Z and

cannot be changed. JFLAP assumes this marker is the only symbol on the stack when a simulation

begins.

You might want to restrict the definition of δ for a particular NPDA to a subset of what JFLAP

allows. For example, consider the following restrictions: Require the input symbol to be either a

single symbol or λ and require exactly one symbol to be popped from the stack. In that case, the

definition of δ would be:

δ : Q× (Σ ∪ {λ})× Γ → finite subsets of Q× Γ∗

If you want to use this definition of δ, then when you build your NPDA with JFLAP make sure

all the transitions follow this restricted rule. JFLAP does not check this for you.

Here is an example showing the nonpictorial representation of the NPDA M in Figure 5.2.

Using the formal definition of an NPDA in JFLAP, M = (Q,Σ,Γ, δ, qs, Z, F ) where:

Q = {q0, q1, q2, q3}

Σ = {a, b}

Γ = {a, Z}

δ = {(q0, a, Z, q1, aZ), (q1, a, a, q1, aa), (q1, b, a, q2, λ), (q2, b, a, q2, λ), (q2, b, Z, q3, Z), (q3, b, Z, q3, Z)}

qs = q0

F = {q3}

The δ moves are described as five-tuples where the first field is the state the transition originates

in, the second field is the input symbol(s) to process, the third field is the stack symbol(s) to pop,

the fourth field is the state at which the transition ends, and the fifth field is the stack symbol(s)

to push onto the stack.

5.4 Summary

In Section 5.1 we learned how to edit and simulate an NPDA. The main difference between editing

an NPDA and an FSA is the label on a transition. The transition format is X,Y ;Z where X

represents the input symbols to be processed, Y represents the stack symbols that must be on

the stack and are popped off the stack, and Z represents the stack symbols that are pushed onto

the stack. The configuration of an NPDA includes the current state, the current input left to be
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processed, and the current stack contents. A special symbol, capital Z, is the bottom-of-stack

marker.

In Section 5.2 we built an NPDA for the language {anbm | n > 0, n ≤ m ≤ 3n}, a language that

cannot be recognized by a deterministic PDA. We then traced it with the string a4b10 and saw how

quickly the nondeterminism led to an exponential number of configurations.

In Section 5.3 we presented JFLAP’s formal definition of an NPDA. JFLAP’s definition is

general so that it accomodates many definitions of a PDA. For example, you may prefer to use the

definition in which a single symbol is always popped from the stack. (Popping multiple symbols or

λ is not allowed.)

5.5 Exercises

1. Load the following files containing NPDAs. For each NPDA, list five strings that are accepted,

list five strings that are not accepted, and determine the language represented.

(a) ex5.5a

(b) ex5.5b

(c) ex5.5c

(d) ex5.5d

(e) ex5.5e

(f) ex5.5f

2. Modify the NPDA from Section 5.1 to accept the following languages.

(a) {anbm | n > 0 and n = m}

(b) {anbm | n > 0 and m = 2n}

(c) {anbm | n > 0 and n > m}

3. Generate a set of strings for testing the NPDA from Section 5.2 that will convince you this

NPDA is correct. You should create a minimal set of strings that covers all cases of strings

that are accepted and not accepted.

4. The following NPDAs are incorrect. Load the files and determine why they do not represent

the corresponding language. List strings they should accept and do not, or strings they should

not accept but do. Then correct the NDPA.

(a) ex5.5wrong-a should represent the language {anbmcp | n < m+p, n > 0,m > 0, p > 0}.

(b) ex5.5wrong-b should represent the language {(ab)ncn | n ≥ 0,m ≥ 0}.
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(c) ex5.5wrong-c should represent the language {(a)nbmcn | n is odd, n > 0,m > 0}.

(d) ex5.5wrong-d should represent the language Σ = {a, b}, {w ∈ Sigma∗ | nb(w) > 2 ∗
na(w)}.

5. Write NPDAs to accept the following languages.

(a) {anbm | n > 0, n < m < 4n}

(b) {anbm | m > 0,m ≤ n ≤ 3m}

(c) {anbm | n > 0, n = 2m, and n mod 3 = 0}

(d) {anbmcp | p = n+m,n > 0,m > 0, p > 0}

(e) {anbmcp | p = n+m, p is odd, n > 0,m > 0, p > 0}



Chapter 6

Context-Free Grammars

A context-free grammar (CFG) is another representation for a context-free language (CFL). CFGs

are less restrictive on the right side of productions than regular grammars, so CFGs are able to

generate a proper superset of the languages generated by regular grammars.

In this chapter we use JFLAP to construct and parse context-free grammars. We also show

examples of context-free grammars and NPDAs that are equivalent by using JFLAP to convert a

CFG into an equivalent NPDA and to convert an NPDA into an equivalent CFG.

6.1 Creating and Parsing Context-Free Grammars

In this section we will cover CFGs and show how to parse them in JFLAP. Then we will look at a

simple, yet inefficient, parsing method. In Chapter 8 we will study more efficient parsing methods.

6.1.1 Entering a CFG in JFLAP

Section 3.1 described how to use the grammar input window. We will use the same grammar editor

for inputting a CFG. Start JFLAP and choose Grammar. Input the grammar shown in Figure 6.1

or load the file ex6.1a.

S aSb

S bB

B bbB

B !

Figure 6.1: A simple CFG.

A context-free grammar G is defined using the four-tuple G = (V, T, S, P ), where V is a set of

variables, T is a set of terminals, S represents the start variable, and P is a set of productions.

72
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ProductionProduction DerivationDerivation

S

S!aSb aSb

S!aSb aaSbb

S!aSb aaaSbbb

S!bB aaabBbbb

B!bbB aaabbbBbbb

B!" aaabbbbbb

Figure 6.2: A derivation of aaabbbbbb.

Productions are in the form A → x, where A is a single variable and x is a string of zero or more

terminals and variables.

In JFLAP, these parts are represented as stated in Chapter 3.1. Symbols in the grammar are

always represented as single characters, variables are represented by uppercase letters, terminals

are represented as any symbol that is not an uppercase letter, and the start variable S can be any

variable. JFLAP assumes the start variable is the variable in the left side of the first production

shown. For example, in Figure 6.1, the variables are {S,B}, the start variable is S, the terminals

are {a, b}, and there are four productions shown.

6.1.2 Parsing with the Brute-Force Parser

What is the language of the grammar in Figure 6.1? Let’s derive some strings using the brute-

force parser we used in Chapter 3. Select Input : Brute Force Parse. Click the pop-up menu

Noninverted Tree and select Derivation Table. Enter the string “aaabbbbbb” in the text field

labeled Input. Press Return, or click on the Start button. Repeatedly click Step until the string

is derived. The productions used are shown on the left under the heading Productions and the

sentential forms in the derivation are shown on the right under the heading Derivation, as shown

in Figure 6.2.

Now we know one string in the language of this grammar. One way to figure out a description

of all the strings in the language is to think about what type of string each variable can derive. We

introduce the term V production where V is a variable to mean a production with V on the left side.

What can the variable S derive? By looking at the first three sentential forms in the derivation

of aaabbbbbb in Figure 6.2, S can derive {aSb, aaSbb, aaaSbbb, . . .}. By thinking about all the S

productions, we can see other sentential forms S could derive, such as {bB, abBb, aabBbb, . . .}, and

come to the conclusion that S can derive {anbBbn | n ≥ 0}. If you focus on the variable B, what

can it derive? Let’s force B to be the start symbol by moving the first production past the last

production and entering B → B as the first production. Enter in a few input strings to determine

what B can derive. B can derive the strings {λ, bb, bbbb, bbbbbb . . .}, or rather (bb)∗, an even number
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B

b Bb

Figure 6.3: A derivation visualized as a tree.

of b’s. The combination of what S and B can derive implies the language of this grammar is

{anb(bb)∗bn | n ≥ 0}.
After experimenting with the B productions, be sure to put the grammar back into its original

form.

Tip In JFLAP you can determine the strings a particular variable A can derive by making

A the start symbol. Enter the first production at the end of the production list to save

it, and then enter A→ A as the first production.

Note JFLAP only parses input strings, which are formed of terminals. If you enter a sentential

form with a variable for the Input, JFLAP gives an error message.

6.1.3 Parse Tree

A parse tree is a visualization of a derivation. Each production in the derivation is visualized as

nodes in a tree: the symbols on the right side of the production are children to the variable on the

left side of the production. For example, the production B → bbB would be visualized as the tree

in Figure 6.3. A parse tree for an input string starts with the start variable as the root of the tree,

and for each production that is applied, the corresponding variable node in the tree is expanded.

The tree is complete when all the leaves in the tree are terminals or λ. Thus, the leaves read from

left to right reproduce the input string.

In the grammar from Figure 6.1, we saw the derivation of the string aaabbbbbb. Now let’s

see the same derivation as a parse tree. Click on Start again to restart the parse, then click on

Derivation Table and select Noninverted Tree. The start variable is shown as a node. Click

on Step once and S is expanded into aSb. Note in the bottom left of the window that a message

appears informing you of the production that was used, Derived aSb from S. Click on Step

repeatedly until the parse tree is complete. The completed parse tree is shown in Figure 6.4.

Note In JFLAP’s parse trees, variables are shown as green nodes and terminals are shown as

yellow nodes.

Parse trees show the productions that are used in the derivation, but they do not keep the order
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b

S

!

B

b

b

b

S

B

Sa

a b

b

S

a

Figure 6.4: A parse tree of aaabbbbbb.

the productions were applied in if there is more than one variable to be replaced. We will see this

in a later example.

6.1.4 How Brute-Force Parsing Works

How does brute-force parsing determine a derivation for an input string? The Brute-Force Parsing

Algorithm is so named because it takes a brute-force approach by trying all possible derivations.

Internally to JFLAP (and not shown), it builds a tree of possible sentential forms, called a derivation

tree. In this derivation tree the nodes are sentential forms, with the start variable as the root of

the tree.

For example, consider the grammar from Figure 6.1 (load file ex6.1a if it is not loaded). Start

the brute-force parser, enter the input string aabbb, and click Start. Note the message below the

input string that says String accepted! 5 nodes generated. The derivation tree for this string

(JFLAP does not display this tree) is shown in Figure 6.5. The tree starts with the start variable

and generates all possible sentential forms after one production replacement (aSb and bB). Since

the sentential form bB starts with b and the string we are trying to derive starts with a, the node

bB does not need to be expanded further (illustrated by the line drawn underneath it). All valid

nodes are then expanded by one more production producing aaSbb and abBS (not valid), one more

time producing aaaSbbb (not valid) and aabBbb, and finally aabbb (circled since it is the input

string!) and aabbbBbb (not valid). The message above 5 nodes generated gives you an idea of
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S

aSb bB

aaSbb abBS

aaaSbbb aabBbb

aabbb aabbbBbb

Figure 6.5: A derivation tree of aabbb.

S

aSb bB

aaSbb abBS

SS

aSbS bBS SSS SaSB SbB

Figure 6.6: Start of the derivation tree of aabbb after adding S → SS.

how large the derivation tree is, since JFLAP does not display it. In this case the ‘5’ represents

the five nodes that were not immediately rejected as being impossible.

How efficient is brute-force parsing? Trying every possible combination works fine if the gram-

mar has few choices, but it could be extremely inefficient. JFLAP tries to prune the tree to cut

down on its size in several ways. JFLAP eliminates those sentential forms whose currently derived

terminals are incompatible with the target string, those sentenial forms it has already seen, and

those sentential forms whose length of non-λ-deriving variables and terminals is greater than the

length of the target string. Even with JFLAP’s pruning, parsing can still take a long time. Dismiss

the tab and go back to the grammar and add the production S → SS to the grammar. Then select

the brute-force parser again. Enter the string aabbb. This string was accepted before, so it should

be accepted again. It is, but this time there are 62 nodes in the tree instead of five! Figure 6.6

shows the first two levels of this derivation tree and illustrates how rapidly it is growing. Note that

the node labeled SS derives six nodes after an additional step; however, two of them are SSS, so

JFLAP combines them into one node.

Enter in another input string aaabbbbbb and click Start. This string was accepted before and

should be accepted now. Under the Input label you will see a message Parser running. Nodes

generated and a number followed by a second number in parentheses. The first number is the

current number of nodes in the parse tree that have not been rejected yet, and the second number
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is the number of nodes on the current level that are being examined. This number can be quite

large! As you can see, the parsing is taking a long time due to the additional production and choices

available. The parsing of this string will probably take too long, so you should try another string.

To stop the parsing, click on Pause. If you really want to continue with this string, you can click

Resume.

6.2 Converting a CFG to an NPDA

In this section we will use JFLAP to show how to convert a CFG to an equivalent NPDA with

exactly three states using the LL parsing method. LL parsing will be explained in more detail in

Chapter 8. The details of LL parsing are not needed for this conversion.

The idea behind the conversion from a CFG to an equivalent NPDA is to derive the productions

through the stack. The conversion starts by pushing the start variable on the stack. Whenever

there is a variable on the top of the stack, the conversion replaces the variable by its right side, thus

applying a production toward deriving the string. Whenever a terminal is on top of the stack, the

conversion pops the symbol off and makes sure that the current input symbol is the same. Thus

the terminals on the stack are popped off in the same order they appear in the input string. If the

stack is emptied, then all the variables were replaced and all the terminals matched, so the string

is accepted.

6.2.1 Conversion

We will convert the CFG in Figure 6.1 (also in file ex6.1a) to an NPDA. Open the grammar if it is

not already open and select Convert : Convert CFG to PDA (LL). You will see a view much

like that in Figure 6.7. On the left is the CFG and on the right is the incomplete NPDA with three

states. There are four transitions that have already been added to the NPDA. The transition from

q0 to q1 pushes the start variable on the top of the stack. There is one transition from q1 to q1 for

each terminal in the language. This transition ensures that when a symbol is read in the input, it

must appear on top of the stack. The final transition from q1 to q2 ensures that the stack is empty

before accepting. The transitions that correspond to the productions in the CFG are missing.

The goal for an input string is the following: If q2 is reached, then all the symbols in the input

string were pushed on the stack using the productions in the grammar and popped off the stack

in the same order they appear in the input string. We have already added the “popped off” loop

transitions on q1. We must now add the “pushed on” loop transitions on q1 for each production to

get the terminals on the stack. For each production, the left side of the production is popped and

the right side of the production is pushed.
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Figure 6.7: Start of conversion of a CFG to an NPDA.

Tip If you don’t like the layout of the NPDA, use the Attribute Editor tool to rearrange

the states.

In JFLAP, each production A → BCD will be replaced by a loop transition on state q1 with

the label λ,A;BCD. Add the missing transitions. Select the Transition Creator tool a and click

on state q1. Input the transition λ, S; aSb corresponding to the production S → aSb. Since you

created the transition corresponding to S → aSb, the box to the right of this production is checked.

There is an alternative way to enter labels. Select a production whose corresponding transition

has not yet been created and then click on Create Selected. JFLAP will add the corresponding

transition. Add the remaining transitions. The resulting NPDA is shown in Figure 6.8. Select

Export, and the NPDA will be placed into a new window. To see that the NPDA accepts the

same strings as the CFG, run the same input string aaabbbbbb on the NPDA. Try other strings on

both the CFG and the NPDA to convince yourself.

6.2.2 Algorithm

We describe the algorithm to convert a CFG G into an equivalent NPDA M .

1. Start with a CFG G = (V, T, S, P ).

2. Create an NPDA M = (Q,Σ,Γ, δ, qs, Z, F ) with three states such that Q = {q0, q1, q2},
qs = q0, F = {q2}, Σ = T , and Γ = V ∪ T ∪ {Z}.

3. Create a starting transition, δ(q0, λ, Z) = (q1, SZ).
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Figure 6.8: Completion of converting a CFG to an NPDA.

4. Create an ending transition, δ(q1, λ, Z) = (q2, Z).

5. For each terminal a ∈ T , create the transition δ(q1, a, a) = (q1, λ).

6. For each production A→ BCD ∈ P , create the transition δ(q1, λ, A) = (q1, BCD).

6.3 Converting an NPDA to a CFG

We now show how to convert an NPDA to a CFG. The idea behind the conversion from an NPDA

into an equivalent CFG is to convert each transition into one or more productions that mimic the

behavior. To simplify the process JFLAP will require that the NPDA be in a certain format. If it

is not, the user must convert the NPDA into the appropriate format. All transitions in the NPDA

must pop exactly one symbol and push exactly zero or two symbols. In other words, with each

transition the stack will increase its size by one or decrease its size by one. There are no restrictions

on the number of terminals read on any transition. The NPDA must have one final state and at

least one transition into the final state that pops Z off the stack.

For those transitions that pop one symbol and push no symbols, one production is generated

to mimic this behavior. For those transitions that pop one symbol and push two symbols, a lot

of productions are generated to indicate possible ways these two symbols that are pushed could

eventually be popped off the stack. Many useless productions will be generated in addition to the

correct productions.
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a , Z ; aZ

d , Z ; !

b , a ; b

c , b ; !

q0

q1

q2q3q4

Figure 6.9: A simple NPDA.

6.3.1 Conversion

We will convert the NPDA in Figure 6.9 to an equivalent CFG. Load the NPDA from file ex6.3a

and select Convert : Convert to grammar.

Oops! An error message appears, as shown in Figure 6.10. The NPDA is not in the correct

format. The error message states that the transition from q1 to q2 is supposed to pop one symbol

(it does) and push 0 or 2 symbols (it pushes only one). We must replace the transition with one

state and two correctly formatted transitions. These two transitions simulate the deleted transition

by pushing an additional symbol on the stack in the first transition and then popping that symbol

off the stack in the second transition.

Figure 6.11 shows the NPDA with the transition b, a; b from before replaced with new state q5
and two transitions. The first new transition b, a;xb pops the a off the stack and pushes the b onto

the stack, as before. It also pushes the extra symbol x onto the stack, so it is pushing two items

on the stack. The second new transition λ, x;λ pops the extra symbol off the stack.

Fix your NPDA. Now is it in the correct format? It has one start state, one final state, and all

the transitions pop one symbol off the stack and push zero or two symbols onto the stack. Again

select Convert : Convert to grammar. This time there should be no error message.

You will see a view much like that in Figure 6.12, except there is no highlighting yet in the

NPDA and there are no productions yet on the right side.

To convert the NPDA M = (Q,Σ,Γ, δ, qs, Z, F ) into a CFG G = (V, T, S, P ), we must define

the parts of the grammar based on parts of the NPDA.

Variables in the grammar will be represented in the form (qiAqj) where qi and qj represent

states from the NPDA and A is a stack symbol. The meaning of (qiAqj) is, “if when moving along

a path from state qi to qj , the stack is exactly the same except that A is removed from the stack.”
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Figure 6.10: Transition not in correct format.

a , Z ; aZ

! 
, x

 ; 
!

c , b ; !d , Z ; !

b , a ; xb

q0

q1

q2q3q4

q5

Figure 6.11: The NPDA in the correct format.

The start variable S will be represented by our goal, (q0, Z, q4). Figure 6.13 illustrates its

meaning. We start in q0 with only Z on the stack; we walk through some path (represented by the

squiggly lines), pushing and popping symbols off the stack; and eventually arrive in q4 with nothing

on the stack. The stack changes size by decreasing by one between q0 and q4. (If other symbols are

pushed on along the way, they must be popped off so the overall effect is the stack size decreased

by one.)

We now describe how to convert each transition into equivalent productions. There are two

types of transitions. First, we will describe how to generate a production for a transition that

decreases its size by 1 by looking at the transition from q5 to q2, λ, x;λ. Note the stack contents
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Figure 6.12: Creating the productions.

q4q0

Z

Figure 6.13: Meaning of the start variable.

q2q5

x
b
Z

b
Z

Figure 6.14: When the stack decreases in size by 1.

will stay exactly the same except one symbol (x) is popped off the stack, as shown in Figure 6.14

For transitions of this type δ(qi, a, A) = (qj , λ), there is one production equivalent,

(qi, A, qj) → a,
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A

Y

Z

B

C

Y

Z

C

Y

Z

Y

Z

qi qj qkqℓ

B

!

Figure 6.15: Meaning of when the stack increases in size by one.

meaning from qi to qj there is one symbol popped (A) and one symbol from the input (a), so we

will derive this symbol.

To create the corresponding productions for a transition, click on the transition. Click on the

transition λ, x;λ from q5 to q2 and you will see the equivalent production appear on the right side,

(q5xq2) → λ. Also click on the other transitions in which the size of the stack decreases by one,

c, b;λ and d, Z;λ, and you will see the equivalent productions. These are the first three productions

shown in Figure 6.12.

Now we will see how to convert a transition in which the size of the stack increases in size by one

by looking at the transition b, a;xb from q1 to q5. For transitions of this type δ(qi, a, A) = (qj , BC)

there are many productions generated. For all possible qk and ql we create the productions

(qiAqk) → a(qjBql)(qlCqk) for all qk and ql.

Figure 6.15 illustrates the meaning of this. In going from qi to qk, the symbol A is popped off

the stack and the stack is exactly the same as it was in qi, except the A is no longer on the stack.

The symbol Y is shown to illustrate that there might be other symbols on the stack below the A

in qi, and that those symbols should still be on the stack in qk. Along the path from qi to qk there

are other symbols that are pushed on (B and C), but they must be pushed off before reaching qk.

Click on the production b, a;xb and you will see many productions generated and highlighted

on the right side. Many of these productions will be useless, but some will be needed to derive a

string. For an example, you should see the production

(q1aq3) → b(q5xq2)(q2bq3).

Figure 6.16 illustrates this production. Starting in q1 the a is on top of the stack. In q3 the

stack is exactly the same, except the a is removed from the stack. Along the way, b and x were

pushed onto the stack and removed.
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q5

a
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x
b
Z

q2

b
Z Z

q3q1

Figure 6.16: Example of when the stack increases in size by one.

Click on the button What’s left?. It should show that you have one more transition to convert

to productions. Click on that transition and many productions are added to the grammar. You

may have to scroll down to see the highlighted block of productions.

If the generated CFG is small enough, then you can can export the grammar to another window.

Click on Export, and you will see that in this case the grammar is too large to export. Since we

cannot see the derivation in JFLAP, a derivation of the string abcd follows so you can see that our

conversion does accept a string in the language. You can run the same input string on the NPDA

to see that it also accepts this string.

(q0Zq4) ⇒ a(q1aq3)(q3Zq4)

⇒ a(q1aq3)d

⇒ ab(q5xq2)(q2bq3)d

⇒ ab(q2bq3)d

⇒ abcd

6.3.2 Algorithm

We describe the algorithm to convert an NPDA M into a CFG G.

1. Start with an NPDA M = (Q,Σ,Γ, δ, qs, Z, F ).

2. Modify M to have one final state qf .

3. Modify M such that each transition pops exactly one symbol and pushes either zero or two

symbols.

4. Create a CFG G = (V, T, S, P ) with V = {(qiAqj) | qi, qj ∈ Q and A ∈ Γ} and with the start

variable equal to (qsZqf ).

5. For each transition δ(qi, a, A) = (qj , λ), generate one production

(qi, A, qj) → a.
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6. For each transition δ(qi, a, A) = (qj , BC), generate the productions

(qiAqk) → a(qjBql)(qlCqk) for all qk and ql.

6.4 Summary

In Section 6.1 we learned how to parse strings with a grammar using the brute-force method. A

derivation of a string may be visualized either as a derivation table or a parse tree. The derivation

table preserves the order the productions are applied; the parse tree does not. We also showed that

brute-force parsing can be very inefficient.

In Section 6.2 we learned how to convert a CFG to an equivalent NPDA using the LL parsing

method. The NPDA has exactly three states, and starts by pushing the start variable on the

stack. Transitions are created that mimic productions by popping the left side of a production and

pushing down its right side. Other productions are created to make sure the symbols read in the

input string are popped off the stack in the same order.

In Section 6.3 we learned how to convert an NPDA to an equivalent CFG. The NPDA must

first be modified to have one final state, and transitions that always pop exactly one symbol and

push exactly zero or two symbols. Each transition that pushes zero symbols can be converted into

one production in the grammar. Each transition that pushes two symbols is converted into many

productions that mimic possible scenarios in which these two symbols can be eventually popped

off the stack.

6.5 Exercises

1. For each CFG, list five strings in the language and give a written description of the language.

(a) ex6.5cfg-a

(b) ex6.5cfg-b

(c) ex6.5cfg-c

(d) ex6.5cfg-d

2. For each language listed, the corresponding CFG does not correctly represent the language.

List a string that either is in the language and is not represented in the grammar, or is not in

the language but is accepted by the grammar. Then modify the grammar so that it represents

the language.

(a) L = {anbmcp | 0 < n < m+ p,m > 0, p > 0} and file ex6.5cfg-e
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(b) L = {(ab)n(ba)m | n > 0,m > 0} and file ex6.5cfg-f

3. Consider the ambiguous grammar in file ex6.5cfg-ambiguous and the string ababab. Run

the brute-force parser on this string. Which parse tree does JFLAP produce? Give two

different parse trees for this string.

4. Write a CFG for each of the following languages. Create a set of test strings that includes

strings that should be in the language and strings that should not be in the language, and

verify with JFLAP.

(a) L = {anbm | m < n,m > 0}

(b) Σ = {a, b}, L = {w ∈ Σ∗ | aba is a substring and na(w) is even }

(c) L = {anbmcn | n > 0,m > 0, n is even, m is odd }

(d) L = {anbmcp | p = n+m,n > 0,m > 0}

(e) L = {anbmcmdn | n ≥ 0,m ≥ 0}

(f) L = {anbm | 0 < n ≤ m ≤ 3n}

5. Consider the CFG in file ex6.5-longparse and the strings of the form anbb.

(a) Run the brute-force parser for n = 2, . . . , 8 and record the number of nodes generated.

What observation can you make about the time to parse?

(b) Remove the production S → SS and again run the brute-force parser for n = 2, . . . , 8

and record the number of nodes generated. What observation can you make about the

time to parse?

(c) In addition to the previous change, change the production A → AA to A → aA. Run

the brute-force parser for n = 2, . . . , 8 and record the number of nodes generated. What

observation can you make about the time to parse?

(d) Is the modified grammar equivalent to the original grammar?

6. Convert each of the following CFGs into an NPDA. Export each NPDA and trace several

strings in both the CFG and the NPDA.

(a) ex6.5cfg-a

(b) ex6.5cfg-b

(c) ex6.5cfg-c

(d) ex6.5cfg-d
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7. For each of the following NPDAs, list the language of the NPDA and convert the NPDA into

a CFG. Export the CFG and trace several strings in both the NPDA and the CFG.

(a) ex6.5-toCFGa

(b) ex6.5-toCFGb

(c) ex6.5-toCFGc

8. Convert each of the following NPDAs into a CFG. You will first have to put the NPDA in the

correct format. Once you have, save the modified NPDA and then run several input strings

on both NPDAs to make sure that the modified NPDA represents the same language as the

original NPDA. Then convert the NPDA to a CFG. The CFG will be too large to export.

(a) ex6.5-toCFGd

(b) ex6.5-toCFGe

(c) ex6.5-toCFGf



Chapter 7

Transforming Grammars

Sometimes it is advantageous to transform a CFG into an equivalent grammar with a simpler

format. The Chomsky Normal Form (CNF) for a CFG has a restricted format which has no

λ-productions, no unit-productions, and additional restrictions that limit the number of variables

and terminals in productions. CNF’s restrictions result in many efficient algorithms. For example,

the brute-force parsing method in Section 6.1.2 can be slow if the grammar has λ-productions and

unit-productions. Transforming the grammar into CNF can speed up the parsing.

In this chapter we will study four algorithms implemented in JFLAP that transform a CFG with-

out changing the language of the grammar. The first three transformations remove λ-productions,

unit-productions, and useless productions, respectively, and the fourth transforms the resulting

CFG into CNF. JFLAP requires that these four transformations occur in this order. The order is

important, as removing λ-productions can generate unit-productions, and removing unit-productions

can generate useless productions. JFLAP will skip a transformation if it is not needed.

The empty string in the language would result in special cases in the algorithms, so it is

easier to remove λ from the language, and later add λ back into the resulting grammar after the

transformation. Thus, JFLAP’s algorithms in this chapter only consider CFGs that do not derive

λ.

7.1 Removing λ-Productions

In this section we will remove λ-productions from a CFG that does not derive λ. The idea is

to identify variables that derive λ, remove all λ-productions, and replace them with equivalent

productions. If a λ-deriving variable V appears on the right side of a production, then a new

production is created with V missing, as V could have derived λ and thus “disappeared” from the

right side. An exception occurs if all of the right side can disappear as a result of removing the

λ-deriving variables; you do not add the λ-production with all variables removed in this case.

88
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Figure 7.1: λ-production removal.

7.1.1 The Transformation

Start JFLAP and either enter the grammar shown in Figure 7.1 or load the file ex7.1. Note that

this grammar has two λ-productions, but λ is not a string in the language of the grammar.

Select Convert : Transform Grammar. The Lambda Removal window appears and

should look similar to Figure 7.1. The original grammar appears on the left side of the window for

reference. On the right side is where the new grammar will be created in two steps.

The first step is to identify the set of variables that derive λ. To add a variable V to this set,

click a V production (a production with V only on the left side) in the left grammar view. For

example, A has a λ-production. Click on either of the A productions (either A→ aAa or A→ λ).

On the right side of the window in Figure 7.1, the set of variables that derive λ is shown as [A].

A note mentions 3 more variable(s) needed to complete this set. B also has a λ-production, so

click on either of the B productions and B is added to the set.

Can C derive λ? It is not obvious, as C has no λ-production. However, the right side of C → B

has only variables from the set of variables that derive λ, and no terminals, implying that C must

also derive λ. Click on the C production to add C to the set.

Can any other variable derive λ? For the same reason above, the right side of D → AB has

only variables that derive λ, and no terminals, so D also derives λ. Click and add D to the set. At

this point the set is complete and JFLAP moves on to the next step.

Note Why were S and E not added to the set? The right side of E’s only production has a

terminal, so it cannot derive λ. The right side of S’s only production has the variable

E, which does not derive λ.
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The second step is to modify the grammar, resulting in an equivalent grammar with no

λ-productions. The original grammar now appears on the right side of the window where we

will delete λ-productions and add replacement productions.

To delete the λ-productions, select them on the right side of the window and then click Delete.

Remove all the λ-productions.

We will add productions by entering them into the grammar on the right side of the window.

For each production from the original grammar that has a λ-deriving variable appearing on its

right side, we will enter a new production with that variable absent, unless the new production

is a λ-production. For the production A → aAa, enter the new production with the A missing,

A→ aa.

Consider the production D → AB. There are three new productions that could be generated

with the A removed, the B removed, or both the A and B removed. But only the first two of these

new productions can be added to the grammar, because removing both the A and the B will result

in a λ-production. Edit the grammar at the right to add these two new productions D → B and

D → A.

An alternative way to add productions is to first select the production in the original grammar

on the left side and then click Complete Selected. The new productions generated from this

production are added to the grammar in the window on the right. Select B → bB in the original

grammar and then click Complete Selected. The production B → b is added to the modified

grammar.

Now add the remaining productions to the grammar.

Tip There are three ways to add productions to the new grammar. One is to enter them in

the grammar window. A second is to use the Complete Selected to add productions

based on one production at a time. The third is to show the resulting grammar by using

the Do Step or Do All.

When the λ removal is complete, a message appears in the window. At this point you can

either proceed with the next transformation toward converting the grammar into CNF by clicking

Proceed, or you can export this modified grammar into its own window by clicking Export.

Is the new grammar equivalent to the original grammar? Let’s compare the two by parsing input

strings. Export the new grammar. Start the brute-force parser for both the original grammar and

the newly exported grammar. Parse the string a in both. These strings should be accepted by

both. What do you observe by looking at the two parse trees? Parse the strings aa and abaa. Try

several strings that are in the language and several that are not in the language.
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7.1.2 Algorithm for Removing λ-Productions.

1. Start with a CFG G = (V, T, P, S); V is the set of variables, T is the set of terminals, S is

the start variable, and P is the set of productions.

2. Create the set Vλ, the set of variables deriving λ.

(a) For each variable A, if A has a λ-production, place A in Vλ.

(b) Repeat until no more variables can be added to Vλ.

i. For each variable A not in Vλ, if there is an A production with a right side composed

only of variables in Vλ, then add A to Vλ.

3. Generate the new grammar G′.

(a) Place all non-λ-productions from G in G′.

(b) For each production R in G′, if the right side of R contains any variables from Vλ, create

new productions with all combinations of these variables missing and place these new

productions in G′ if they are not λ-productions.

7.2 Removing Unit-Productions

In this section we will remove unit-productions from a CFG. A unit-production in a CFG has only

a single variable on the right side. Unit-productions are not helpful in parsing, as they do not

add another terminal in a derivation and they do not increase the length of the sentential form.

Unit-productions can cause problems with parsing if they create a cycle such as A ∗⇒B and B ∗⇒A.

The idea in removing unit-productions is to identify unit-derivations, remove unit-productions,

and add productions that replace unit-derivations so the resulting grammar has no unit-productions,

but is equivalent to the original grammar. If there is a unit-derivation A
∗⇒B, then A productions

must be added so A can derive any form that B could previously derive.

We use a variable dependency graph (VDG) to represent all the unit-productions and to derive

all the unit-derivations. In the VDG, variables are represented as nodes, and unit productions are

represented as directed edges from one variable to another. For example, an edge from node A to

node C represents a unit-production A → C. If there is a path from variable node A to variable

node B in the completed VDG, then A ∗⇒B.

7.2.1 The Transformation

Start JFLAP and either enter the grammar shown in Figure 7.2 or load the file ex7.2. This

grammar has three unit-productions.
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Figure 7.2: A CFG with unit-productions.

Select Convert : Transform Grammar. The Unit Removal window appears as shown in

Figure 7.2. The original grammar appears on the left side of the window. The new grammar will be

created on the right side. Above the grammar editor is an incomplete variable dependency graph

(VDG).

Note Why didn’t the Lambda Removal window appear as it did in Section 7.1 when we

selected the option Transform Grammar? There are no λ-productions in this grammar,

so the first transformation is skipped.

The first step is to complete the VDG. For each variable in the grammar, there is a node labeled

with that variable in the graph. Since nodes are predetermined, JFLAP has already created the

nodes. These nodes can be moved around using the Attribute Editor tool . A VDG represents

the unit-productions in the grammar as transitions so that unit-derivations can be visualized. For

each unit-production, an edge should be added between the two labeled nodes in the VDG. For

example, for the unit-production S → A, add an edge from node S to node A. To create this edge,

select the Transition Creator tool a . Then press the mouse cursor down on the S node, drag the

cursor to the A node, and release the mouse button. Note that in this graph there are no labels on

the edges. Add edges for the remaining unit-productions.
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Note How many unit-derivations are there in the completed VDG? There are three unit-

productions (these are also unit-derivations), and visually we see three additional unit-

derivations S
∗⇒C, S

∗⇒B, and A
∗⇒B.

When the dependency graph is complete, the grammar editor below it becomes enabled and the

original grammar appears. The next step is to modify this grammar to delete the unit-productions

and add equivalent productions. We will now modify this grammar.

For each unit-production, we will remove it and replace it with equivalent productions. For

variables A and B such that A ∗⇒B in the original grammar, for each non-unit-production B → w

we will add the production A→ w.

To modify the grammar, we first remove the production S → A, the only unit-production with

S on the left side of the production. In the grammar editor window in the right-lower portion of

the window, select S → A and then click Delete.

Next add S productions to the grammar by entering them in the grammar editor. Since S ∗⇒A,

S
∗⇒C, and S ∗⇒B, all nonunit right sides for A productions, C productions, and B productions are

added as right sides of an S production. There are two such new productions. Enter S → b (due

to B → b) and S → cCc (due to C → cCc).

An alternative way to generate new A productions for a variable A is to select one of the A

unit-productions in the right grammar table and then click Complete Selected. The A unit-

production is deleted and the new A productions are added.

Complete the grammar. A message appears above the VDG when the unit removal is complete.

At this point you can either proceed with the next transformation toward converting the grammar

into CNF by clicking Proceed, or you can export this modified grammar into its own window by

clicking Export.

Tip There are three ways to add productions to the new grammar. One is to enter them

in the grammar window. A second is to use the Complete Selected to replace a unit-

production with equivalent productions, one unit-production at a time. The third is to

show the resulting grammar by using the Do Step or Do All, which are the same here,

as this is the last step.

Is the new grammar equivalent to the original grammar? Compare the two grammars by

parsing input strings. Export the new grammar and start the brute-force parser. Start the brute-

force parser for the original grammar as well. Parse the string cbca in both. These strings should

be accepted by both. What do you observe by looking at the two parse trees? Try several strings

that are in the language and several that are not in the language.
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7.2.2 Algorithm for Removing Unit-Productions

1. Start with a CFG G = (V, T, P, S); V is the set of variables, T is the set of terminals, S is

the start variable, and P is the set of productions.

2. Draw the VDG and determine the unit-derivations. Each variable from the grammar is

represented as a labeled node in the VDG. For each unit-production A→ B, add a transition

from node qA to node qB in the VDG. A ∗⇒C if there is a path from A to C in the VDG.

3. Generate the new grammar G′.

(a) Place all non-unit-productions from G in G′.

(b) For each unit-derivation A
∗⇒B from G, for each B production B → w in G′, add the

production A→ w to G′.

7.3 Removing Useless Productions

In this section we will remove useless productions from a grammar. A production is useless if no

derivation can use it. Removing useless productions is a two-step process. First, find variables that

cannot derive any string of terminals and remove productions with those variables. Second, find

variables that are unreachable from the start symbol and remove productions with those variables.

All remaining productions in the grammar are useful for deriving strings from the grammar’s

language.

7.3.1 The Transformation

Start JFLAP and either enter the grammar shown in Figure 7.3 or load the file ex7.3.

Select Convert : Transform Grammar. Note that this grammar has no λ-productions or

unit-productions, so those transformations are skipped. The Useless Removal window appears

and should look similar to Figure 7.3. The original grammar appears on the left side of the window.

The new grammar will be created on the right side. Above the grammar editor for creating the

new grammar is an incomplete VDG.

The first step is to identify those variables that can derive a string of terminals. For example,

the production A → a is an obvious production showing that A can derive a terminal. Click on

either of the A productions. On the upper-right portion of the window, the set of variables that

derive terminals is shown as [A]. A note mentions 3 more variable(s) needed to complete this

set. There are no obvious variables as there are no more right sides that have only terminals.

Can S derive a string of terminals? It is not clear yet. All the S productions have at least one

variable on the right side for which we do not know if it derives a string of terminals. Can D derive
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Figure 7.3: Useless production removal.

a string of terminals? Yes, the production D → aAb indicates it can, as the right side contains only

terminals and variables that can derive a string of terminals. Add D to the set and determine the

remaining variables.

Once you have identified the variables that can derive terminals, JFLAP presents you with a

VDG and a grammar on the right side of the window. Both use only the variables that derive

terminals. Productions that contain variables that cannot derive terminals have been eliminated

from the grammar shown on the left side of the window.

The next step is to identify those variables that are reachable from the start variable. In the

VDG, add an edge from variable A to variable B if there is an A production with B on the right

side. At most, one edge is added from A to B and edges are not added for loops, A to A. For

example, for the production S → AaD, add the edges S to A and S to D. For the production

A→ AAa, no edges are added. Add the remaining edges to the VDG.

Note How are the edges in this VDG defined differently than the edges in the VDG for

unit-production removal? In unit-production removal an edge was drawn only for unit-

productions.

The final step is to examine the VDG to determine those variables that are not reachable
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from the start variable. For those variables that are not reachable, remove their productions. For

example, in the VDG note that there is no path from S to C. To remove the one C production in

the right grammar editor, select it and then click Delete.

Does it make sense to compare the modified grammar with the original grammar, as we have

done with λ-production removal and unit-production removal? Not really. Our modified grammar

is smaller, but derivations will be the same in both grammars. We removed productions that were

not useful.

7.3.2 Algorithm for Removing Useless Productions

1. Start with a CFG G = (V, T, P, S); V is the set of variables, T is the set of terminals, S is

the start variable, and P is the set of productions.

2. Create the set VT , the set of variables deriving strings of terminals.

(a) For each variable A, if A’s right side has only terminals or variables in VT , place A in

VT .

(b) Repeat until no more variables can be added to VT .

3. Let the new grammar G′ = G. Then remove from G′ all productions that contain variables

that are not in VT .

4. Draw the VDG. Each variable in G′ is represented as a labeled node in the VDG. For each

variable A, add an edge from A to B if B appears on the right side of an A production.

5. Modify G′ to remove useless productions. For any variable A in the VDG that is not reachable

from S, remove all A productions from G′.

7.4 Converting a CFG to CNF

In this section we will transform a CFG to Chomsky Normal Form (CNF). CNF is a restricted

form of a CFG. In CNF, the right side of a production is either a single terminal or two variables.

This restricted right side results in faster parsing times.

The idea in transforming a CFG to CNF is to replace each terminal in a right side of length

greater than one by a variable, and then to replace each pair of adjacent variables by another

variable until all right sides of productions with variables have exactly two variables. Note that

λ-productions and unit-productions are not in CNF, so they must be removed.
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Figure 7.4: Conversion of a CFG to CNF.

7.4.1 The Transformation

We have already learned the first three steps in converting a CFG to CNF: removing λ-productions,

removing unit-productions, and removing useless productions. This section will focus on the last

step in the conversion.

Start JFLAP and either enter the grammar shown in Figure 7.4 or load the file ex7.4.

Select Convert : Transform Grammar. The Chomsky Converter window appears and

should look similar to Figure 7.4. The original grammar appears on the left side of the window

for reference. On the right side is a copy of the grammar that will be modified. The message 3

production(s) must be converted appears in the upper right portion of the window.

Note Which one of the four productions is already in CNF?

We will convert the simpler productions first. All interactions are with the grammar on the

right side of the window. Select the production A→ Aa from this side. This production needs to be

replaced by two equivalent productions that are in CNF. Click Convert Selected. The production

is replaced by two equivalent productions. In this case, B(a) is a new variable representing the

terminal a, as the new production B(a) → a indicates.

Note In JFLAP each terminal x is replaced with a new variable B(x), with one exception. If

there exists a production A→ a that is the only A production, then JFLAP will use A

for a replacement for a instead of creating a new variable.

Select the production B → bb and then click Convert Selected. In this case only one new

variable B(b) is added in B → B(b)B(b).

There is now only one production left to convert, S → ABAB. Select this production. The right
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side of this production is too long, so pairs of adjacent variables need to be replaced by new variables

until all new productions have the correct length. In JFLAP these new variables will be D(n)

where n is an integer starting with 1. Click Convert Selected to divide this production into two

productions S → AD(1) and D(1) → BAB with a new variable D(1). The latter production needs

further splitting. Select D(1) → BAB and click Convert Selected to split it into D(1) → BD(2)

and D(2) → AB. No further splitting is necessary, since all productions with variables in the right

side now have exactly two variables on the right side.

At this point the conversion is complete. The variables of the form B(x) andD(n) are temporary

variables used only for the conversion algorithm. When the grammar is exported, they will be

replaced with variables allowable in grammars.

Note If the reformed grammar has more than 26 variables, then it cannot be exported in

JFLAP.

Export the grammar now and compare it with the original grammar by running the brute-force

parser with both of them on the input string aaabbaabb. Which one will take longer to parse?

Which parse tree will be smaller?

7.4.2 Algorithm for Converting a CFG to CNF.

1. Start with a CFG G = (V, T, P, S); V is the set of variables, T is the set of terminals, S is

the start variable, and P is the set of productions.

2. Remove λ-productions.

3. Remove unit-productions.

4. Remove useless productions.

5. For each terminal a that appears in the right side of a production of length greater than one,

replace a by the variable B(a) and add the production B(a) → a to P if it is not already

there. There is one exception: This step is not needed if the production A→ a is the only A

production.

6. For each production that has more than two variables on the right side, such as A →
X1X2 . . . Xm where m is greater than 2, replace the production with two productions A →
X1D(n) and D(n) → X2 . . . Xm, where n is an integer and D(n) is a new variable. If there is

already a D(n) production for some n with the same right side, use that production instead

of creating a new production.
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7.5 Summary

In this chapter we learned how to convert a CFG to CNF in four steps using JFLAP. In Section 7.1

we transformed a CFG to a CFG with no λ-productions. We removed the λ-productions, identified

the λ-deriving variables, and then added new productions that were copies of the old productions

but with combinations of λ-deriving variables missing in the right sides.

In Section 7.2 we transformed a CFG to a CFG with no unit-productions. We identified unit-

derivations, removed unit-productions, and then added new productions that were old right sides

with new left sides of variables that could derive these right sides.

In Section 7.3 we transformed a CFG to a CFG with no useless productions. We identified

variables that do not derive strings of terminals and removed all productions that contain such

variables, and then identified variables that are not reachable from the start variable and removed

all productions that contain such variables.

In Section 7.4 we transformed a CFG to CNF. After doing the three previous transformations,

all terminals in right sides of length two or greater were replaced by a current variable, if possible,

or a new variable and production. Then each right side of variables of length greater than two were

replaced by a new variable and productions of pairs of variables.

7.6 Exercises

1. For each CFG, remove the λ-productions using JFLAP.

(a) ex7.6lambda-a

(b) ex7.6lambda-b

(c) ex7.6lambda-c

(d) ex7.6lambda-d

(e) ex7.6lambda-e

2. For each CFG, remove the unit-productions using JFLAP. These grammars do not have any

λ-productions.

(a) ex7.6unit-a

(b) ex7.6unit-b

(c) ex7.6unit-c

(d) ex7.6unit-d

(e) ex7.6unit-e
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3. For each CFG, remove the useless productions using JFLAP. These grammars do not have

any λ-productions or unit-productions.

(a) ex7.6useless-a

(b) ex7.6useless-b

(c) ex7.6useless-c

(d) ex7.6useless-d

(e) ex7.6useless-e

4. For each CFG, convert the grammar to CNF. These grammars do not have any λ-productions,

unit-productions, or useless productions.

(a) ex7.6cnfonly-a

(b) ex7.6cnfonly-b

(c) ex7.6cnfonly-c

(d) ex7.6cnfonly-d

(e) ex7.6cnfonly-e

5. For each CFG, convert the grammar to CNF. These grammars may have λ-productions,

unit-productions, or useless productions.

(a) ex7.6cnf-a

(b) ex7.6cnf-b

(c) ex7.6cnf-c

(d) ex7.6cnf-d

(e) ex7.6cnf-e

(f) ex7.6cnf-f

6. Convert the CFG in ex7.6cnfNoB to CNF. Explain why there are no B(x) variables gener-

ated.

7. Convert the CFG in ex7.cnfparse to CNF. Export the grammar after removing λ-productions,

again after removing unit-productions, again after removing useless-productions, and finally

after converting to CNF. Start the brute-force parser in each of the three grammar windows

and parse the string aabab. For each of the four grammars, compare the number of nodes

generated for the derivation tree (the number is given beside the String accepted! message),

and the size of the resulting parse tree.



Chapter 8

LL and SLR Parsing

All of the grammars we have parsed thus far have used the brute-force parser. In Section 6.1 we

saw that brute-force parsing can be very inefficient. In this chapter we will learn two new parsing

methods in JFLAP that are more efficient: LL parsing and SLR parsing. These methods use the

symbols in the string and the productions to guide the parsing by incorporating such information

in a parse table.

Section 8.1 describes how to compute FIRST and FOLLOW sets, functions that are needed for

building both LL and SLR parse tables. Section 8.2 explains LL parsing, and Section 8.3 explains

SLR parsing. The latter two sections also explain how to convert grammars into NPDAs that

model the method, and how to use and build a parse table for the method.

8.1 Getting Started on Parse Tables: FIRST and FOLLOW Sets

Both LL and SLR parsing methods compute functions called FIRST and FOLLOW to aid in

constructing their parse tables.

8.1.1 FIRST Sets

FIRST determines candidates for the first terminal to start a string. The FIRST function is given a

string w formed of variables and terminals and returns a set of terminals that begin strings derived

from w. Thus a terminal a is in FIRST(w) if w ∗⇒av, where v is a string of terminals and variables.

The terminal a is the terminal that begins the derived string. If w ∗⇒λ, then λ is in FIRST(w).

Both LL and SLR parsing need to compute FIRST(V ) for each variable V in a grammar, and

also FIRST(w) for some strings w made up of terminals and variables. FIRST(V ) is the union of

FIRST applied to all the right sides of V ’s productions. Let’s look at some examples in JFLAP.

101
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Figure 8.1: Computing FIRST in LL parser Window.

Example of FIRST when grammar has no λ-production

Start JFLAP and either enter the grammar shown in Figure 8.1 or load the file ex8.1a. FIRST

sets are computed as the first step in both the LL and SLR parsing algorithms. We will select the

LL parser and only look at FIRST sets for now. In the next section we will learn more about the

LL parsing process. Select Input : LL(1) Parse. A message appears stating The grammar is

not LL(1). Continue anyway? Since we only want to compute FIRST sets, ignore this message

for now. Click on Yes. In Figure 8.1, the grammar is shown on the left side of the window. JFLAP

is waiting for FIRST sets to be entered for each variable.

This grammar does not have a λ-production. The computation of FIRST for the variables

in this grammar is simple, as the first terminal of a string will come from its leftmost symbol.

Suppose that string w = Xv where X is either a terminal or variable and v is a string of terminals

and variables. If the grammar has no λ-production, and thus no variable can derive λ, then

FIRST(Xv) = FIRST(X).

Let’s compute FIRST for all the variables in this grammar, starting with A and applying FIRST

to the right sides of all of A’s productions. A’s production A→ a indicates a is in FIRST(A). Enter

a by clicking on the entry in row A under the FIRST column, typing a, and pressing enter. A’s

other production is A → Aa. FIRST(Aa) is equivalent to FIRST(A), which is redundant. This

production does not place anything into FIRST(A).

Note To enter FIRST and FOLLOW sets, click on the entry and type the items. There is

no separator between symbols, e.g., type bcd to enter in b, c, and d in the same entry.

Lambda is entered as ! and converts to λ after it is entered.

Now compute FIRST(B). The production B → bB clearly derives a string that starts with b,

and the production B → d clearly derives a string that starts with d. Enter both b and d into

FIRST(B) now. No spaces are needed; enter them as bd. The production B → AB derives a string

that starts with symbols from FIRST(A), so also enter a into FIRST(B).
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Note Since FIRST(B) depends on FIRST(A), if any other symbol is added to FIRST(A) it

must also be added to FIRST(B).

Finish the example by computing FIRST(S) and then click on Next. If any of the FIRST sets

are incorrect, they will be highlighted. If the message Define FOLLOW sets appears, then the

FIRST sets are correct.

Example of FIRST when grammar has λ-productions

When a grammar has a λ-production, variables in a sentential form can disappear. FIRST(w),

for string w, may have to look at additional symbols to compute all terminals that can start its

derivation. Assume the string w = Xv, where X is a variable or terminal and v is a string of

variables and terminals. If X is a terminal or a variable that does not derive λ, then calculate

FIRST as in the previous section. If X derives λ , then FIRST(w) is the union of FIRST(X)−{λ}
and FIRST(v). If w is λ, then FIRST(λ) = {λ}. For example, FIRST(C) would include e if A, B,

and C all could derive λ, and thus could disappear.

Let’s look at a grammar with several λ-productions and calculate the FIRST sets for its

variables. Using JFLAP, either load the file ex8.1b or enter the grammar:

S → ABcC

A→ aA

A→ λ

B → bbB

B → λ

C → BA

Select Input : LL(1) Parse. There are four FIRST sets to compute. Which one do you

compute first? There are two easy ones, A and B. The production A → aA puts a in A’s FIRST

set and the production A→ λ puts λ into A’s FIRST set. To enter λ, type “!”. Enter both A and

B’s FIRST set. Then click on Next to check if they are correct. If you are correct, JFLAP will

only highlight the entries FIRST(C) and FIRST(S).

Try to compute FIRST(C) and FIRST(S) on your own now. Then read the explanation for com-

puting them that follows. To begin, consider computing FIRST(C). By the production C → BA,

FIRST(C) is ((FIRST(B)− {λ}) ∪ (FIRST(A)− {λ})) ∪ {λ} = {b, a, λ}. The symbols minus λ in

FIRST(B) are included, as B is the leftmost symbol in BA. FIRST(A) minus λ is included since

B
∗⇒λ. We do a special check at the end to see if C ∗⇒λ, and add λ to FIRST(C).

Next, consider computing FIRST(S). By the production S → ABcC, FIRST(S) is ((FIRST(A)∪
FIRST(B) ∪ FIRST(c))− {λ}) = {a, b, c}. FIRST(A) puts a and λ in FIRST(S). FIRST(B) puts

b and λ in FIRST(S). FIRST(c) puts c in FIRST(S). Then λ is taken out of FIRST(S). Here, the
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λ is taken out and not put back in, since S cannot derive λ. Click on Next to see if the FIRST

sets have been entered correctly.

8.1.2 Definition of FIRST

We give the formal definition of FIRST:

1. FIRST(λ) = {λ}

2. For terminal a, FIRST(a) = {a}.

3. For variable A, FIRST(A) is the union of FIRST(w) for all right sides w of A.

4. Let every Xi be either a terminal or a variable.

FIRST(X1X2X3 . . . XN ) = FIRST(X1) if X1 does not derive λ

FIRST(X1X2X3 . . . XN ) = FIRST(X1)− {λ} ∪ FIRST(X2X3 . . . XN ) if X1
∗⇒λ

8.1.3 FOLLOW Sets

The FOLLOW function applied to variable A returns a set of terminals that can immediately follow

A in some derivation. For the termination of a string we introduce an end-of-string marker, $, and

tack the $ onto the end of any string we are parsing. Now every variable will be followed by some

marker, either a terminal or a $. Suppose S is the start variable. If S ∗⇒w, then with $ tacked onto

the end of the string (and thus also tacked onto the end of the start symbol), the derivation is now

S$ ∗⇒w$. Thus, $ is always in FOLLOW(S).

Let’s look at some examples of computing FOLLOW using JFLAP.

Example of FOLLOW when grammar has no λ-production

The first example is the same first grammar in the FIRST section. If the JFLAP window for

file ex8.1a is no longer up, then either enter the grammar shown in Figure 8.1 or load the file.

Remember that this grammar does not have a λ-production.

FOLLOW sets are computed after FIRST sets are computed in both the LL and SLR parsing

algorithms. We will select the LL parser and only look at the FIRST and FOLLOW sets for now.

Select Input : LL(1) Parse. A message appears stating The grammar is not LL(1). Continue

anyway? Click on Yes. At this point we only want to compute the FIRST and FOLLOW sets,

so ignore this message. Click on Do Step once to reveal the FIRST sets we already calculated.

To compute the FOLLOW set for a variable A, look at the right side of all productions to see

where A appears and what immediately follows A. If the symbol that follows A is a terminal, then

place the terminal in FOLLOW(A). If the symbol that follows A is a variable B, then whatever
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first terminal B can derive is a terminal that can follow A in some derivation. If A is at the end of

a production, say B → cA, then everything in FOLLOW(B) is in FOLLOW(A).

Now we compute FOLLOW for all the variables in this example. FOLLOW(S) always includes

the $, so enter $ for FOLLOW(S). Since S does not appear on the right side of any of the

productions, FOLLOW(S) is complete.

Next we compute FOLLOW(A). From the production S → BAc, c is in FOLLOW(A) and

from the production A → Aa, a is in FOLLOW(A). Enter a and c in FOLLOW(A). From the

production B → AB, FIRST(B) are terminals that can follow A in some derivation. Add those

terminals to FOLLOW(A). (You do not need to add a again, as it is already in FOLLOW(A).) A

does not appear on any other right side, so FOLLOW(A) is complete.

Next we compute FOLLOW(B). B appears on the right side in three productions. In B → AB

and B → bB, B appears at the end of a right side, but B also appears on the left side, so this

implies that FOLLOW(B) is in FOLLOW(B), which is redundant. No new terminals are added.

In the third production S → BAc, B is followed immediately by A, so all terminals in FIRST(A)

are placed in FOLLOW(B); in this case, just a. Enter a in FOLLOW(B) and click on Next to see

if the FOLLOW sets are correct. If the message Fill entries in parse table appears, then the

FOLLOW sets are correct.

Example of FOLLOW when grammar has λ-productions

When a grammar has λ-productions, variables may disappear and we may have to look at additional

symbols in determining FOLLOW sets. For the production A→ vBw, where v and w are strings of

variables and terminals, FOLLOW(B) has FIRST(w)−{λ} in it. If FIRST(w) has λ in it, then that

is the same as B appearing at the right end of the right side, so FOLLOW(A) is in FOLLOW(B).

The next example is the same second grammar in the FIRST section. If the JFLAP window

for file ex8.1b is no longer up, then load the file. Then enter the FIRST sets. Note this grammar

has two λ-productions.

Try now to compute the FOLLOW sets for the variables, and then read the explanation that

follows. Since S does not appear on the right side of any production, only $ is in FOLLOW(S).

C appears only in S → ABcC, thus everything in FOLLOW(S) is in FOLLOW(C). B appears in

three productions. S → ABcC puts c in FOLLOW(B) and B → bbB is redundant. C → BA puts

terminal a from FIRST(A) in FOLLOW(B). Since λ is in FIRST(A), C → BA can be viewed as

if B is at the end of the production, C → B, and thus FOLLOW(C) is put into FOLLOW(B).

A appears in three productions. A → aA is redundant. From S → ABcC, FIRST(BcC) = {b, c}
is in FOLLOW(A). From C → BA, FOLLOW(C) is in FOLLOW(A), thus $ is in FOLLOW(A).

Click on Next to see if the FOLLOW sets are correct. If the message Fill entries in parse table

appears, then the FOLLOW sets are correct.
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Note There are some differences between FIRST and FOLLOW. The $ can be in a FOLLOW

set, but not in a FIRST set. The λ can be in a FIRST set, but not in a FOLLOW

set. FIRST can be applied to a string of variables and terminals, but FOLLOW is only

applied to a single variable.

Observing terminals following variables

For each symbol in the FOLLOW sets, there is some sentential form in a derivation that shows

that symbol following the variable. We will parse some strings for the preceeding example and see

all the cases where a terminal follows a variable.

We want to leave the window with FOLLOW sets showing and start a new window with the

same grammar. Load 8.1b-dup, which is a copy of the grammar in 8.1b. In the new window,

select Input : Brute Force Parse. Click on Noninverted Tree and select Derivation Table.

Move the two windows so that you can see both of them. We will need to examine the parsing of

two strings to see all the symbols from the FOLLOW sets.

In the brute-force parser, parse the string abbcbba by clicking on Start, then follow by clicking

on Step repeatedly until the derivation is complete. Examine the sentential forms. S, A, and C

all appear at the end of some sentential form, thus $ follows the three of them. In some sentential

forms, the substrings Bc, Ab, and Ba appear, thus showing a and c follow B, and b follows A.

Now parse the string acbb. To see that $ follows B, see the sentential form acbbBA. Both the A

and B are replaced by λ in the next two steps. In the derivation shown, B is replaced first, then

A. If A was replaced first, then the sentential form would be acbbB. Thus, $ follows B. To see

that c follows A, see the sentential form aABcbbBA. Again, in the next two steps, the leftmost A

and then the leftmost B are replaced by λ. If B is replaced first, then the sentential form would

be aAcbbBA. Thus, c follows A. We have shown an example for each symbol in a FOLLOW set

following its corresponding variable.

8.1.4 Definition of FOLLOW

We give the formal definition of FOLLOW: Let S be the start symbol, A and B be variables, and

v and w be strings of 0 or more variables and terminals.

1. $ is in FOLLOW(S).

2. For A→ vB, FOLLOW(A) is in FOLLOW(B).

3. For A→ vBw:

(a) FIRST(w)− {λ} is in FOLLOW(B).

(b) If λ ∈ FIRST(w), then FOLLOW(A) is in FOLLOW(B).
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Figure 8.2: LL(1) Parsing Showing a Parse Tree.

8.2 LL(1) Parsing

The type of LL parsing in JFLAP is LL(1) parsing. The first L means the input string is processed

from left to right. The second L means the derivation will be a leftmost derivation (the leftmost

variable is replaced at each step). The 1 means that one symbol in the input string guides the

parse, that is, the parser looks ahead one symbol.

In this section we show how to parse strings with the LL(1) parser, how to compare LL(1)

parsing with the LL(1) conversion of CFG to NPDA, and how to build the LL(1) parse table.

8.2.1 Parsing a String with the LL(1) Parser

Before showing how to build the LL(1) parse table, we show how to use the table to parse strings.

Start JFLAP and load the file ex8.1b if that file is not open. Select Input : LL(1) Parse, and

click on Do All to build the FIRST sets, FOLLOW sets, and the LL(1) Parse Table. Then click

on Parse. The window should look similar to Figure 8.2, but with no parse tree and the Input

and Input Remaining fields blank.

The LL(1) Parse Table appears in the top left corner of the window. Each row represents a

variable in the grammar and each column represents a lookahead, the next symbol to match in the

input string. A lookahead can be either a terminal in the grammar or the $. Each entry in the

table is a right side of a production in which the left side is the variable for that row. For example,
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BA appears three times in the C row, representing C → BA.

LL(1) parsing takes a top-down approach. That is, the parse tree is built by starting with the

start symbol S and repeatedly replacing the leftmost variable in the sentential form until the string

has been derived. We will watch the parse tree being constructed for a derivation, starting at the

top of the tree and building it down. Enter aacbb in the Input field. As this string is parsed and

the tree is built top-down, note the highlighted productions in the parse table that are used. Click

on Start and then click on Step repeatedly until the string is derived. The tree should look like

the tree in Figure 8.2. Now we will look at the derivation. Click on Noninverted Tree and select

Derivation Table. Examine the sequence of sequential forms under Derivation and note that

the leftmost variable is replaced at each step.

How does LL(1) parsing work? A stack stores variables and terminals from right sides of pro-

ductions, processing them by replacing variables with new productions and matching the terminals

with corresponding terminals in the input string. The start symbol of the grammar is placed on

top of the stack to start. Variables are popped off the stack and replaced by the right side of

a production, and terminals are popped off and matched in the order they appear in the string.

When the stack is empty and all the terminals in the string have been matched, the string has

been derived. How does the LL(1) parser know which production to use? The terminals in the

input string are matched from left to right. The part of the string that has not been matched yet

is called the input remaining. The leftmost symbol of the input remaining is the lookahead. For

a particular variable, the production to use is chosen by comparing the variable’s right sides with

the lookahead. If all the terminals have been matched, then $ is the lookahead.

We will go through the example again, this time examining more details in the window.

First change Derivation Table back to Noninverted Tree. Click on Start. The field Input

Remaining has the input string followed by $, and the lookahead is a (the first symbol in aacbb$).

All the terminals in the input remaining (except $) must be matched for this string to be derived.

Click on Step and S is placed on the stack and also placed as the root of the tree. The derivation

can now begin. Click on Step again. The production S → ABcC is highlighted in the table, the

message Replacing S with ABcC is shown at the bottom of the window, and S has been popped

off the stack. Note that the highlighted table entry is in column a. Recall columns represent

possible lookaheads, and a is the current lookahead. Click on Step four times and observe the

Stack and parse tree. The right side ABcC (with A on top) is placed onto the stack. In the parse

tree, the variables in S’s right side ABcC become children of S. A is on top of the stack, so A

will be replaced by an A production next, but which A production? The lookahead is a, so the A

production in the a column will be chosen. Click on Step. The A has been popped off the stack,

the production A→ aA in the a column is highlighted, and the message Replacing A with aA is

shown at the bottom of the window. Click on Step twice and the right side aA is pushed onto the

stack, with a on top. At this point the top of the stack is a terminal and it matches the lookahead.
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Click on Step. The a on top of the stack is popped off and the matching a is removed from the

input remaining. The new lookahead is a. Continue stepping through the example. When there is

a variable on top of the stack, it will be replaced by the right side that appears in the column of

the lookahead. When there is a terminal on top of the stack, it matches the lookahead.

When JFLAP finishes with the example, the message String successfully parsed! appears

at the bottom of the window. For a string to be accepted, the stack must be empty and all the

symbols in the input string must be matched. Examine the stack and input remaining from the

example. The stack is empty and the input remaining is $.

What happens when you parse a string that is not in the language? There are different types

of errors that can occur. A string is rejected if the top of the stack is a terminal and it does not

match the current lookahead, or if the top of the stack is a variable and there is not a rule in the

entry for that variable under the column for the current lookahead. Try parsing the strings bca and

cca that should not be accepted and identify the errors.

8.2.2 Comparing with Corresponding NPDA

Section 6.2 showed how to use JFLAP to convert a CFG to an equivalent NPDA that modeled the

LL parsing method. Now we will convert the example grammar to an NPDA to see how the LL

parsing method works using an NPDA.

Using file ex8.1b from the last example, select Convert : Convert CFG to PDA (LL). The

NPDA has three states. The transition from q0 to q1 pushes S onto the stack. The transition from

q1 to q2 verifies the stack is empty. Click on Show All to complete the NPDA and then Export

to place it in an NPDA window. The NPDA is shown in Figure 8.3. Note the top six transitions

on q1 are the productions in the grammar, popping the left side and pushing the right side onto

the stack. The bottom three transitions are for matching the terminals and removing them from

the stack.

This NPDA is nondeterministic. We will parse the same string we did earlier. To simulate

the LL parser, you will need to decide which configuration is correct when there are multiple

configurations. Select Input : Step with Closure and enter the input string aacbb. Click on

Step twice. The S is pushed onto the stack, and then S is replaced by ABcC with A on top.

Click on Step again. Since there are two A productions, both of them were applied creating two

configurations. The correct configuration is the one in which aA was pushed onto the stack, as the

a in aA is needed to match the a in the lookahead. Click on the other configuration (with stack

BcCZ) and then click on Remove. Click on Step. The lookahead a was matched and is now

shaded in the input string. The a was removed from the top of the stack. Continue the parsing

to derive the string using the LL(1) method by removing configurations whenever more than one

occurs, leaving the one that the LL(1) method would choose.
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! , Z ; !

! , A ; aA

! , C ; BA

b , b ; !

! , S ; ABcC

! , Z ; SZ

! , A ; !

a , a ; !

! , B ; !

! , B ; bbB

c , c ; !

q0 q1 q2

Figure 8.3: CFG to NPDA Using the LL Method.

8.2.3 Building the LL(1) Parse Table

Using JFLAP, we will build an LL(1) Parse Table for the grammar in file ex8.1b. Recall that

the rows in the LL(1) Parse Table represent variables, the columns represent lookaheads, and the

entries represent a right side of a production. For each production A → w, we must decide which

symbols could be the lookahead. FIRST(w) are all the terminals that can start a string, and thus

are candidates. If λ is in FIRST(w), then candidates include those symbols that can follow A. For

A→ w, w will be entered in the A row under the columns that are valid lookaheads.

In the LL(1) parsing window for file ex8.1b, dismiss all the tabs until the grammar is shown.

Select Input : LL(1) Parse and click on Do Step twice to list the FIRST and FOLLOW sets.

The production S → ABcC should be entered in the S row for all symbols in FIRST(ABcC) =

{a, b, c}. Enter ABcC in columns a, b, and c. For A→ aA, enter aA in row A under column a. For

A → λ, enter λ in row A under columns for symbols in FOLLOW(A) = {$, c, b}. Recall that λ is

entered by typing !. For C → BA, FIRST(BA) = {b, a, λ}, so enter BA in row B under columns a

and b. Since λ is in FIRST(BA), enter BA in row C under the $ column, as FOLLOW(C) = {$}.
Continue making entries in the table and click on Next when done.

8.2.4 Algorithm for Building an LL(1) Parse Table

Let A be a variable and w be a string of 0 or more variables and terminals. Let T be the parse

table, and T[A,a] represent the entry in row A, column a.

For each production A→ w:

1. For each terminal a in FIRST(w), put w in entry T[A,a].

2. If λ is in FIRST(w), put w in entry T[A,b] for each b in FOLLOW(A).
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8.2.5 When a CFG Is Not LL(1)

The first grammar in this chapter from file ex8.1a was not LL(1). Load the file again in JFLAP

and select Input : LL(1) Parse. JFLAP informs you that it is not LL(1), but lets you continue

anyway. Enter in the FIRST and FOLLOW sets. Try making entries in the parse table and then

read the explanation. For A → a, enter a in the a column. For A → Aa, FIRST(Aa) = {a} so

it should also be entered in the a column. Both can be entered in by entering a space between

them. This grammar is not LL(1) because there is more than one production for variable A and

lookahead a. JFLAP allows the parse table to be built with conflicts, but parsing cannot occur.

Note that when the table has been entered, the Parse button is disabled.

8.3 SLR(1) Parsing

The type of LR parsing in JFLAP is SLR(1) parsing. The S stands for simple LR. The L means

the input string is processed from left to right, as in LL(1) parsing. The R means the derivation

will be a rightmost derivation (the rightmost variable is replaced at each step). The 1 means that

one symbol in the input string is used to help guide the parse. There are several other types of LR

parsing.

In this section we will examine how SLR(1) parsing works, convert a CFG to an NPDA using

the SLR(1) method, and show how to build the SLR(1) Parse Table. We will look at three example

grammars. The first grammar has no λ-production. The second grammar has a λ-production and

a more complex structure than the first grammar. In the third example, we will see how to parse

a CFG that is not SLR(1).

8.3.1 Parsing a String with the SLR(1) Parser

Before building the SLR(1) parse table, we will show how to parse strings using the table. Start

JFLAP and load the file ex8.3a or enter the following grammar:

S → A

A→ aaA

A→ b

Note that this grammar has three productions. Select Input : SLR(1) Parse, and click on

Do All. Ignore all of these items for now and click on Parse.

The window should look similar to Figure 8.4, but with no parse tree and the Input and Input

Remaining fields blank. The grammar is in the lower left part of the window. Note that the

grammar now has four productions. SLR(1) parsing adds a new variable to the grammar as a new

start symbol, S′. It also adds the new production S′ → S. This new production ensures that
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Figure 8.4: Creating the Parse Tree for SLR(1).

there is only one production that can start a derivation. The new production is the last production

processed in SLR(1) parsing.

SLR(1) parsing works bottom-up, starting with terminals and applying productions in reverse.

The right sides of productions are replaced by the left sides repeatedly until the start symbol is

derived. The parse tree is thus built from the bottom to the top. We will watch the parse tree

being constructed in a derivation. The parse tree will be constructed in the bottom right side

of the window. Enter aaaab in the Input field. As this string is parsed, notice the highlighted

productions used. Click on Start, and then click on Step five times. Five nodes representing the

five terminals have been created in the parse tree. Note that there are no right sides in the parse

tree until the b appears. The b is the right side of A → b. Click on Step twice. The A node is

created and linked to b, representing A → b. This production is also highlighted. Note that there

is now another right side appearing in the nodes, aaA. Click on Step repeatedly until the tree is

complete. Note that S′ is not part of the tree. The new production was not part of the original

grammar, so it does not appear in the parse tree.
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Figure 8.5: Building NPDA for SLR(1) parsing.

Now look at the derivation. Click on Noninverted Tree and select Derivation Table.

The derivation starts with the string and applies productions backward, with the right side of

a production replaced by the left side of a production, until the start symbol S′ is derived.

8.3.2 Conversion of CFG to NPDA Using the SLR(1) Method

Section 6.2 showed how JFLAP converts a CFG to an equivalent NPDA that models the LL parsing

method. There are other methods of conversion from a CFG to an NPDA. We will now convert

our example CFG to an NPDA that models the SLR parsing method.

Select Convert : Convert CFG to PDA (LR). The start of an NPDA appears as shown

in Figure 8.5. Similar to the NPDA constructed for LL(1) parsing, this NPDA will also have three

states, with most of the work done in one state. For SLR(1), most of the work is in the initial

state, q0. In q0, all the terminals are pushed onto the stack, and the right side of productions is

replaced by the corresponding left side of productions until the start symbol S is on the stack. The

transition from q0 to q1 pops S off the stack, and the transition from q1 to q2 ensures the stack is

empty.

There are two types of transitions in q0. First, for each terminal in the grammar, there is a

transition on q0 that reads the terminal and pushes it onto the stack. This is referred to as shifting

symbols onto the stack. The two transitions for shifting a and b have already been added to the

NPDA and are shown on q0 in Figure 8.5. Second, there is a transition for each production in the

grammar that pops the right side off the stack and pushes the left side onto the stack. This is

referred to as reducing by a production. These transitions must be added. Note that the grammar

appears on the left side of the window with Created check boxes.

In JFLAP, each production A → BCD will be replaced by a loop transition on q0 with the
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label λ,DCB;A. Note the BCD appears backward on the stack (with D on top). The BCD is

popped off the stack and replaced by pushing A onto the stack. Select the transition tool a and

click on state q0. Add the missing transitions. Each production will be checked off as it is entered.

When the NPDA is complete, click on Export to put it into an NPDA window.

Tip Similar to the creation of an NPDA using LL(1) parsing, labels can also be created by

selecting a production and then clicking on Create Selected.

We now parse a string using this NPDA to see how the SLR(1) method works, and to observe

the nondeterminism. Select Input : Step with Closure and enter the same string we parsed

earlier, aaaab. Click on Step five times and observe that all the terminals are pushed onto the

stack. At this point, the right side of A→ b is on top of the stack. Click on Step and observe that

the right side b is replaced by its left side A. Now there are two possible right sides on top of the

stack, aaA and A. Note that the right side of A → aaA is on top of the stack backward as Aaa.

We will see later that the SLR(1) parse table incorporates information to determine which of these

two productions to apply. The NPDA applies both of them. Click on Step, and there are two

configurations. The configuration with AaaZ on the stack is the correct configuration that replaced

aaA by A. The other configuration with SaaaaZ on the stack will lead to rejection. The Aaa on

top of the stack should next be replaced with A again. Click on Step. The resulting configuration

is the one with AZ on the stack. Next, this A should be replaced with S for S → A. Click on

Step. The resulting configuration is the one with SZ on the stack. Click on Step two more times

and the string has been accepted. All other configurations generated result in rejection.

8.3.3 Using the SLR(1) Parse Table

At this point go back to the SLR(1) parser window. You will need to select File : Dismiss Tab

to dismiss the Convert to PDA(LR) tab. We will examine the parser stack and parse table as

we trace the string aaaab once more. The stack will work similarly to the stack in the NPDA, but

will also store numbers between terminals and variables to keep track of which row in the table the

parsing action occurred when the symbol was placed on the stack.

The parse table is in the top left of the window, as shown in Figure 8.4. The parse table has

rows that are numbered from 0 to 6. Enlarge the window if you cannot see all the rows. The table

has two types of columns: lookaheads (terminals and $) and variables. Recall that a lookahead is

the leftmost symbol in the input remaining and can be used to guide the parsing. For this grammar

there are three columns of lookaheads (a, b, and $), followed by two columns of variables (A and

S). The parse table has four types of actions in the lookahead columns. Those that start with the

letter s are for shifting terminals onto the stack. Those that start with the letter r are for reducing

a production, replacing the right side with the left side. The entry with acc means a string is

accepted. Entries that are blank are errors. The columns for variables either have numbers in them
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or are blank. The numbers identify the new current row in the table after placing this variable on

the stack.

We first describe in general terms how SLR(1) parsing uses the table and then trace through

an example using JFLAP. To parse a string using the SLR(1) parse table, row 0 is the initial row,

and thus 0 is placed on the stack. The first symbol in the input remaining is the lookahead. Find

the column corresponding to the lookahead symbol. If the entry at the current row and lookahead

column is a shift, such as s4, then shift the lookahead for that column on the stack, set row 4 to

the current row and push the current row number, 4, on the stack.

If the entry is a reduce, such as r2, then reduce by popping the right side of production number 2

off the stack and pushing the left side back onto the stack. We now describe a reduce in more detail.

Each production in the grammar is numbered by JFLAP, starting with 0 for the new production.

When the right side is popped off the stack, note that twice as many symbols as are in the right

side are popped off the stack (all the numbers between the variables and terminals must also be

popped off). The variable V to push onto the stack is the left side of production number 2. Before

pushing V onto the stack, though, examine the number at the top of the stack, say n. To figure

out which row in the parse table will be current after the reduce is complete, look up the entry in

row n under column V .

Tip If you hold the cursor over an entry in the parse table, more information about that

entry is displayed. For example, hold the cursor over the r3 in row 4. The message

Reduce by production 3, A → b is displayed. Hold the cursor over the s5 in row 3.

The message Shift current input and state 5 to stack is displayed.

Now use JFLAP to parse the string aaaab. We will use T [i, j] to represent the ith row and

jth column of the parse table. Make sure aaaab has been entered in the Input field and the

Noninverted Tree has been selected. Then click on Start. Note that 0 is on the stack and a

is the lookahead (a is the leftmost symbol in the Input Remaining of aaaab$). Look up T [0, a],

which is s3. Click on Step. The s3 in T [0, a] is highlighted and the shift has been performed. The

lookahead, the first a in the remaining input, was removed and placed on top of the stack (a shift).

The 3 from s3 is placed on top of the stack to indicate the current row. The new lookahead is a.

The next entry will be at T [3, a]. Click on Step four more times and observe that aaab is placed

on the stack along with the current row numbers. Note that 4 is now on top of the stack, followed

by b, which is a right side. Also note the lookahead is $. What will happen next? The entry at

T [4, $] is r3. We will reduce by production r3, which is A→ b. Twice the size of the right side will

be popped off the stack (4b). Then the top of the stack will be 5. Click on Step to see 4b popped

off the stack. The left side of the production is A. The entry at T [5, A] = 6 identifies row 6 as the

next current row. The A followed by 6 will be pushed onto the stack. Also note in the parse tree

view that the A node is added with a link to b. Click on Step to see the rest of this reduction.



116 CHAPTER 8. LL AND SLR PARSING

What will happen next? T [6, $] = r2, which means reduce by A → aaA. Note that aaA is on

top of the stack, backward (Aaa) and with numbers between symbols (6A5a3a). Those six symbols

will be popped off the stack, resulting in 5 on top of the stack. T [5, A] = 6 so A followed by 6 will

be pushed onto the stack. In the parse tree view A→ aaA is added. Click on Step twice to see this

reduce. Click on Step four times and two more reduces occur. The parse tree is complete. The

next entry in the table is T [2, $] which contains accept. Click on Step and the string is accepted.

8.3.4 Constructing a DFA that Models the Parsing Stack

The SLR(1) parse table knows when the right side of a production is on top of the stack. This

information is incorporated into the table when it is built by modeling the parsing stack with a

DFA. The states in this DFA have special marked productions called items that identify the part

of the right side of productions that are currently on top of the stack. We will define items and

then show how to construct the DFA that models the parsing stack.

An item is a production with one marker (·) placed in the right side of a production. Symbols

in the right side of a production that are to the left of the marker are currently on top of the stack

and symbols to the right of the marker still need to be placed on the stack. If there are no symbols

to the right of the marker, then the right side is on top of the stack and ready for a reduce. For

example, A→ a · aA indicates that a is on top of the stack and that aA must still be placed on the

stack before a reduce can occur. A→ aaA· indicates that aaA is on top of the stack and a reduce

can occur.

Each state in the DFA will have a set of items associated with it. For each set of items, a closure

operation will be applied to include all related items. The closure of a set of items is defined as

the items currently in the set plus all items for any variable in one of the items with the marker

immediately to its left. Suppose a marker is in front of variable B, as in A→ a ·BC. Then every B

production, B → w, should be added to the item set with none of the right side seen on the stack,

as B → ·w. To see why the B production is added this way, consider the B production B → Caab

applied to a ·BC, resulting in a · CaabC. Note that none of the right side of B → Caab is on top

of the stack, since the B in a ·BC was not on top of the stack.

To build a DFA, start with the initial state and the only production with the new start symbol

in the grammar. In the initial state, nothing has been pushed onto the stack. The initial state will

always have the new production that was added to the grammar marked as not on the stack yet,

S′ → ·S. The closure will add additional productions to this state.

How are transitions defined between two states in the DFA? We define an operation goto(I,X)=I’

that is applied to an item set I and symbol X that is a terminal or variable. If the X immediately

follows a marker in any of the items in I, then the item is placed into a new item set I ′ with the

marker moved to the right of the X. The closure is applied to all items in I ′. A transition in the
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Figure 8.6: Building a DFA for SLR(1) parsing.

DFA corresponding to this goto operation would be a transition labeled with X from the state

associated with I to the state associated with I ′. When the transition X is processed, the X is

pushed onto the parsing stack. For example, if A → a · bC is the item in one state, a transition

labeled b leaves this state and enters a state that has the item A→ ab ·C, representing the b shifted

onto the stack. If any state has an item with the marker at the right end, then the state is identified

as a final state. Thus, final states represent where reduces can occur.

We will start our example grammar again and show how to build a DFA that models the SLR(1)

parsing process. Dismiss all the tabs except the original grammar editor. Then select Input :

SLR(1) Parse. Enter in the FIRST and FOLLOW sets and click on Next after you enter each

set. At this point JFLAP asks if you want to define the initial set of the DFA yourself. Click on

Yes. A window labeled Initial Goto Set appears with the productions from the grammar. The

placement of the marker must be identified for each production that is in the item set. Click on

the start production of the grammar, S′ → S. All possible items derivable from this production

appear. Since nothing is on the stack yet, click on S′ → ·S. This marked production will appear

to the right. Since the marker is in front of the S, all S items with the · as the leftmost symbol

must be added to the item set. There is only one such item. Add S → ·A to the item set. Since

the marker is in front of the A, add all the A items with the · as the leftmost symbol to the item

set. Click on OK when the item set is complete. The DFA has been started by drawing q0 and its

item set below the FIRST and FOLLOW sets as shown in Figure 8.6.
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Tip In the Goto Set window, selecting a production on the right side followed by clicking

on Closure will add the closure of that production to the item set. Clicking on Finish

at any time will complete the item set.

The SLR(1) DFA editor is a modified finite automaton editor. Note this DFA editor has only

two tools. The Attribute Editor tool is very limited. It allows states to be moved around and

the identification of final states. The Goto Set on Symbol {}
? tool allows one to add a transition

and corresponding state at the same time.

Tip In drawing the DFA, make the DFA window as big as possible by resizing the window.

Click and drag the bar between the grammar and the DFA to increase the amount of

space for the DFA. Similarly, click and drag the bar between the FIRST sets and the

DFA to increase the space for the DFA.

We will now complete the DFA. State q0 has four symbols that can be pushed on the stack: S,

A, a and b. We will add a transition for each of these symbols to a new state. Start with the new

state for when S is shifted onto the stack. Select {}
?. Click on q0, drag to the location for the new

state, and release the mouse. Enter in S as the grammar symbol and then select the item S′ → S·.
That is the only production in this item set. Click on OK and the transition and new state appear.

State q1 has a production that can be reduced, so use the Attribute Editor to make this state

final. State q1 will have no outgoing arcs, as the marker does not appear to the left of any symbols

in its item set.

From q0 add the state for transition A next (the state should be q2), followed by the state for

transition a (the state should be q3). Next add the state for transition b (state q4). The order is

important, as the discussion that follows will refer to these states.

From q3 there is only one outgoing arc, on a. Add the transition for this a next (it should be

q5). Note that when you apply the closure, additional items will be added. State q5 will have three

outgoing arcs. Add a transition on A to a new state (it should be q6). Next add a transition from

q5 on b to a new state. What happened? The state already exists, so the arc goes to q4. Add a

transition from q5 on a to a new state. Again, the state already exists, so the arc goes to q3. Click

on Next when your DFA is complete. The empty parse table appears below the DFA, and may

make the DFA smaller. Increase the size of the DFA by moving the horizontal and vertical bars.

The completed DFA is shown in Figure 8.7.

8.3.5 Building the SLR(1) Parse Table

The DFA can be used to build the parse table. Note that the DFA has seven states numbered

from q0 to q6. The parse table has seven rows numbered from 0 to 6. The rows in the parse table

correspond to the states in the DFA. Row i represents qi. For each qi we add the corresponding
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Figure 8.7: Completed DFA.

actions to row i in the parse table. Again we will use T [i, j] to represent the ith row and jth column

of the parse table.

There are three types of actions to enter in the parse table under lookahead columns, and current

state numbers to enter under variable columns. Suppose state i has an outgoing arc to state j on

lookahead a. This represents a shift. Enter sj in T [i, a]. Suppose state i has an outgoing arc to

state j on variable A. This represents the end of a reduce, the pushing of a left side of a production

onto the stack. Enter j in T [i, A]. Suppose a state is a final state, and thus has a reduced item

A→ w· for production number k. Enter rk in all lookahead columns in row i for lookaheads that

are in FOLLOW(A). There is one exception. If the state has the reduce production that includes

the new start symbol, S′ → S·, then enter acc in T [i, $]. All entries left blank represent an error.

Start with q0 and enter the items for each state, clicking on Next after each row to see if the

row was entered correctly. Then read the discussion that follows.

Tip To see the production number while building the parse table, place the cursor over the

production and the number will appear.

All entries for q0 are entered in row 0. State q0 has two outgoing terminals. Enter s3 in column

a (a is shifted on the stack and enters q3) and s4 in column b. State q0 has two outgoing transitions

with variables. Enter 1 in column A (the A arc goes to q2) and 2 in column S. There are no

reductions, so row 0 is complete. State q1 has only the reduction S → A·, which is production

number 1. FOLLOW(S) = {$}, so place r1 in T [1, $]. State q2 has no outgoing arcs, only the
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reduction S′ → S·. Enter acc T [2, $]. State q3 has only one outgoing arc on a to q5, so enter s5 in

T [3, a]. State q4 has only the reduction A→ b·, which is production number 3. FOLLOW(A) = {$},
so place r3 in T [4, $]. State q5 has three outgoing arcs and adds to row 5 an s3 in column a, an s4

in column b, and a 6 in column A. State q6 has only the reduction A→ aaA·, which is production

number 2. FOLLOW(A) = {$}, so place r2 in T [6, $]. The parse table is complete. Click on Next,

followed by Parse.

Backtracking through the DFA while parsing

At this point, we will trace through the parsing of example aaaab one more time, while looking at

both the parse table shown in the window and the DFA in Figure 8.7. Enter in aaaab and click

on Start. The top of the stack 0 indicates the current state q0 at the start. The input remaining

starts with a (the lookahead), so in the DFA follow the a transition to q3. Click on Step. The

current state is q3 and a is the lookahead. Click on Step four more times and follow along in the

DFA. The stack tells us the path through the DFA that was taken, 4b5a3a5a3a0 means aaaab was

shifted onto the stack following the path q0 to q3 to q5 to q3 to q5 to q4. When a reduce occurs,

steps are retraced (transitions followed backward) as the symbols are popped off the stack. In q4 a

reduce occurs for A → b. The b is popped off and we trace the b transition backward to q5. Note

there are two b transitions into q4. We know to follow the one to q5 since 5 appears on the stack

after b is popped off. From q5 we push the A from A→ b onto the stack and in the DFA follow the

A transition from q5 to q6. We push 6 onto the stack to represent the current state. Click on Step

twice now to see the reduction. In State q6 a reduce occurs for A → aaA. The top of the stack is

6A5a3a5. When the reduction occurs, backtracking occurs in the DFA from q6 to q5 to q3 to q5. In

q5 push A onto the stack, follow the A transition to q6, and push 6 onto the stack. Click on Step

twice now to see the reduction. Again the q6 reduction occurs, but this time the backtracking leads

to q0, the A is shifted on, and the A transition is followed to q2. Click on Step twice to see the

reduction. Click on Step three more times and the two final productions are reduced, resulting in

acceptance and the DFA finishing in q2.

8.3.6 An Example Grammar with a λ-production

A λ-production has no symbols to shift onto a stack so it is automatically reduced. The item for

the production A → λ is A → λ·, which is shown in JFLAP as A → ·. We will trace through an

example of building the parse table for a grammar that has a λ-production and other differences

from the previous grammar.

Start JFLAP and load the file ex8.3b or enter the grammar shown in Figure 8.8 (but don’t

enter S′ → S as it is added automatically). Note that this grammar has one λ-production. Select

Input : SLR(1) Parse.
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Figure 8.8: Grammar with a λ-production for SLR(1) Parsing.

Enter the FIRST and FOLLOW sets, clicking on Next after each one, and enter the item set

for the initial state. State q0 and its item set is shown in Figure 8.8. Any state with a λ-production

is a final state, thus q0 is a final state.

How many outgoing transitions will q0 have? Although q0 has four items, it will only have two

outgoing arcs, for S and A. There is only one arc for A (this is a DFA not an NFA) and no arc

for λ. Add the transition and corresponding state q1 for A. There are two items in q2 that move

the marker over A, both S → A ·Bc and A→ A · a. A shift of A onto the stack means that one of

these two productions is being shifted onto the stack, but we do not know which one yet. Add the

transition and corresponding state q2 for S.

How many outgoing transitions will q1 have? It will have three outgoing transitions, for B, a,

and b. Add the transition and state for B first, then a, and then b. State q3 has five items, but

only three outgoing arcs. Add the transition and state for A first, then S, and then c. This should

complete the DFA, as shown in Figure 8.8. Click on Parse and the empty parse table should

appear.

Enter the parse table. We will explain only q3, which is row three in the table. State q3 has

both shifts and reduces. State q3 has three outgoing arcs, c to q7 (add s7 in T [3, c]), S to q6 (add 6

in T [3, S]), and A to q1 (add 1 to T [3, A]). State q3 has one reduction, A→ λ, which is production

number 3. Place r3 in T [3, a] and T [3, b], as FOLLOW(A) = {a, b}.

When the table is complete, parse the string ababcc while observing the parsing stack. Note

the first thing that happens is a reduce of A→ λ. In the previous example, all the terminals were

pushed onto the stack first, then reduces occurred. In this example, many reduces occur before all

the terminals have been pushed onto the stack. Complete the parsing of the string.
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Figure 8.9: Parsing Grammar That Is Not SLR(1).

Observe the rightmost derivation that SLR parsing produces. Click on Noninverted Tree and

select Derivation Table. Remember that SLR parsing parses in reverse, so start at the bottom

of the table with S in the Derivation column. Proceed up, observing which production is applied

at each step. For each sentential form that has more than one variable, note that the rightmost

variable is always replaced next, as in the B in sentential form ABc.

8.3.7 An Example Grammar That Is Not SLR(1)

In JFLAP, if a grammar is not LL(1) we can build the parse table and see the conflicts in the table,

but we cannot parse any strings. If a grammar is not SLR(1), we can build the parse table, see the

conflicts, select which of the conflicts we prefer, and try to parse strings. We now will go through

an example of a grammar that is not SLR(1).

Start JFLAP and load the file ex8.3c or enter the grammar shown in Figure 8.9 (but don’t

enter S′ → S, as it is added automatically). Select Input : SLR(1) Parse.

Enter the FIRST and FOLLOW sets, and the initial state of the DFA. State q0 has three

outgoing transitions, a, A, and S. Create the A transition and state q1 first, followed by the

S transition and state q2 second, and then the a transition and state q3. (This order is only

important for the discussion that follows.) Create the b transition from state q1 next. State q3 has
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three outgoing transitions. Create the A transition and state q5 first, the b transition and state q6
second, and then the a transition. Complete the DFA.

Enter actions for the parse table rows 0, 1, and 2. Now consider q3, which is row 3. There is a

b transition to q6, so enter s6 in column b. There is also a reduction of A→ λ (production number

4) and FOLLOW(A) = {b}. Enter r4 also in column b (enter a space between s6 and r4). When

there is an entry with a shift and a reduce, this means the grammar is not SLR(1) and is called a

shift-reduce conflict. Enter the rest of the parse table and click on Next.

Before clicking on Parse note that row 3, column b is highlighted in orange, indicating a conflict,

and only one action appears. Click on the entry and all the actions for this entry appear. Select

r4. Now click on Parse and parse the string aab. It parses fine. Now enter the string abb and

parse it. Is abb in the language of the grammar? Yes, but it does not parse successfully. Dismiss

the tab, change the conflict in row 3, column b to s6 and click on Parse again. Now try to parse

the string abb. It parses successfully. Try aab. It should be accepted, but fails. When a grammar

is not SLR(1), appropriate conflict choices must be made to parse the string.

8.4 Summary

In Section 8.1 we learned the useful functions FIRST and FOLLOW. FIRST is the set of terminals

that can start a derivation. FOLLOW is the set of lookaheads that can follow a variable in some

derivation. Both of these functions are needed in computing the parse tables for LL and SLR

parsing.

In Section 8.2 we learned how the LL(1) parsing method works. A CFG can be converted to

an NPDA that uses the LL(1) parsing method. This NPDA is likely to be nondeterministic. The

LL(1) parsing method is deterministic by using lookaheads to aid in choosing the next production

to apply. This method is a top-down approach, replacing the left side of a production by the right

side of a production, and using a stack to apply productions and match the symbols in the input

string in the correct order. Not all CFG can be parsed using the LL(1) method.

In Section 8.3 we learned how the SLR(1) parsing method works. A CFG can be converted to

an NPDA that uses the SLR(1) parsing method. The SLR(1) parsing method is deterministic by

using lookaheads to aid in choosing the next production to apply. This method is a bottom-up

approach, replacing the right side of a production by the left side of a production, and using a stack

to apply productions and match the symbols in the input string in the correct order. Not all CFG

can be parsed using the SLR(1) method, but in JFLAP some CFG with conflicts can be parsed by

choosing one of the conflicting actions before parsing.
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8.5 Exercises

1. Compute the FIRST and FOLLOW sets for all of the variables in the following grammars.

(a) ex8.5FF-a

(b) ex8.5FF-b

(c) ex8.5FF-c

(d) ex8.5FF-d

(e) ex8.5FF-e

(f) ex8.5FF-f

2. For each of the following grammars, compute the FIRST and FOLLOW sets for all of the

variables in the grammar. Then write out derivations of one or more strings that show each

of the symbols in the FOLLOW sets following the appropriate variable. In the derivations,

circle one instance of a terminal following a variable for each item in the FOLLOW set.

For example, in ex8.5showFollow-a there are five symbols in the FOLLOW sets, so there

should be five pairs of terminals following variables circled. Start each derivation with S$ so

$ can be shown following variables. You will need to parse several strings to show all pairs.

Note that the brute-force parser in JFLAP may not generate all pairs, but there is some

string and derivation for each pair.

(a) ex8.5showFollow-a

(b) ex8.5showFollow-b

(c) ex8.5showFollow-c

3. Build the LL(1) parse table for each of the following grammars. Parse the corresponding

string in the brute-force parser and the LL(1) parser. Compare the number of nodes in the

two parse trees and the running time.

(a) ex8.5llparse-a and aaacdbb

(b) ex8.5llparse-b and aaeaabcdcd

(c) ex8.5llparse-c and caabbdaa

(d) ex8.5llparse-d and bbaaecaae

4. Build the LL(1) parse table for each of the following grammars that are not LL(1).

(a) ex8.5notll-a
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(b) ex8.5notll-b

(c) ex8.5notll-c

(d) ex8.5notll-d

5. Load the grammar in ex8.5ll2npda. Compute the FIRST sets, FOLLOW sets, and the

LL(1) parse table. Convert the grammar to an NPDA using the LL(1) method.

In this NPDA, what is on the top of the stack when there is a choice of configurations to

go to next? To answer this question, parse the string aaebccac in the NPDA using Input

: Step with Closure. Each time there is a choice of configurations, use the lookahead to

determine the correct choice and eliminate the other configurations.

6. Convert the following CFGs to NPDAs using the SLR(1) method.

(a) ex8.5lrparse-a

(b) ex8.5lrparse-b

(c) ex8.5lrparse-c

(d) ex8.5lrparse-d

(e) ex8.5lrparse-e

(f) ex8.5lrparse-f

7. Build the SLR(1) parse table for the following SLR(1) grammars.

(a) ex8.5lrparse-a

(b) ex8.5lrparse-b

(c) ex8.5lrparse-c

(d) ex8.5lrparse-d

(e) ex8.5lrparse-e

(f) ex8.5lrparse-f

8. Build the SLR(1) parse table for the following non-SLR(1) grammars. For each one, give the

appropriate conflicts so the given string can be parsed.

(a) ex8.5notlr-a and aab

(b) ex8.5notlr-b and baba

(c) ex8.5notlr-c and aabbb

(d) ex8.5notlr-d and bbacb
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(e) ex8.5notlr-e and bbcbaa

9. Consider the grammar in ex8.3a and the DFA that models the SLR(1) parsing process shown

in Figure 8.7. Explain why input strings b and aab, when parsed using SLR(1) parsing, both

reach state q4 in the DFA, but backtrack to different states.

10. Consider the SLR(1) grammar in ex8.lrcompare. Compare SLR(1) parsing with brute-force

parsing for this grammar using the string a12b4c4 = aaaaaaaaaaaaccccbbbb.

11. Create a CFG that is not SLR(1), has one to three conflicts in the SLR(1) table, and has a

string that cannot be parsed no matter how the conflicts are resolved. Note that a conflict

can be resolved only one way for each string.



Chapter 9

Turing Machines

This chapter describes JFLAP’s Turing machines (TMs) and multitape Turing machines. We first

create a TM and simulate input on that TM. We then show how an alternate multiple simulator

may be used to conveniently show the outputs for transducers. We then describe multitape TMs,

using as examples a two-tape TM that tests if one string is a substring of another string, and an

implementation of the universal TM. We end with JFLAP’s formal definition of a TM.

9.1 One-Tape Turing Machines

A TM differs from other automata in its transitions. In a TM, each transition implies reading a

single symbol from a tape, overwriting that symbol with a new symbol, and moving the tape head

either left, right, or not at all.

A transition for a TM is defined in JFLAP as r;w, d. The r is exactly one symbol to read from

the tape. If r is read, the w is exactly one symbol to write to the tape over r, and d is the direction

to move the tape head after writing w. The symbols r and w must be elements of the tape alphabet

Γ, and d ∈ {R,L, S} indicates that the tape head should move Right, Left, or should Stay (that

is, not move).

9.1.1 Building a Turing Machine

Start JFLAP if it is not already running, or select File : New to create a new structure if JFLAP

is running. Choose to create a new Turing Machine. We will build the TM pictured in Figure 9.1

in stages. This machine accepts the language a2n and has input alphabet Σ = {a}. In brief, our

strategy is to perform a series of passes over the tape from left to right; on each pass half the a’s

are overwritten with #’s. If the number of a’s is a power of two, on one pass there is exactly one

a left, at which point the TM accepts.

The automaton editor is now familiar to you. Create the five states q0 through q4 with the State

127
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a ; a , R

a ; # , R

# ; # , R

a ; a , L

# ; # , R

! ; ! , R

! ; ! , L

# ; # , R
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# ; # , L

! ; ! , L

a ; 
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R
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q0

q1q2 q3

q4

q5

Figure 9.1: A TM That Accepts the Language a2n .

Creator tool qi . With the Attribute Editor tool , make q0 the initial state and q2 the single final

state. When a TM configuration moves into the final state, the machine unconditionally accepts.

Figure 9.2: An Illustration of Entering the Transition a;#, R from q0 to q1.

The machine moves into q2 when the tape has exactly one a remaining. With the Transition

Creator tool a , create a transition from q0 to q1. The transition editor appears in Figure 9.2;

the three fields from left to right are the symbol to read, the symbol to write, and the direction to

move the tape head. The first two fields are text fields, and editing these is similar to editing the

fields for PDA transitions: type “a”, type tab, and then type “#”, and hit return. We want R as

the direction, which it is by default when creating a new transition, so edit only the first two fields.

The transition a;#, R will appear from q0 to q1. Also create two a; a,R transitions from q1 to q3
and q4 to q3, and another a;#, R transition from q3 to q4. The goal of these four transitions is to

overwrite every other a with #.

If the machine is in q1 and has reached the end of the tape, then its last pass encountered a

single a. The machine moves from q1 to q2 and accepts. Create another transition from q1 to q2.

JFLAP’s TMs have tape infinite to both the right and left, and the input is surrounded in both

directions with the blank tape symbol, �. That is, any string of a’s will be prefixed and suffixed
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Figure 9.3: An illustration of entering the transition �;�, L from q1 to q2.

with an infinite string of �’s; the machine can detect the end of input when it encounters a �

symbol. To enter �, leave the fields empty as they are now. We want to change only the direction

from R to L: click on the R in the rightmost field and you will see the menu pictured in Figure 9.3,

with items R, S, and L, respectively. Select L to indicate that you want this transition’s direction

symbol to be L. As always, hit return to finish editing the transition. The transition �;�, L will

appear from q1 to q2.

Tip When the direction field is selected (as by tabbing to it, for example), you may type

“L”, “S”, or “R” with the shift key down to change the direction field, instead of using

the mouse.

9.1.2 Simulation of Input on an Incomplete Machine

We now simulate input on this TM to illustrate what we have so far. (If you no longer have the

TM open, it is stored in ex9-a2n-incomplete.) Select the menu item Input : Step and enter

“aaaa”. Though aaaa is part of the final language we want the TM to accept, right now all the

Turing machine will do is perform a single pass on it, and then fail.

The configuration for a TM contains the current state (which should be q0) and the contents

of the tape (which should be aaaa with � symbols stretching to the left and right). The symbol

currently under the tape, the leftmost a, is shaded red; a small v above the tape points to this

symbol as well. In JFLAP, the input serves as the tape’s initial contents, and the tape head is

initially above the leftmost character of the input.

Click on Step. From q0 to q1 we have the transition a;#, R. JFLAP overwrites the first a with

#, and moves the tape head right, over the next a symbol in the tape. Continue clicking on Step,

and note that the configurations proceed from q1 to q3 to q4 to q3 again, overwriting every other a

with #, effectively halving the number of a’s. Click on Step again, and your window will resemble
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Figure 9.4: After aaaa Has Been Rejected By the Incomplete TM.

Figure 9.4, a single rejected configuration; there is no transition that reads the � symbol. We have

yet to add the transitions that enable rewinding.

Dismiss the simulator tab, and simulate the input a this time. Again we move from q0 to q1,

and on the next step we move to q2 along the �;�, L transition and accept! The goal of the rest

of the machine we shall build is to halve the number of a’s on each pass so that it is eventually

reduced to a single a remaining and accepts, as we see here.

9.1.3 Completing the Turing Machine

We will now complete the incomplete Turing machine. (If you no longer have the TM open, it is

stored in ex9-a2n-incomplete.)

Select the State Creator tool qi and create the last state q5. Machine configurations in q0, q1,

q3, and q4 have passed over zero a’s, one a, some even number greater than 0 of a’s, and some odd

number greater than 1 of a’s in the current pass, respectively. When we are at the end of the tape

on q3, we have verified that the number of a’s is even, and that we have halved the a’s; we should

now “rewind” the tape and begin another pass. To do this, create a transition �;�, L from q3 to

q5 (this will put the machine back on the nonblank portion of the tape), create a transition a; a, L

on q5 (this will cause the machine to backtrack left over the a’s), and finally, create a transition

�;�, R from q5 to q0 (after the tape head backtracks over the a’s, we want to be in position for
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another pass).

The machine is nearly complete, except that during a pass we will overwrite half the a’s with

#’s, so on all but the first pass the tape head will encounter #’s. These are to be ignored: create

loop transitions on q0, q1, q3, and q4 on #; #, R to effectively ignore #’s. We want to ignore #’s

when “rewinding” the tape as well, so create a loop transition #; #, L on q5. You now have the

TM of Figure 9.1!

9.1.4 Simulation of Input on a Complete Machine

Figure 9.5: In the Midst of Simulation of aaaa on the TM.

We will now simulate input on this completed TM. (If you no longer have the TM open, it

is stored in ex9-a2n.) Select the menu item Input : Step and enter “aaaa”, just as you did in

section 9.1.2. The string aaaa is a22
, so the machine will accept.

Click on Step. From q0 to q1 we have the transition a;#, R. Again, JFLAP overwrites the

first a with #, and moves the tape head right, over the next a symbol in the tape. Your window

now resembles Figure 9.5. Click on Step repeatedly. Note that a pass halves the number of a’s,

rewinds, performs another pass to again halve the number of a’s, rewinds, and in the next pass

detects that there is only one a left. The machine then moves to the final state q2.
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Note If one simulates a##a# on this machine, it will be accepted, even though this is clearly

not in a2n

. JFLAP does not require explicit definition of the input alphabet Σ, and one

can abuse this flexibility. Strictly speaking JFLAP is “broken,” but requiring explicit

specification of Σ is more undesirable than this problem. A simple claim that your

machine works as defined only for input under strings of Σ∗ suffices. In this case, we

specified Σ = {a}, so a##a# is illegal by fiat.

Rejection

Now simulate aaaaaa. This is not in the language, and will be rejected. Click on Step repeatedly.

Observe how one pass succeeds, and three of the six a’s are overwritten. On the next pass over the

tape, the machine overwrites what is now the first a, skips the second a, then overwrites the last a.

JFLAP should reject this next configuration because the configuration is now in q4, and is past the

end of the tape. No transition that reads � from q4 exists. Click on Step again: This configuration

will be rejected. When no transition from a state reads the symbol under the configuration’s tape

head, the configuration is rejected. (By comparison, some other definitions of a TM require an

explicit reject state qreject, but JFLAP does not.) In this machine, we halve the number of a’s; if

in a pass the number of a’s remaining is not even, the pass fails and the machine halts.

Try simulating some more strings. Is aa accepted? What about aaa? What about aaaaaaaa?

What about aaaaaaa? Note how the machine accepts or rejects the given input.

Nonhalting machines

Figure 9.6: The Dialog That Confirms You Want to Continue Simulation.

JFLAP can simulate TMs that do not halt. Open ex9-infinite. This machine has a single

initial state q0 and no final state, and has a loop transition on the blank tape symbol. This simple

machine will loop forever if its tape head is initially over �. Select Input : Fast Run, leave

the input field blank, and click on OK. Soon, a dialog resembling Figure 9.6 appears. Although

JFLAP cannot solve the halting problem, it interrupts a machine after 500 configurations have

been generated to ask if you want it to keep searching. If you select No or Cancel the simulation

stops. If you select Yes the simulation continues, but JFLAP asks again at 1000 configurations,
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then at 2000, then at 4000, and so forth until the machine halts or you tell JFLAP to stop. Click

on Yes a few times to observe this, but click on No when you reach 16000 configurations.

9.2 Turing Transducers and the Multiple Simulator

Turing machines differ from other automata in that they do not consume their input as they process

it. In this way, they are not limited to giving simple yes or no answers, but may use the tape as

output. So far we have examined Turing acceptors, which simply produce yes or no answers. An

alternate view of Turing machines is as Turing transducers, which transform the input into an

output, and so may produce more complex outputs than yes or no. For example, a transducer may

write as output tape the sum for an input sequence of numbers, or capitalize all the words in a

sentence, or perform some other useful modification of the input. We consider the contents of the

tape when the machine reaches an accepting configuration to be the output for these transducers.

Note that JFLAP does not distinguish between Turing acceptors and transducers. That dis-

tinction lies only in how the user interprets the final result. For the acceptor it is enough that the

user knows that the TM accepted, but for a transducer the user is interested in whether the TM

accepted and also the final contents of the tape after the acceptance. The simulators are able to

display this output after a fashion since they can display the content of a tape for an accepting

configuration. However, the multiple-run simulator provides the opportunity to make this output

viewing a bit more convenient.
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Figure 9.7: A TM That Takes As Input a Mathematical Expression of the Addition of Binary

Numbers and Produces the Sum As Output.
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Open the ex9-adder. Pictured in Figure 9.7, this TM is given a mathematical expression

containing the addition of binary numbers as input and produces the binary sum as output. For

example, the input 101+10+100 (five plus two plus four) would produce the output 1011 (eleven),

and the input 1011+1 (eleven plus one) produces the output 1100 (twelve). The machine is rather

simple, repeatedly summing the two leftmost numbers until exactly one number remains.

You can input a sum in the step simulator to see how it works more fully, and perhaps that

would be interesting, but if you’re merely interested in whether the machine produces the correct

answer, clicking on the Step button a few hundred times may not be an attractive choice. The

fast simulator or multiple simulator may be more appropriate.

In the case of the multiple simulator, you may have noticed during other menu choices simula-

tions that there are two multiple run simulators, Multiple Run and Multiple Run (Transducer).

This latter option is available only to Turing machines, and is useful in situations where you want

to run the Turing machine as a transducer and view the output of multiple runs.

Figure 9.8: The Multiple Simulator with Outputs on the Adding Turing Transducer.

Select Input : Multiple Run (Transducer). Your window should resemble Figure 9.8. This

multiple simulator closely resembles the multiple simulator described in Section 1.2.3, except with

the addition of the Output column between the Input and Result columns.

In the event that a Turing machine accepts, this simulator will set the corresponding output

cell to the output of the tape, as shown in Figure 9.8. JFLAP considers the output of the tape to

be the string of symbols from the symbol under the tape head up to but not including the first �

encountered to the right. If the tape head is on a �, the output is considered empty. So, if you

build your own transducers in JFLAP, make sure to place the tape head at the leftmost symbol

you want in the output.

Try entering a series of additions in the fields of the Input column and select Run Inputs.

The Turing machine should produce the associated sums in the Output column. In this way we
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can conveniently use Turing machines as transducers in the multiple-run simulator.

9.3 Multitape Turing Machines

In this section we introduce JFLAP’s multitape Turing machines. JFLAP allows multitape machines

with two through five tapes. An n-tape machine requires that each transition read n symbols, one

for each of n tapes, each of which has one read-write head; JFLAP progresses a configuration on

a transition only if all of the n read symbols match. In this section we give examples of some

multitape TMs that solve useful problems.

9.3.1 Nondeterminism and the Substring
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Figure 9.9: A Two-Tape TM That Accepts If the First Tape’s String Is a Substring of the Second

Tape’s String.

We will now build a machine to demonstrate two properties at once: a multitape machine that

uses nondeterminism. We will develop a machine with two tapes, T1 and T2, with both tapes

having input alphabet of Σ = {a, b} and tape alphabet of Γ = {�, a, b}. The machine accepts if

the (a+ b)∗ string in T1 is a substring of the (a+ b)∗ string in T2, and rejects otherwise. Figure 9.9

holds the machine we will build.

Start JFLAP if it is not already running; if it is running select the menu item File : New.

From the list presented choose to create a new MultiTape Turing Machine. Before the editor

appears, a dialog asks for the number of tapes for this new TM. The default is 2; we want two

tapes, but nevertheless click on the 2 and see the pop-up menu with integers 2 through 5, allowing
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choice of the number of tapes for this machine. Select 2 once more, and click on OK. A new

window with the familiar automaton editor appears.

Figure 9.10: Editing the Two-Tape Turing Transition �;�, S|b; b, R from q0 to q2.

Create the three states q0, q1, and q2. Make q0 the initial state and q2 the single final state,

as you see in Figure 9.9. Create a single transition from q0 to q2. Instead of a single row as seen

earlier for single-tape machine transitions, for an n-tape machine there are n rows as there are n

tape heads to read a symbol from, write, and move. The ith row directs what must be read from,

written to, and how to move the head of the ith tape.

In the first row, enter � as the symbol to be read and written and set the direction symbol to

S; recall that to enter � you leave a field empty. In the second row, enter b as the symbol to be

read and written and set the direction symbol to be R, as shown in Figure 9.10. Finish editing the

transition; your transition will appear with the label �;�, S|b; b, R. The n independent controls of

each of the n read-write heads are delimited by the vertical bars |. This transition may be applied

if the head of T1 is over a � and the head of T2 is over a b; during simulation, both tape heads will

write the same symbol they read, and T1’s head will hold its position while T2’s head will move to

the right.

Either enter the remaining transitions shown in Figure 9.9, or open the file ex9-2tape-substring.

We now describe the meaning of the transitions and states. The loop transitions on q0 cause T2’s

head to move right while T1’s head stays. However, if the two symbols under both heads match,

a nondeterministic execution branch is spawned at q1, where the machine attempts to match T1’s

contents as a substring of T2’s contents. The transitions from q1 to q2 handle when T1’s head hits

�, by which time the entire substring is matched and the machine should accept. The transitions

from q0 to q2 handle the special case where T1 is empty, in which case T1 is always a substring of

T2.

Simulation

Now, let’s simulate input on this multitape TM. Select Input : Step. A dialog will appear like

the one shown in Figure 9.11. Next to Input 1 and Input 2 are text fields for entering the input
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Figure 9.11: Input for Simulation on the Two-Tape Machine, with abaa Input for T1 and ababaabaab

Input for T2.

strings for tapes 1 and 2, respectively. Enter “abaa” and “ababaabaab” in the first and second text

fields respectively, and click on OK.

Figure 9.12: In the Midst of Simulation of abaa on T1 and ababaabaab on T2 on the Substring

Nondeterministic Two-Tape TM.

The standard step simulator will appear in your window as shown in Figure 9.12. Note a

configuration here displays two tapes. Also, you see the workings of nondeterminism in Figure 9.12
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with the three configurations: the first configuration, on q0, is one of the sequence of configurations

that simply runs across T2 and throws off branches of nondeterminism into q1 as matches occur.

Click on Step three times to get the configurations shown in Figure 9.12; note that the configu-

rations may be ordered differently than the configurations shown here. The leftmost configuration

in Figure 9.12 is part of one of these nondeterministic branches that attempts to match T1 to part

of T2: the first a has already been matched in T1, and in trying (and succeeding) to match all the

remaining symbols, the simulator will eventually reach an accepting configuration! On the other

hand, the two right configurations will both next attempt to match an a in T1 to a b in T2, so these

configurations will be rejected. Continue stepping to see the acceptance of the first configuration’s

descendant.

Next, try simulating a few other inputs. Try simulating the inputs aaa for tape 1 and aaabaa

for tape 2; obviously this will be accepted. How about aaa for tape 1 and aabaa for tape 2? You

may, of course, run more simulations until you are satisfied you understand how this two-tape

nondeterministic Turing machine works.

9.3.2 Universal Turing Machine

Put briefly, a universal TM is a TM that simulates other TMs. By providing a description of all

transitions in some TM M and the initial contents of an input tape for M , U can simulate M . The

universal TM U accepts, halts, and does not halt as M accepts, halts, and does not halt.

With three-tape machines, implementations of universal TMs become practical. Here we present

an implementation of a universal TM U , explain how to encode a TM M so that M may be input

into and processed correctly by U , explain how U works, and as an example encode and run a

simple TM on U .

Open the file ex9-universal, an implementation of a universal TM. This machine is pictured

in Figure 9.13. The universal TM is canonically implemented as a three-tape TM. The first tape

T1 holds a description of M ’s transitions, T2 holds M ’s internal tape, and T3 holds M ’s internal

state. (Note that T2 and T3 together fully describe a simulation configuration.)

The tape alphabet of U is ΓU = {�, 0, 1} and input alphabet of U is ΣU = {0, 1}. We must have

a process to convert any single-tape TM M into input U may process. As a first step, we establish

some conditions on M . Suppose M ’s set of states is QM = {q1, q2, . . . , qn} and tape alphabet is

ΓM = {a1, a2, . . . , am}. We require M to have initial state q1, single final state q2, and blank tape

symbol a1.

As a second step, we describe a method to encode M ’s tape symbols, states, and transitions

as strings of 0’s and 1’s. Within the context of U each state qi is encoded as 1i (for example, q4
is encoded as 1111), and each tape symbol aj is similarly encoded as 1j . Finally, we encode the

move symbols L, S, and R as 1, 11, and 111, respectively. The 0 symbol suffixes each string of
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Figure 9.13: A Universal Turing Machine.
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1’s representing a single element of ΓM or QM or the set of the three movement commands; the

exception is in T3, where only a single element of QM is stored. Put another way, if the internal

tape of M is ai1ai2ai3 · · · aip , then T2’s contents are 1i101i201i30 · · · 1ip0 (for example, a3a5a2 is

encoded as 1110111110110). As need requires, T2 may be prefixed and suffixed by repetitions of 10,

the representation of a1, M ’s blank tape symbol. Similarly, the internal state qj of M is encoded

as 1j within T3.

The tape T1’s contents require more explanation. Suppose one of M ’s transitions is δ(qh, ai) =

(qj , ak, d`) (where d1 = L, d2 = S, d3 = R). This signifies that if M is in state qh with the tape head

on ai, thenM will overwrite ai with ak, move the head in the d` direction, and move to state qj . Each

such transition is encoded as 1h01i01j01k01`0 with all encoded transitions concatenated together

to form the machine description in T1. For example, one would encode δ(q1, a3) = (q2, a5, S) as

101110110111110110 within T1.

In brief, U executes a continuous loop. First, U performs a linear search in T1 for a transition

in T1 that matches the state in T3 and symbol at the current position of T2. If the current state and

symbol do not match the transition, U proceeds to the next encoded transition in T1. If the state

and symbol match, U changes T3 to hold the new state and T2 to overwrite the current symbol with

the transition’s new symbol, and moves T2’s tape head in the direction indicated by the transition’s

direction symbol. Then, T3 is checked to see if T ’s state q2 is the current state, in which case U

accepts; otherwise, U starts the loop again.

Note The machine U as implemented does not verify that the initial encodings in T1, T2,

and T3 are in accordance with the definitions and restrictions placed on M . If they are

not, the results are undefined.

We describe U ’s run loop in more detail here. The machine in q0 first compares the state in

the current transition of T1 to the state in T3. If the states are the same, U proceeds to q1 to wind

T3 to its beginning; if the states are different, q6 through q11 handle moving T1’s head to M ’s next

transition. Then, in q2 the machine compares the symbol in the current transition of T1 to the

current symbol of T2. If the tape symbols are not the same, U proceeds to q12, and q7 through q11
move U to M ’s next transition.

On the other hand, if the symbols are the same, U moves to q3 and beyond, where T2 and T3

are changed as prescribed by the transition. First, q4 and q5 handle writing M ’s new state to T3.

Then, q13 through q17 handle writing the new tape symbol to T2. While writing the new state

is trivial, writing the new tape symbol is tricky because encodings of M ’s tape symbols differ in

length and each encoded symbol is put end to end. In overwriting one of M ’s tape symbols we not

only have to overwrite the old encoding, but also shift whatever follows that symbol encoding in

T2 to the left or right depending on whether the new symbol is smaller or larger than the old. The

states q14 through q16 handle the case where the new tape symbol is larger, while q18 through q21
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handle the case where the new tape symbol is smaller. Lastly, U ’s states q22 through q30 handle

moving the head of T2 to the start of the encoding of the tape symbol that will now be under M ’s

tape head, depending on the direction symbol; if T2 is moved past its beginning or end, encodings

of M ’s blank tape symbol 10 are added as appropriate. The state q25 handles rewinding T1 all

the way back to its beginning in anticipation of the next search for a transition with the now new

symbol and state encoded in T2 and T3. Lastly, q31 through q33 handle the final check of whether

T3 holds the encoding for M ’s second state (i.e., M ’s final state), and if so, U accepts. Otherwise,

U goes back to q0 to start the process all over again.

Note Keep in mind this machine U will correctly simulate a TM M only if M is deterministic,

because for any one state and symbol it will recognize at most one transition encoded

in T1. You will extend U to simulate nondeterministic TMs in an exercise.

Example encoding and run

□ ; □ , S

a ; b , R

q1 q2

Figure 9.14: The Simple Transducer We Will Encode and Run on U .

The lengthy encodings make interesting TMs tedious to encode and input. However, a very

simple machine, such as the one shown in Figure 9.14, is manageable. This TM is also stored in

ex9-simple. The Figure 9.14 TM is a trivial transducer: It takes a string in a∗, converts every a

to a b, and accepts when it reaches the end of the string. The TM of Figure 9.14 is deterministic,

has q1 as the initial state and q2 as the single final state, and thus satisfies the requirements of TMs

M to encode for U . We encode the tape alphabet Γ = {�, a, b} symbols as � → 1, a → 11, and

b→ 111.

First, we encode the transition a; b, R: this is δ(q1, a) = (q1, b, R), encoded as 101101011101110.

Remember, the symbols are encoded in the order they appear in the transition function. The �;�, S

transition is formally δ(q1,�) = (q2,�, S), encoded as 101011010110. Therefore, the machine

description is 101101011101110101011010110, the input for T1. Suppose we want our initial input

for M to be aaa: this we encode as 110110110 as input for T2. Finally, as always T3 must hold 1

to signify our initial state q1.

Select Input : Fast Run and enter these values for T1 through T3, and click on OK. Within

a short time the machine will say it accepts. The configuration trace contains a large number of

configurations: scroll to the bottom to see the configuration with T2, with its head on 10 past three
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1110 encodings, that is, on the � after three b’s, and T3 holds 11, the encoding of q2, as we would

expect.

9.4 Definition of n-tape TM in JFLAP

JFLAP defines a possibly nondeterministic n-tape TM M as the septuple M = (Q,Σ,Γ, δ, qs,�, F )

where

Q is a finite set of states {qi|i is a nonnegative integer};

Σ is the finite input alphabet, where � 6∈ Σ;

Γ is the finite tape alphabet, where � ∈ Γ and Σ ( Γ;

δ is the transition function with δ : Q× Γn → subset of Q× Γn × {L, S,R}n;

qs ∈ Q is the initial state;

� is the blank tape symbol; and

F ⊆ Q is the set of final states.

Like FAs and PDAs, in JFLAP TMs do not require explicit definition of Σ or Γ. For each

transition on each tape exactly one symbol is read and written under the tape head, and each head

is moved either 1 or 0 places to either the left or right. During simulation, the user inputs each

tape’s initial contents, with � tape symbols extending infinitely to the left and right of the input

string in each tape. The tape head starts over the leftmost character of user input, or over a � in

the tape if the user had input the empty string for initial tape contents.

For example, the TM M of Figure 9.9 is defined as M = (Q,Σ,Γ, δ, qs,�, F ) where

Q = {q0, q1, q2}

Σ = {a, b}

Γ = {�, a, b}
δ(q0,�, a) =δ(q1,�, a)={(q2,�, a, S,R)}
δ(q0,�, b) = δ(q1,�, b) ={(q2,�, b, S,R)}
δ(q0,�,�)=δ(q1,�,�)={(q2,�,�, S, S)}
δ(q0, a, a) = {(q0, a, a, S,R), (q1, a, a,R,R)}
δ(q0, b, b) = {(q0, b, b, S,R), (q1, b, b, R,R)}
δ(q0, a, b) = {(q0, a, b, S,R)}
δ(q0, b, a) = {(q0, b, a, S,R)}
δ(q1, a, a) = {(q0, a, a,R,R)}
δ(q1, b, b) = {(q0, b, b, R,R)}
qs = q0

F = {q2}.
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9.5 Summary

Section 9.1 described editing Turing machines (TMs) and simulating input on TMs. The transition

format is x; y, d where x is the symbol to read, y is the symbol to write upon x, and d is the

direction to move the tape, either L, S, or R. During simulation, input becomes the tape’s initial

contents, with the tape head at the symbol corresponding to the leftmost character of input.

Section 9.2 described how the multiple-run simulator can be used to conveniently produce

outputs of a transducer. A transducer that evaluates mathematical expressions of additions in the

input was used as an example.

Section 9.3 described the process for creating and simulating n-tape TMs. With these, the

transition format is x1; y1, d1|x2; y2, d2| · · · |xn; yn, dn, where each xi; yi, di section represents the

control directives for tape Ti. We built a two-tape machine with multitape and nondeterministic

functionality to greatly simplify building a machine that checks if one string is a substring of another

string. We also studied and used an implementation of a universal Turing machine, a TM capable

of taking a machine description for any one-tape TM M and simulating input on that TM M .

Section 9.4 described the formal definition for a JFLAP TM.

9.6 Exercises

1. Load the following files containing Turing machines. Describe the language that is accepted

by each one.

(a) ex9.5langacc-a

(b) ex9.5langacc-b

2. The Turing machine in ex9.5fix-a is supposed to accept the language {w ∈ Σ∗ | na(w) =

2 ∗ nb(w)},Σ = {a, b}. Correct this machine so it does accept this language.

3. The Turing machine in ex9.5fix-b is supposed to accept the language {ww | w ∈ Σ∗, |w| >
0}, Σ = {a, b}. Correct this machine so it does accept this language.

4. Write one-tape Turing machines to accept each of the following languages.

(a) {wwR | w ∈ Σ∗, |w| > 0}, Σ = {a, b}.

(b) {vwv | v, w ∈ Σ∗, |v| = 2}, Σ = {a, b}.

(c) {vcw | v, w ∈ {a, b}∗, and v is a substring of w}. For example, aabcaaaba, aacbbbaa are

accepted and aabcbaaaa is not. This Turing machine may have around 20 states.

5. Load the following files containing Turing machines as transducers. Describe the function

they represent.
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(a) ex9.5trans-a

(b) ex9.5trans-b

6. The Turing machine in ex9.5fix-c is supposed to be a transducer for f(w) = v with w ∈
{a, b}∗, and v is w with c added between every pair of a’s. For example, f(abaaaa) =

abacacaca. Correct this machine so that it works correctly.

7. Write one-tape Turing machines as transducers for the following.

(a) f(w) = am, where m = na(w) mod 3, w ∈ a∗. For example, f(aaaa) = a and

f(aaaaaaaa) = aa.

(b) f(wvvy) = waay where v, w, y ∈ Σ∗, |v| = 1, |w| = |y|, Σ = {a, b}. For example,

f(babbba) = baaaba and f(babaabaa) = babaabaa.

(c) f(w) = wR, where w ∈ Σ∗, Σ = {a, b}. For example, f(aabb) = bbaa and f(baa) = aab.

8. Load the two-tape Turing machine in ex9.5ttm-whatlang-a with Σ = {a, b}. Assume the

Turing machine starts with an input string on tape 1 and tape 2 blank. Describe the language

that is accepted by this Turing machine.

9. Load the two-tape Turing machine in ex9.5ttm-whatlang-a with Σ = {1}. This Turing

machine is a transducer that starts with the input on tape 1 and the second tape blank, and

produces the output on tape 2. Describe the function for this transducer.

10. Write two-tape Turing machines to accept each of the following languages. Each one starts

with the input string on tape 1 and tape 2 blank.

(a) {w ∈ Σ∗ | nb(w) = 2 ∗ na(w)},Σ = {a, b}.

(b) {wwR | w ∈ Σ∗},Σ = {a, b}.

(c) {anbmanbm | n > 0,m > 0}

11. Write two-tape Turing machines as transducers for each of the following functions. Each

Turing machine should start with the input string on tape 1 and tape 2 blank, and produce

the output on tape 2 with the tape head on the leftmost symbol.

(a) f(w) = wR, w ∈ Σ∗,Σ = {a, b}. For example, f(abb) = bba and f(ba) = ab.

(b) f(w) = w′ where w′ is w with a b added after each pair of a’s, w ∈ Σ∗, Σ = {a, b}. For

example, f(aaa) = aaba and f(aaaaaba) = aabaababa.

(c) f(x#y) = 3x + 2y where x, y ∈ {1}+, Σ = {1,#}. Here x and y represent unary

numbers and the result is also a unary number. For example, f(1#11) = 1111111 and

f(11#1) = 11111111.



9.6. EXERCISES 145

12. Consider the universal Turing machine U of Section 9.3.2 pictured in Figure 9.13.

(a) Provide a brief functional description of what happens within U when there is not a

transition encoded in T1 for M ’s current internal state and tape symbol, and why.

(b) A TM M simulated on U must be deterministic. What nondeterministic transition can

we add to U to remove this restriction, so that M may be nondeterministic? Many

answers are possible. Answers for which every single acceptance path for any input on

any M will result in a single acceptance path within U are preferred.

(c) Remember, the restrictions on M imply T3 must initially hold 1. However, no enforce-

ment makes sure this is so: T3 can really hold any state encoding you want initially.

Suppose that we lift the requirement that T3 initially hold only q1’s encoding, so that

T3 may hold the encoding of any state (that is, not just 1, but 11, 111, and so forth).

With U unmodified and this restriction lifted, U no longer simulates M correctly. Why

not? Hint: U simulates M correctly for all but one state.

(d) How can we modify U so that U simulates M correctly no matter the initial state in T3?



Chapter 10

L-systems

In this chapter we describe L-systems, an alternative type of formal language structure. Like

grammars, L-systems generate a language of strings. Unlike grammars, L-system derivations are

often interpreted as graphical rendering instructions, and have been used to generate fractals and

simulate plant growth. This chapter describes how L-systems work and how JFLAP interprets

derivation strings to produce graphics.

10.1 L-system Creation and Display

L-systems are similar to context-free grammars (CFGs) in that they generate strings of symbols

from a finite alphabet Σ through the application of a finite set of rules. In this section we create

a series of L-systems, and with them first explore the definition of L-systems within JFLAP and

then intersperse this with examples of how JFLAP uses symbols in L-system derivations to create

interesting graphics.

Start JFLAP and choose to create an L-System. You will see a window similar to Figure 10.1,

though with blank fields and tables.

In JFLAP, symbols in the L-system are strings of characters space-delimited from other symbols.

For example, the string g + gg − f consists of five symbols: g, +, gg, −, and f . This possibility of

multiple character symbols differs from JFLAP’s CFGs, where every single character is considered

a symbol. On the one hand this allows some flexibility and power, but on the other this can lead

to confusion: Sometimes one forgets spaces, and it is odd to think of gg as being a single “letter”

in an alphabet, but it is. In all cases, if one wants JFLAP to interpret two strings of characters as

two alphabet symbols, the symbols must be separated by a space or JFLAP will consider the two

as a single alphabet symbol.

146
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Figure 10.1: An L-System Editor, with the L-System for a Dragon Fractal.

10.1.1 Turtle Symbols

An L-system’s mathematical definition calls for a finite alphabet Σ, an axiom and a collection of

rewriting rules. L-systems share similarities with CFGs: Like CFGs, L-systems all have a starting

point, called an axiom, which is analogous to a start variable in a CFG in that it is the start of any

series of derivation strings, but differs in that an axiom is a finite string in Σ+ so may hold one or

more symbols. An L-system’s rewriting rules are analogous to the productions in a CFG, but for

now we limit our discussion to the axiom without any rewriting rules.

Start editing the Axiom text field at the window’s top, and enter the string “g + g + f - g

- g”. (Remember to separate adjacent symbols with spaces.) Then, select the menu item Input

: Render System. A new tab L-S Render will appear. When rendering an L-system as a

graphic, JFLAP considers symbols of the derivation (in this case, the axiom itself) to be a sequence

of directives to a turtle. We use turtle in the sense of LOGO: an object that stores a position

and heading, and to which one may send commands to move and draw lines to new positions, to

turn in different directions, and to perform other commands. The rest of the chapter is largely an

exposition of the use of turtle commands.

The majority of the window shows a large canvas where turtle commands are rendered. A

simple crooked line broken in the middle as shown in Figure 10.2 will appear on the canvas, the

turtle’s rendering to the g + g + f − g − g string. How does this string result in that

graphic? In JFLAP, the L-system renderer turtle starts pointing upward. A g tells the turtle to

move forward with the pen down (that is, to move and draw a line in its wake). By default the g

causes the turtle to go forward 15 pixels. A + tells the turtle to turn to its right; the default turn
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Figure 10.2: The Result of Rendering g + g + f − g − g.

angle/indexL-systems!parameter!angle is 15◦, so + causes a 15◦ turn. The f symbol tells the turtle

to move forward with a pen up (that is, to move and not draw a line in its wake). The − symbol

tells the turtle to turn to its left, again by 15◦. Therefore, with the turtle starting at the bottom

of the lower line, the g + g + f − g − g string of symbols tells the turtle to draw forward (g),

turn to the right (+), draw forward (g), turn to the right (+), go forward without drawing (f),

turn to the left (−), draw forward (g), turn to the left (−), and draw forward once more (g).

The commands g, f , +, and − are four of many turtle commands. More are exhibited

throughout this chapter. Appendix A and the help provided in JFLAP for the L-system renderer

are both references of all turtle commands.

When you are done, dismiss the L-S Render tab, or close the L-system entirely.

10.1.2 Rewriting Rules

Now we will write an L-system with a rewriting rule, a mapping from a particular symbol to a

string of replacement symbols. Grammar productions that map variables to a string of replacement

grammar symbols is a close analogy: As in a grammar derivation, subsequent L-system derivations

will see symbols rewritten (that is, replaced) with other symbols according to rewriting rules. We

enter rewriting rules in the grammar production editor directly below the axiom field. The symbol

to rewrite appears on the left side, and the string of replacement symbols appears on the right side.

We now write an L-system that results in a sequence of g symbols that doubles in length with

every step of derivation. As you may recall, g causes the turtle to go forward and draw a line in

its wake, so graphically this sequence will be represented as a line that doubles in pixel length with

every derivation. Since g goes forward by 15 pixels, we will first have a line of pixel length 15, then

30, then 60, and so forth.

Create a new L-system, and enter the single symbol g as the axiom. Then, in the rewriting

rules section, enter the rewriting rule g → g g, entered just as if you were entering a grammar

production. Remember, the g symbols on the right side must be space-delimited!

You have finished the L-system. Select Input : Render System. This time we will describe

the L-S Render tab’s components. Along the window’s top are three components. The top-left

component is a progress bar that shows the progress of rendering, which is useful in very large
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L-system derivations that may take a while to process and display the turtle commands; it is less

useful in this simple case. The top component in the center displays the derivation itself; it now

displays g, the axiom. The top-right component lets us set the number of derivation steps: It

displays 0, or the derivation after 0 steps, i.e., the axiom. Note that below all of these we again see

the canvas, and far to the left we see a single small vertical line, the graphical result of the turtle

interpreting g. Ignore the controls along the window’s bottom for now.

The control in the upper-right is a spinner , and with it we can adjust how many derivation

steps the current derivation is removed from the axiom. We adjust a spinner by pressing the up

and down arrows along its right side. Press the up arrow to increase the derivation steps. When it

shows 1 in its display, note that the derivation field now shows g g, and that the line is twice as

long as before! The axiom was g, and with one derivation step the g was rewritten with the rule

g → g g, so we get g g. Increase to 2 derivation steps. The derivation is now g g g g: the first and

second g symbols were rewritable according to the rule g → g g, so both were rewritten as g g.

CFGs differ. Each grammar derivation step involves expanding a single nonterminal in the

previous derivation string. We see that each L-system derivation step involves rewriting every

rewritable symbol in the previous derivation string. If we rewrote symbols as we would in a CFG,

four successive derivation steps would produce g, g g, g g g, and g g g g, in that order. On the other

hand, four successive L-system derivation steps would produce g, g g, g g g g, and g g g g g g g g,

in that order, as all symbols are rewritten in parallel.

Increase to seven derivation steps with the spinner. Note that with each derivation the line’s

length doubles. We may also press the down arrow on the spinner to undo a derivation step. If we

set the control to 0 again, JFLAP displays the axiom and its rendering.

Tip Depending on the window’s size, the line will at some point grow too large to be held:

When an L-system rendering grows too large to be displayed in the window, scroll bars

appear to allow you to view hidden portions of the image.

Note Note that the with seven derivation steps, the derivation field now displays Suffice to

say, quite long; most interesting L-systems have exponential growth in the number of

symbols in a derivation with respect to the number of derivation steps. When there are

very many symbols it does not display the derivation, but rather that message. In such

circumstances it is unlikely that a symbol-by-symbol showing of the L-system would be

enlightening to a human. Additionally, on a more practical note those strings quickly

reach sizes of many megabytes, and attempting to display strings of such size in text

fields reveals interesting performance characteristics of Java.

When you are done, dismiss the L-S Render tab.

As a final step, it helps to emphasize that we must insert spaces between rules: Change g → g g
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to g → gg. Render the system again. We start with g, but on the next derivation get gg and

the graphic vanishes. Why? Because g → gg replaces the g with the gg, which the turtle does

not interpret as two move forward commands, but simply as gg, which is nothing. Furthermore,

attempt more derivations: The derivation remains gg, and does not grow, because, again, gg is

its own symbol, and while there is a rewriting rule for g there is not one for gg. Remember those

spaces! You may close this L-system when you are done.

Nonturtle symbols

The turtle may not recognize some symbols in a derivation; unrecognized symbols are ignored. For

example, the turtle does not recognize any uppercase letters, so a derivation g + A g B C − g

would produce the same graphic as the string of symbols g + g − g. Very often we want a symbol

to be used exclusively for rewriting and to not produce a visual artifact, so this is useful.

Create a new L-system. Enter “X” into the axiom field; as an uppercase letter, the turtle will

not recognize it. It is conventional to use uppercase letters for symbols that are meant to be only

rewritten. Enter the rewriting rule X → g f X. Select Input : Render System once again, and

perform a few derivations.

The derivation starts with X, proceeds to g f X, and then to g f g f X. The L-system will

be rendered as a dashed line, first with no dashes (i.e., nothing) with the rendering of X, then one

for g f X, then two, then three, and so forth.

When you are done, dismiss the L-S Render tab, or close the L-system entirely.

10.1.3 Pushing and Popping Turtles

L-systems can model organisms with modular growth characteristics, like plants. We shall use

L-systems to draw a mighty tree! Our tree is very simple: It starts with a branch, and from each

branch grow two branches, and from each of those branches grow two more branches, and so forth,

for each derivation step.

Create a new L-system. Suppose we use the symbol B to represent the “seed” of a branch. The

tree trunk itself is one branch, so our axiom is B. Enter the rewriting rule B → g − B + + B.

When we rewrite a B with this rule, we first get a line representing a branch segment (g). Second,

we get a slight turn to the left (−) and the seed for a branch (B). Third, we get an equal turn to

the right (one + to undo the −, and another +) and the seed for another branch (B). That seems

plausible.

Try rendering it. The eighth derivation step is shown in Figure 10.3; the eagle-eyed will see

it is not a tree. The problem is that for g − B + + B, the second branch B will draw in the

manner we desire only if the turtle still has the position and heading it had when starting the first

branch B. However, once the first of the two B’s is expanded on the next derivation, the turtle is
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Figure 10.3: This Is Not a Tree.

put somewhere entirely different.

Figure 10.4: This Is a Tree.

Dismiss the L-S Render tab. We have two choices: we can either put the turtle back ourselves

with a series of turtle commands, or we can save the turtle’s state before we draw a branch, and

retrieve it when we are finished. The former option is often preferable. To accomplish this, prefix

and suffix the rewriting rule’s right portion with the bracket symbols [ and ], respectively, that is,

change the B → g − B + + B rewriting rule to B → [ g − B + + B ]. When the turtle

encounters a [, it saves itself and its attributes (position, heading, and other attributes you have not

learned yet) to a stack. When the turtle encounters a ], it pops that stack, and sets its attributes

to those popped from the stack. In this case, we used the bracket symbols so that every time a

B is expanded, the turtle state is saved and retrieved, so that the − B + + B string of symbols

works in a fashion more in line with our original intentions!

Render the L-system with this change. Successive renderings of derivations should resemble a

tree! The eighth derivation is shown in Figure 10.4.

Figure 10.5: This Is the Second Derivation.
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Change the derivation spinner so that the second derivation is rendered: It should look like the

letter Y, and the derivation is [ g − [ g − B + + B ] + + [ g − B + + B ] ]. Figure 10.5

shows this derivation’s turtle rendering. Taking this one symbol at a time, the [ preserves the

turtle state, g goes forward (producing the bottom vertical line in Figure 10.5), then − turns the

turtle to its left. We now have a [ g − B + + B ] block resulting from the rewriting of a B.

This preserves the turtle state on [, goes forward on g (producing the top-left line in Figure 10.5),

performs some currently useless turns of −, +, and +, and then restores the turtle state with ].

With that ], the turtle is moved back to the point it was when just [ g − had been interpreted by

the turtle, that is, the symbols just before the last [. Now we encounter two more +’s, and draw

another [ g − B + + B ] block that draws the top-right line in Figure 10.5, and on ] delivers the

turtle to the point where it was before it drew the g of that block. Finally, the last ] delivers the

turtle to the point where it was before the first g ever was drawn, so the turtle is at the base of the

trunk again, pointing up. Note once again that ] restores from the last unpopped [ (in this case

the first [ ever), not the last [. As we have seen in Figure 10.4, this preservation of state continues

recursively through B with subsequent derivations.

10.1.4 Polygon

Load the file ex10-tree-growing. This is a slight modification to the tree built in Section 10.1.3,

so that not only are new branches added, but existing branches are continually elongated: Each

new branch starts small, but with each derivation step each branch increases in length, with the

effect that the new branches are shortest, and the “trunk” is the longest branch of all. It differs

from the previous L-system in that T has replaced g in the B rewriting rule, and there is a rewriting

rule T → T g which serves to add a g after T with each derivation step. Render the L-system to

see the effect of this modification.

It would be nice if our tree could grow leaves as well as branches. JFLAP’s turtle has the ability

to draw filled-in polygons as well as lines, so we can draw some odd sort of leaf. Our leaves will be

diamond-shaped.

Consider the rewriting rule L→ [ { − g + + g % − − g } ]. We see a few new symbols here that

we have not encountered. First we have the brace symbols { and }; these indicate that we should

start and end a polygon, respectively. The { symbol causes the turtle to enter polygon mode, and

the first point of the polygon is set to the turtle’s current location. Whenever a g is encountered in

polygon mode, instead of drawing a line, the turtle is moved forward, and the turtle’s new location

is added as the polygon’s next vertex. When } is encountered, the polygon is filled with red and

we exit polygon mode. As one last note, % will turn the turtle 180◦ in the same axis as + and −
turns. When L is rewritten, it will produce a polygon in a spearhead or diamond shape. We have

the [ and ] symbols surrounding the polygon to preserve the state.
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Figure 10.6: Our Tree with Leaves, After Six Derivations.

Add the L → [ { − g + + g % − − g } ] rewriting rule to the L-system. Also, in the

B rewriting rule, put an L after the T ; a leaf shall grow on the tip of each branch! Render this

L-system. The graphical representation of the sixth derivation step is shown in Figure 10.6.

Note In polygon mode, the f turtle command will move forward, but unlike g, the move’s

endpoint will not become a polygon vertex! Lines are not drawn in polygon mode.

10.1.5 Parameters

Continue with the now leaved tree from the previous section; if you have closed the file, load the

file ex10-tree-leaves. Recall the rendering of the tree, and its bright red leaves. The leaves’ red

color may seem odd (unless your favorite tree is the Japanese maple, though strictly speaking it is

a shrub, not a tree). Therefore, a conventional leaf color like green is more appropriate.

Dismiss the renderer tab to return to the editor for the tree L-system. Below the section for

rewriting rules, there is the parameter table with two columns, Name and Value. Each row in

the table corresponds to the identifying name of and value of a parameter. In the first row of this

table, in the left cell enter “polygonColor” and in the right cell enter “green”. (Note that the table

grows to accommodate more values as you edit the bottom row.) Re-render the L-system; it will

resemble the same leafed tree from Figure 10.6, except the leaves will be green, not red!

Dismiss the renderer tab. The fill color of polygons is just one of many configurable parameters.

We will set other parameters now. Just as you set polygonColor to green, on the next line set

angle to 30; render again, and you will see that the + and − turtle commands will turn 30◦ instead

of the default 15◦. The tree will be more squat and have fatter leaves, as shown in Figure 10.7.

Dismiss the renderer tab. Lastly we want to set a value for the parameter color, which specifies

lines’ color. In the parameter table’s upper-right corner (to the right of the Parameter heading
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Figure 10.7: The Tree with 30◦ Turns Instead of 15◦ Turns, After Six Derivations.

and above the space for the scroll bar) there is a small rectangular region. Click on it; a pop-up

menu of many choices for parameter names will appear. Choose color, and type “brown” for the

tree’s trunk: The choice of color will create a new entry for the parameter color in the table and

start the user in editing a value, so that we merely have to choose a name, then type the value.

This little menu is useful if we forget the exact parameters’ names that the turtle recognizes.

In addition to setting parameters in the parameter table, the turtle will interpret certain symbols

in a derivation as a command to change a parameter. If we want a parameter’s value to vary

throughout the rendering, we can insert a symbol name = value where name is the parameter

name and value is the value we want assigned to that parameter. For example, insert angle = 15

after the [ in the L rewriting rule. (Remember, L-systems considers spaces as the delimiter for

separate symbols, so when you enter angle = 15 do not use spaces!) Render the L-system again:

Note that, though the branches have retained their sharper turns as shown in Figure 10.7, the

leaves are as thin as they were before we set the angle parameter to 30. Nonnumerical parameters

may be set as well. For example, if the symbol color = red is encountered, all lines created with g

afterward will be drawn in red.

Note Though we set angle = 15, − and + turns when turning to produce new branches still

turn with 30◦. This is because the angle = 15 symbol appeared within [ and ] turtle

push and pop symbols, so the turtle’s state, including the turn angle, is preserved on [

and restored on ].

When you are satisfied, dismiss the renderer tab.

10.1.6 Increment/Decrement Parameter Commands

In addition to setting parameters manually as described in Section 10.1.5, special turtle symbols

exist for incrementing and decrementing some turtle parameters: the line’s width, the line color’s

hue, and the polygon color’s hue.

If you do not have the L-system from the previous section open, open ex10-tree-green-leaves.
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First we are going to use turtle commands that change the polygon fill color’s hue angle.

Informally speaking, the hue angle is the color’s angle within a color wheel: reddish colors hover

around 0◦, green-ish colors are around 120◦, and blue is at 240◦. For example, any color of hue 60◦

would be a shade of yellow.

We want leaves on the new peripheral branches to still appear green, but we also want leaves

that have already been drawn to appear to grow more red over time. Two turtle symbols will

help us here: The symbol ## increments the polygon color’s hue angle, and @@ decrements the

polygon color’s hue angle. (The symbols # and @ are similar, but increment and decrement the

line color.)

Note The symbols ## and @@ are each single symbols within JFLAP, so do not insert a

space between the #’s or between the @’s. If you do, # # will be recognized as #

then #, not ##.

Change the axiom from B to R B. This R is going to be a symbol at the root of our tree

(so to speak) before any branches are rendered. Create the rewriting rule R → @@ R. During

each derivation step, the hue angle will be decremented, causing the leaves to appear more and

more yellow, then orange, then red as the tree grows. Try rendering a few derivations to confirm

that the leaves change color. However, we want newer leaves to retain the green color: in the B

rewriting rule, insert a ## symbol after the [ symbol. The newest branches will have encountered

as many ## symbols as @@ symbols, thus nullifying the “reddening” effect and leaving them

green, while the progressively more interior leaves have had their hue angle more decremented than

incremented. Render the L-system and observe how leaves on the interior become slightly yellower

with each derivation!

There is one small cosmetic problem: The outermost leaves are not really green. This is

not evident now: The parameter hueChange—the amount colors’ hue angles are incremented or

decremented—is 10◦ by default. A mere 10◦ does not make the problem obvious. Return to

the editor, and set the parameter hueChange to 60! Render the L-system again. Note that the

peripheral leaves start out yellow, not green! That is because the last ## symbol appears before

an unexpanded L; the outermost rewritten L appears before the last ##, so at that point the hue

angle decrements and increments are not yet balanced. Change the axiom to R ## B before you

continue. Render again, and note that the outer leaves now appear green, as they should!

Delete your change to hueChange now. To do this, it suffices to delete the contents of the

Name and Value cells of a row. Blank rows are ignored.

In addition to leaves yellowing and turning red, it would be nice if, when our tree grew taller, its

trunk would also grow wider near its base. We will use the commands ! and ∼, which increment and

decrement the line width, respectively. Modify the R rewriting rule so that it reads R →! @@ R.

Before, this rule made the polygon color increasingly red with each derivation. Now it will also
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serve to make lines increasingly thicker. To balance it, in the B rewriting rule insert a ∼ after the

[. (Also, for reasons similar to the cosmetic problem with polygon fill colors described, insert a ∼
in the axiom to make the axiom R ∼ ## B.)

Figure 10.8: The Tree L-System Rendering with a Thicker Trunk and Apparently Wintering Leaves,

After Six Derivations.

Render the L-system. Your tree will resemble Figure 10.8, with leaves growing more yellow and

red, and with branches growing thicker, toward the tree’s interior!

10.1.7 Stochastic Rules

If you do not have the tree L-system from the previous section, open ex10-tree-thick-fall-leaves.

Look again at Figure 10.8. There is nothing wrong with the tree except its eerie perfection. That

shall soon be amended.

Figure 10.9: One of Many Possible Renderings with the Addition of the T → T Rewriting Rule.

This time, the modifications are quite short: Add the rewriting rule T → T . Also, in the

parameter table change the parameter angle to 15, as this tends to yield more aesthetic results.

Re-render the L-system a few times. You may encounter a tree like the tree in Figure 10.9, or you
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may encounter something that looks entirely different, but you almost certainly will not encounter

the exact same tree!

The growth of branches was steady and predictable, but is now uneven and inconsistent. It has

a more natural feel that previous renderings’ perfect symmetry lacked. This is because in adding

the T → T rule, we made the L-system stochastic, that is, under the effect of a random variable!

When rewriting any symbol, the rewriting rule used is uniformly randomly chosen from the

rewriting rules that may legally rewrite the symbol. In this case, since we have two rewriting rules

for T , it is even money whether a T shall be rewritten as T (not growing the branch) or T g

(growing the branch).

We are now completely finished with the tree example! You may close the window.

10.1.8 Mathematical Expressions

Figure 10.10: The Golden Rectangle, the Rendering of the Ninth Derivation Step of the Fibonacci

L-System.

In addition to assigning simple numerical values to parameters as in section 10.1.5, parameters

may be set to a value determined by a mathematical formula! This allows some graphics that are

otherwise difficult or impossible to render to be produced fairly easily.

Figure 10.10 shows a geometric figure called the golden rectangle. Put informally, the golden

rectangle is an arrangement of squares, where each square’s sides are the length of one of the

numbers of the Fibonacci sequence (the unit is undefined but is uniform across all squares). The

Fibonacci sequence is defined by f0, f1, f2, . . ., with f0 = f1 = 1, and fi = fi−1 + fi−2 for i > 1. In

the middle you see the two smallest squares corresponding to 1 and 1, then a square four times the

area corresponding to 2, and so forth.

Open the file ex10-fibonacci. Render a few derivations of this L-system; the rendering will

resemble the golden rectangle of Figure 10.10.

Dismiss the renderer and examine the L-system. First, note the list of parameters and val-

ues. While angle and distance are parameters that directly affect the way the turtle draws, the

parameters a and b are not: The parameter list accepts values for parameters that are used in

mathematical expressions as variables and are not necessarily consulted by the turtle. In this case,

a and b are variables that hold two Fibonacci values fi−1 and fi as the rendering progresses; as we
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shall see, these parameters are updated through the course of rendering.

Note the S rewriting rule. Ignoring the apparent complexity and whatever meaning the symbols

hold to the turtle, the L-system itself is incredibly simple: The only symbol that is rewritten is S,

and there is always only one of them in every derivation, and it always occurs at any derivation’s

uttermost right. The ending string of symbols g + g + g % f + S will create a small three-sided

box, and then put the turtle in position to create the next three-sided box, which is slightly larger.

This raises the question of how the squares get slightly larger at each derivation step. Note

now the string of symbols in the rewriting rule before the first g symbol. During rendering, when

the turtle encounters a c = a+ b symbol, at that point the parameters a and b hold the last value

and current value respectively of the Fibonacci sequence. The c = a+ b symbol sets the parameter

c to the value of a + b, which is the next Fibonacci number after b. Then, a is set to b in a = b,

and b is set to c in b = c. This collection of symbols changes a and b from holding fi−1 and fi to

holding fi and fi+1. Then, we encounter the symbol distance = a∗3. As you may expect, this sets

the distance parameter to a ∗ 3, or three times every successive Fibonacci number. The distance

parameter is what the turtle consults when deciding how far the g and f parameters travel; this is

why the rectangles get larger and larger. With each box drawn, distance is changed to a constant

multiple of successive Fibonacci numbers.

Mathematical expressions in JFLAP must obey some guidelines:

• Just as we had parameter = value, we now have parameter = expression. The expression

is evaluated to a numerical value and assigned to the parameter. Indeed, value is also

a mathematical expression, though one consisting of a single numerical operand and no

operator!

• There are addition (+) and multiplication (∗) operators, and there are also subtraction (−),

and division (/), and power (^) operators. The expression x^y signifies x raised to the yth

power. The + and − operators have lowest precedence, ∗ and / operators have next to lowest

precedence, and ^ has highest precedence. Parentheses may also be used to control the order

of evaluation.

• The expression’s operands must be either parameter values or numbers. If an operand does

not map to a numerical value, then 0 is assumed.

• If an assignment commits a mathematical no-no, e.g., division by zero, the results are

undefined. In the current version of JFLAP, the entire rendering is invalidated and nothing

appears.

• As with any L-system symbols, mathematical expressions cannot have spaces in them. Notwith-

standing their significance to the turtle, any single mathematical assignment expression, no

matter how complex, is simply a “letter” in the L-system’s alphabet.
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• Mathematical expressions obey infix notation. The expression a+ b ∗ c is an example of infix

notation, which is called infix because operators come between operands.

10.1.9 Turtle Commands with Arguments

Figure 10.11: The Rendering of an L-System That Uses Command Arguments.

Mathematical expressions are not used just for the simple setting of parameters. Open the file

ex10-command-arguments. Like the golden rectangle L-system described in Section 10.1.8, this

L-system is simple, and the form of most of these symbols should look familiar except for g(a) and

g(a ∗ a). Render this L-system. A few derivation steps should produce an image like that shown in

Figure 10.11.

The string of symbols responsible for the drawing of a single blue line are [ + color = blue g(a∗
a) ]. The turtle draws the line when it encounters g(a ∗ a). This is an example of an argument

command , a turtle command that takes an argument. In this case, the g command draws a line the

length of its argument, in this case a2. The first blue line is of length 12 = 1, the second of length

22 = 4, the third of length 32 = 9, the fourth of length 42 = 16, and so on. Argument commands take

the form command(argument), where argument is a value or mathematical formula as described

in Section 10.1.8. Many of the commands that we have used so far can be used as argument

commands. For example, we use g here with an argument: Instead of g going forward distance

pixels, g will go forward by the number of pixels equal to the numeric evaluation of its argument.

A command like +(50) will cause the turtle to turn 50◦ to the right instead of the default angle◦ to

the right. Similarly, #(30) will “turn” the line color’s hue angle by 30◦ instead of hueChange◦. A

+(−angle) symbol would produce the same graphical result as a − symbol! Appendix A describes

argument commands and the significance of their arguments.

Note Notwithstanding g(a)’s and g(a∗a)’s special relevance to the turtle, both are still single

symbols in the L-system alphabet. If a rule rewrites g, it will not rewrite g(a) or g(a∗a);

to rewrite either of these symbols you must construct rules to rewrite either g(a) or

g(a ∗ a) specifically.

10.1.10 3D L-Systems

When we spoke of turns via + and − symbols, we always spoke of the turtle turning “to its right”

or “to its left,” but clearly what is happening from our perspective is that the turtle is turning

clockwise and counter-clockwise. Create a new L-system, and enter the axiom g + g + g + g + g.
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Render this system, and you will see an arc curving to the right, as though the turtle were making

gentle clockwise turns as it moved forward; this fits expectations. So, why do we not say clockwise,

and not describe turns from the turtle’s point of view?

Return to the editor, and prefix the axiom with the symbol ∗(180). Render again, and note

that now the arc curves to the left, as though all the +’s had been turned to −’s! The + no longer

appears to turn the turtle clockwise!

No, we did not flip the image. Rather, we flipped the turtle! By default we are looking down

at our turtle from above; its head initially points toward the top of the screen and its shell faces

outward toward us. The ∗(180) symbol is the argument command version of the ∗ turtle command.

The ∗ command tells the turtle (loosely speaking) to roll onto its left side. With ∗(180), we tell

the turtle to turn 180◦ onto its left side, that is, to roll onto its back so its belly faces us! The +

commands still turn the turtle to its right, though to us the turtle seems to bend counter-clockwise.

This has applications beyond confusing people; with these and other turns, the turtle is not

limited to movement in the two-dimensional plane that we have seen up until now. It may travel

in any direction in three dimensions. The turtle moves only with the f and g commands, that is, it

may only go forward, but the meaning of forward changes with every turn. These 3D turns allow

the turtle to travel anywhere in three dimensions without movement commands other than f and

g!

^

&

−

* /

+

Figure 10.12: An Illustration of Turtle Turns and Movement In 3D.

Up until now we have seen + and − turns, two turns in opposite directions on the same axis.

When moving in three dimensions, we turn around three axes, and so require six turn commands.

Examine the diagram of Figure 10.12 as we explain turtle turn commands. This diagram is meant

to express a three-dimensional world, where the dashed gray lines represent orthogonal axes in 3D

space. The direction the turtle goes forward on f or g is in the arrow’s direction on the dashed

gray diagonal line. We are looking down in the same direction as the turtle moves, more or less.

The solid black lines show the direction in which a turn will swivel a turtle; think of these black

lines as being on the face of a globe in which the turtle is embedded, and those arrows as showing



10.1. L-SYSTEM CREATION AND DISPLAY 161

the direction one may rotate the globe by dragging one’s hand across it. Next to each black arrow

head is the turtle command to effect each of these turns.

Think of the turtle as a trained circus dog. With the + and − turns, the turtle is simply turning

in place to its right and its left, respectively, as even a wild dog will when changing direction. With

/ and ∗, we have a trained dog, capable of rolling over onto its back by either its right or left side,

respectively (as we made the turtle do in the example). However, with the ^ and & commands, we

have a trained circus dog that does back-flips and somersaults!

On top of these wonders, our turtle-dog has the ability to not only do these incredible turns,

rolls, and flips, but to stop in the middle of a turn and go forward as if it were swimming. We may

also think of the turtle as a sea turtle for this reason!

Figure 10.13: Renderings of the Same Cube with Various Angles for Pitch, Roll, and Yaw, the First

with 0◦, 0◦, and 0◦, Respectively; the Second with 15◦, 75◦, and 0◦, Respectively, and the Third

with 45◦, 30◦, and 45◦, Respectively.

It is often useful to view a 3D L-system from different angles. Open the file ex10-cube. Render

it. You need not perform any derivation steps as the string of turtle symbols to render the desired

graphic are contained within the axiom itself. The name suggests this produces a cube, but right

now we are looking down one of its axes so it appears to be a square, as shown in the left shape of

Figure 10.13.

Note the three controls at the window’s bottom, labeled Pitch, Roll, and Yaw. Intuitively,

these controls allow us to turn our rendering of the L-system in various directions so that even with

an orthogonal 2D rendering of the L-system we may get a sense of its 3D shape by looking at the

rendering from different directions. These are spinners like the control that allows us to change the

number of derivation steps.

Using these spinners, change the pitch to 15◦ and roll to 75◦; leave the yaw unchanged at 0◦.

Your cube will look like the middle shape of Figure 10.13. Next, change the pitch, roll, and yaw

to 45◦, 30◦, and 45◦ respectively. Your cube will look like the right shape of Figure 10.13! In this

way we see that it is a cube, and not a simple square.

Note Functionally, setting the pitch, roll, and yaw to p, r, and y degrees, respectively, is the

same as if the turtle, prior to rendering the derivation, accepted the argument commands

&(p), ∗(r), and −(y), in that order, to turn the turtle ahead of the rendering.
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10.1.11 Contextual Rules

Ignore the turtle’s graphical nicety for a moment; concentrate only on the L-system as a generator

of a formal language. We can add all the turtle commands we want, and the power of L-systems

as a generator of formal languages remains the same as it was through Section 10.1.2 where

we introduced rewriting rules. However, with a slight extension of rewriting rules, the power

of L-systems can be increased.

If Σ is the L-system’s alphabet, we know that rewriting rules have the form b→ d where b ∈ Σ

and d ∈ Σ∗, and during each derivation step any symbol b in the derivation string is rewritten with

the string of symbols d.

We extend this now to rules of the form (a, b, c) → d, where b ∈ Σ and a, c, d ∈ Σ∗. This differs

in that b will be rewritten as d only if it is immediately prefixed by the string a and immediately

suffixed by the string c! We call these contextual rewriting rules, or simply contextual rules, since

they are sensitive to the context in which a symbol appears.

By now you are familiar with how to enter the b → d rewriting rules, but how do we enter

these new (a, b, c) → d rewriting rules in JFLAP? The form of the right side remains unchanged:

it is, as ever, a string of symbols JFLAP rewrites another symbol with. However, the left side

changes. Instead of a single symbol, we now have a space-delimited string of symbols of the form

k s0 s1 · · · sk−1 sk sk+1 · · · sn−2 sn−1. The first symbol, k, is an integer between 0 and n − 1,

inclusive, and the following n symbols, si for i ∈ [0, n), are in Σ. The k specifies which si element

is the symbol this rewriting rule is meant to rewrite, which is the b in our (a, b, c) → d notation.

The si preceding sk compose the a prefix list, and the si succeeding sk compose the c prefix list.

For example, suppose in JFLAP we enter “3 a b c d e f” in the left side, and “g h i” in the right

side. This represents the rule abc, d, ef → ghi, that is, the symbol d would be rewritten with g h i

if the d were preceded by a b c and succeeded by e f in the current derivation string.

Open the file ex10-simple-context in JFLAP. This is a very simple example of contextual

rules. Render the system. It does not render a graphic; our interest is in the derivation strings, so

keep an eye on the derivation strings shown at the window’s top. Perform many derivation steps.

Note that the > symbol appears to move to the right, bounce off the right # symbol, turn around

(now as a < symbol), move to the left, bounce off the left # symbol, and repeat.

How does the > travel to the right? Take a look at the two rules 0 > − → − and rule

1 > − →>. The first rule says whenever > is followed by a −, rewrite the > with −. The

second rule says whenever − is preceded by a >, rewrite the − with >. Since these rewriting rules

are applied in parallel, this provides the appearance that the > is moving to the right with each

derivation. How does the > bounce off the #? Take a look at the rule 0 > # →<. This will

rewrite > as < whenever it is followed by a #, providing the appearance that > is bouncing off

the right #. The remaining three rules that we have not described perform similar operations with
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the < traveling to the left and bouncing off the left #, and are nearly of the same form; we do

not describe them in detail here, since they work under the same principle as the previous three

commands.

10.2 Definition of an L-System in JFLAP

JFLAP’s formal definition of an L-system presented here includes the contextual rules described in

Section 10.1.11.

In JFLAP an L-system is defined as the triple (Σ, A,R), where

Σ is the finite alphabet of the L-system;

A ∈ Σ+ of finite length is the axiom; and

R = {(a, b, c) → d|a, c ∈ Σ∗, b ∈ Σ, d ⊂ Σ∗} is the set of rewriting rules. The sets d and R have

a finite number of elements.

For any (a, b, c) → d ∈ R, if |d| > 1 the L-system is a stocastic L-system, and if a 6= λ or c 6= λ

the L-system is a contextual L-system.

This definition of L-systems is considerably more broad than most definitions due to the

inclusion of the stocastic and contextual rewriting rules defined in sections 10.1.7 and 10.1.11.

Nonstocastic, noncontextual L-systems are typically more common than their stochastic, contextual

variants.

The user does not explicitly define Σ; rather, Σ is implicitly defined through the space-delimited

symbols present in the rewriting rules and axiom.

Note Although you can define parameters in JFLAP that are saved with the L-system for

convenience, the formal definition of an L-system has absolutely nothing to do with how

derivations manipulate a turtle to produce a graphic. Parameter values are not included

with the formal definition. Remember always that L-systems and turtle graphics are

intertwined only by an accident of history, and are otherwise separate subjects!

10.3 Summary

L-systems are a breed of formal languages. They are often used to generate graphics of fractals

and organisms with modular growth characteristics. L-systems are reminiscent of CFGs in several

respects. Similar to how CFGs derive strings through expansion of variables in successive deriva-

tion steps, L-systems derive strings through rewriting of symbols in successive derivation steps.

L-systems have a collection of rewriting rules that describe how symbols are rewritten from one

derivation step to the next, similar to a CFG’s productions.

L-systems differ from CFGs, of course. A CFG always starts with a single symbol, the start
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variable; the axiom of an L-system may consist of multiple symbols. CFGs generate strings by

replacing all variables, so only the end result of all derivation steps is considered as part of the

CFG’s language; in an L-system every derivation step’s string is considered part of the L-system’s

language. CFG string derivation involves expanding a single variable from one derivation step to

the next; L-system string derivation involves rewriting every symbol that can be rewritten from

one derivation step to the next. CFGs maintain a distinction between terminal and variable; in

an L-system no such distinction is made. Lastly, there is a characteristic particular to JFLAP’s

L-systems: Although symbols and single characters are one and the same in a CFG, all distinct

symbols in an L-system must be space-delimited.

After defining an L-system, we may perform derivation steps. The first derivation string is

always the axiom. A turtle interprets each derivation string, and produces a graphic from the

symbols in the string. The turtle considers each symbol in the derivation string as a command

(except those symbols it does not recognize, which it ignores). There are many commands, but

most interesting renderings can be produced with only six commands and some cleverness: g and

f , which tell the turtle to move forward with the pen down and up, respectively; + and −, which

turn the turtle to its right and left, respectively; and [ and ], which push and pop a turtle state

(including its position and heading), respectively.

We can also set parameters the turtle consults when drawing. Some parameters accept numeric

values; for example, distance holds the pixel length, and g and f consult distance to determine

how far to move forward. Others accept color values; for example, color holds the line color. Some

turtle symbols can be used to change the value of a parameter in the middle of a render, of the form

parameter = expression, where expression is an infix mathematical expression involving numeric

values and numeric parameters, or a color. Alternatively, we may use a turtle command with an

infix mathematical expression argument to customize drawing; for example, g(2 ∗ distance) will

cause the turtle to drawn a line twice the length of distance.

If a symbol can be rewritten with more than one rule, the L-system becomes stochastic. During

derivation, the single rule chosen to rewrite a symbol is chosen uniformly randomly from all rules

that may rewrite that symbol. This allows the L-system to model quasi-chaotic systems!

L-system rules may also be context-sensitive, that is, they will rewrite a symbol only if it is

prefixed and suffixed with defined strings of symbols. This addition makes L-systems suitable as a

general model of computation!

10.4 Exercises

1. Create an L-system to generate the picture in Figure 10.14. The only symbols needed are

g, +, and one variable. The distance of the line is 100. Rendering at 1 draws the first line.

Each additional render draws another line.
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Figure 10.14: A Nine-Point Star.

2. Create an L-system to generate the smiling face Figure 10.15. Symbols you might need are g,

f , +, −, and %. The angle is set to 90 and the distance is set to 25. The first rending should

draw the outline of the face, the second rendering should add one eye, the third rendering

should add the second eye, and the fourth rendering should add the mouth.

Figure 10.15: A Smiling Face.

3. Create an L-system to generate the squares pictured in Figure 10.16. Symbols you might

need are g and +. The angle is set to 90 and the distance is set to 10. The first rending

should draw the smallest square, and each additional rendering should add the next larger

square. The picture is shown after the tenth rendering.

4. Create an L-system to generate the squares on the diagonal picture in Figure 10.17. Symbols

you might need are g, %, and +. The angle is set to 45 and the distance is set to 15. The side

of a square is of length 30, and the first diagonal line is of length 60. The first rending should

draw the picture on the left, the second rendering should draw the picture in the middle, and

the sixth rendering should draw the picture on the right.

5. Create an L-system to generate a tree that has three branches, as shown in Figure 10.18.
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Figure 10.16: Squares.

Figure 10.17: Squares on the Diagonal.

Symbols you might need are g, +, −, [, and ]. The angle is set to 30 and the distance is set

to 20. The picture shows the third rendering.

Figure 10.18: A Tree with Branching of Three.

6. Create an L-system to generate lots of squares in the pattern shown in Figure 10.19. Symbols

you might need are g, +, −, [ and ]. The angle is set to 90 and the distance is set to 15. The

picture shows the first, second, and third renderings.
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Figure 10.19: Multiplying Squares.

7. Create an L-system to generate a tree with six-sided leaves, as shown in Figure 10.20. Symbols

you might need are g, +, −, [, ], {, and }. The angle is set to 30 and the distance is set to

15. The picture shows the fifth rendering.

Figure 10.20: A Tree with Six-Sided Leaves.

8. Create an L-system to generate a tree with two adjacent diamond-shaped leaves extending

from each branching point, as shown in Figure 10.21. Symbols you might need are g, +, −,

[, ], {, and }. The angle is set to 20 and the distance is set to 15. The picture shows the fifth

rendering.

9. Create L-systems to generate the following.

(a) A fruit tree with leaves and some type of fruit.

(b) A tree in autumn with leaves of different colors ranging from yellow to orange.

(c) A decorated tree with ribbons and/or ornaments, such as a Christmas tree.

(d) A broken tree chewed by a beaver, which has fallen over where the beaver chewed it.

(e) A wreath of green leaves.

(f) A wreath of leaves and decorations.

(g) A spirograph shape, i.e., lines drawn repeatedly in variations of a circle.
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Figure 10.21: A Tree with Adjacent Leaves.

(h) Geometric shapes, such as a triangle filled with triangles, or a square filled with squares.

10. Consider the tree-drawing problem presented in Section 10.1.3. Load the file ex10-failed-tree,

which holds the broken L-system we started with in that section.

(a) The fix presented in the text that resulted in the graphic of Figure 10.4 involved the

addition of two symbols. Give an alternate modification of the B rewriting rule that

produces the same graphic as the fixed version, but has only one more symbol than the

original rule!

(b) The use of pushes and pops is significantly more expensive, computationally, than simple

moves and turns. The other option of manually moving the turtle back to its original

position and heading was mentioned but not explored. Modify the rule again so that

the bracket symbols [ and ] are not used, but so that the L-system generates the same

graphic as Figure 10.4. Remember, the % symbol will turn the turtle 180◦ around the

same axis as the + and − turn commands.

11. We saw how to use mathematical expressions in Section 10.1.8, and with this power we drew

the golden rectangle shown in Figure 10.10. Often, results we achieve with mathematical

expressions can be achieved more conventionally. Produce an L-system where successive

derivation steps produce the golden rectangle as in Section 10.1.8, but without using math-

ematical expressions, argument commands, or contextual rules. Successive rendering steps

should produce an image recognizable as successive golden rectangles, similar to what is shown

in Figure 10.10. Hint: First try creating a line that increases in proportion to the Fibonacci

sequence.



Chapter 11

Other Grammars in the Hierarchy

This chapter describes JFLAP’s ability to parse strings using unrestricted grammars and context-

sensitive grammars. The first section describes how to define unrestricted grammars in the grammar

editor, and shows how to use the brute-force parser to parse strings with unrestricted grammars.

The second section is similar to the first section, except it covers context-sensitive grammars instead

of unrestricted grammars.

11.1 Unrestricted Grammars

In this section we define an unrestricted grammar, and how to produce an unrestricted grammar

within JFLAP. We then use the brute-force parser to parse strings using an unrestricted grammar

that generates a fairly complex language. A different equivalent grammar is used as a point of

comparison to discuss some practical advice in constructing unrestricted grammars for use with

JFLAP’s brute-force parser.

11.1.1 Introduction

An unrestricted grammar is similar to a context-free grammar (CFG), except that the left side

of a production may contain any nonempty string of terminals and variables, rather than just a

single variable. In a CFG, the single variable on the left side of a production could be expanded in

successive derivation steps. In an unrestricted grammar, in addition to expanding a single variable,

we may “expand” multiple symbols.

Taking lower- and uppercase letters to be terminals and variables, respectively, an example

production in a CFG could be A→ aaBa. An expansion using this production replaces the variable

A with the string aaBa. For example, the sentential form aAtwf could lead to the sentential form

aaaBatwf .

On the other hand, an example production in an unrestricted grammar could be AaC → aaBa.

169
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An expansion using this production replaces the three symbols AaC with aaBa. For example, the

sentential form atAaCqx could lead to the subsequent sentential form ataaBaqx.

As you might expect, unrestricted grammars are more powerful than CFGs: You may construct

an unrestricted grammar to generate any recursively enumerable language.

11.1.2 Simple Grammar

We shall enter a simple unrestricted grammar and use JFLAP’s brute-force parser to parse strings

using this unrestricted grammar.

Figure 11.1: Editing a Simple Unrestricted Grammar.

Start JFLAP. When faced with the list of choices for a structure appears, select Grammar.

When the empty window pops up, enter the grammar pictured in Figure 11.1.1 The first two

productions are acceptable for use in a CFG. However, the two a symbols in the left side in the last

production makes this an unrestricted grammar, not a CFG. This grammar generates any string

consisting of a’s and b’s, where there is an even number of a’s and any number of b’s.

The brute-force parser described in Section 3.2 can also parse strings using an unrestricted

grammar. Once you have created the grammar of Figure 11.1, select the menu item Input :

Brute Force Parse. In the Input field, enter aba and click on Start.

Click on Step twice. In two derivation steps, the production S → aaS is used twice to produce

the sentential form aaaaS. However, after the third click on Step, the production aa → b is

used to produce the sentential form abaS from aaaaS. Figure 11.2 shows the parse trees before

(left) and after (right) this last derivation. The parse tree here differs from those generated by

CFGs; note that the two middle a nodes have been grouped into a single “bracketed” aa node, and

this bracketed node is expanded to a single b child node. In this way, JFLAP is able to visually

represent the replacement of multiple symbols with a single production using the familiar parse-tree

paradigm.

1If you have forgotten how to enter grammars, see Section 3.1.
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Derived aaS from S.
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Figure 11.2: The Parse DAG Before and After the Expansion Using the aa→ b Production.

Note In a context-free grammar, each production replaces one symbol, so each node except

the root has exactly one parent. However, since an unrestricted grammar can replace

multiple symbols when applying a single rule, a node may now have multiple parents.

For this reason, the unrestricted parse “tree” representation is not a tree, but a directed

acyclic graph (DAG). So, though we will continue to refer to this structure as a parse

tree, it is more properly called a parse DAG.

There is one last minor point to explain: In the parse trees shown in Figure 11.2 and in JFLAP,

the middle two a nodes with a b child node have the darker green color, and not the lighter yellow

color we have previously seen for terminal nodes. Previous parse trees generated from CFGs had

green nodes corresponding to variables, and yellow nodes corresponding to terminals; a variable

would always be replaced, and a terminal could never be replaced. However, unrestricted grammar

productions may replace variables and terminals, and nodes containing replaced terminals are

green.

Note With CFGs, JFLAP considers the variable on the left side of the first production to be

the start variable for the grammar. While an unrestricted grammar may have “unre-

stricted productions” with multiple symbols on the left side of a production, unrestricted

grammars in JFLAP continue to require that the first production be in the restricted

form; the single variable on the left side of this first production provides the start

variable.

11.1.3 Complex Grammar

The simple example of Section 11.1.2 illustrates how JFLAP handles unrestricted grammars, but the

language the grammar generates is hardly interesting: A two state finite automaton could recognize

the language. However, unrestricted grammars have equivalent power to Turing machines. The

more complex example in this section exercises more of that power.
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Open the file ex11-composite-fast. (Alternatively, you could enter the productions listed in

Table 11.1.) This unrestricted grammar generates the more interesting language of all strings an,

where n is a composite number.2 This grammar is fairly lengthly with fourteen productions, but

it is quite simple.

1. S → HaC 6. aZ → ZAa 11. T → X

2. C → aC 7. HZ → HY 12. aX → Xaa

3. C → aT 8. Y A→ AY 13. AX → Xa

4. T → ZU 9. Y a→ aY 14. HX → λ

5. AZ → ZA 10. Y U → T

Table 11.1: The Productions of ex11-composite-fast.

Briefly, the strategy of the grammar is to generate a string of a’s of length two or longer. Then,

the grammar “multiplies” that string of a’s two or more times. In this way, this grammar generates

strings an where n is a product of any two integers greater than one. That is, n can be any

composite number, and cannot be a prime number.

Select Input : Brute Force Parse from the menu. Enter the string aaaaaaaaa = a9 into

Input and click on Start. Since 9 is a composite number (3× 3), the parser will accept the string.

It is more helpful for this grammar to view it as a derivation table rather than a parse tree: click

the pop-up menu currently displaying Noninverted Tree, and select Derivation Table instead.

The following few paragraphs will explain the ideas behind what is happening in successive

steps as the grammar generates a9. The productions in ex11-composite-fast are displayed and

enumerated in Table 11.1 for easy reference.

Productions 1–3 generate an initial string of two or more a’s, in this case of the form HaaaT .

The a’s are the initial string of a symbols that will be multiplied by another number. Once this

string is generated, production 4 turns the “tail” T into ZU , where the Z will move across the

string copying existing a’s, and the U is a placeholder for the right end of the string. In production

6, aZ → ZAa, whenever Z encounters an a symbol, it moves over the a symbol and generates a

new A symbol, which is a placeholder for a duplicated a. We cannot simply write another a, since

in subsequent passes that duplicate a would itself be duplicated, and we only wish to duplicate

the original a’s. So, we use A to denote an a that should not be duplicated in subsequent passes.

Production 5, AZ → ZA, moves Z across A symbols without duplicating. For production 7, when

Z runs into the “head” of the string H, the Z is turned into a Y , which is meant to travel harmlessly

to the right across a and A symbols with productions 8 and 9. The Y is soon delivered next to

the U variable generated by production 4: production 10, Y U → T effectively destroys the Y , and

2Composite numbers are nonprime integers greater than 1.
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turns the U into a T so that the cycle defined by productions 4–10 can start over again to perform

another duplication of a’s.

This cycle can run multiple times, ignoringA’s and producing anotherA for every a encountered.

However, for this string, only one Z/Y cycle is necessary, and a “finishing” sequence involving X

starts. Production 11 turns the T symbol into anX. Productions 12 and 13 help thisX sweep across

the a and A symbols, converting the A’s into a’s, and converting every a into two a’s, duplicating

the a’s one last time. When X encounters the head symbol H, production 14 annihilates both,

leaving a pure string of a’s behind.

In brief, we started with three a’s, did one pass using Z to “duplicate” the a’s with placeholder

A symbols, and did a second pass to again duplicate the a’s and convert the placeholder A symbols

into a’s. This effectively copies a twice, leading to a string of a’s three times as long as the original

string of three a’s. The grammar multiplied three times three to generate the target string of nine

a’s.

NotE that the grammar approaches its problem similarly to how we might design a Turing

machine. X, Y , and Z symbols with their “sweeping” behavior act in a fashion very reminiscent

of the heads of Turing machines. In a sense, each letter X, Y , and Z corresponds to a different

state. Z makes a pass to the left over the symbols, inserting symbols as necessary. Y rewinds the

“tape head” to the right after the Z pass is complete, so that another Z pass or the final X pass

may be attempted. X finishes by moving left, overwriting placeholder symbols to produce the pure

string of a’s. Lastly, in a Turing machine there is always a single tape head, and in the grammar at

most one of X, Y , or Z may exist at any particular time. It is unnecessary to have an unrestricted

grammar form such a close analogy to a Turing machine, but it is often a useful paradigm.

11.1.4 Slow Complex Grammar

The grammar of Section 11.1.3 has a fairly straightforward approach that closely mirrors how we

might approach the problem of recognizing the language within a Turing machine. However, it is

not necessary to adopt such a limited approach.

1. S → HaC 5. AZ → ZA 9. aX → Xaa

2. C → aC 6. aZ → ZAa 10. AX → Xa

3. C → aT 7. HZ → H 11. HX → λ

4. aT → ZAaT 8. aT → Xaa

Table 11.2: The Productions of ex11-composite-short.

Open the file ex11-composite-short. This unrestricted grammar generates the same “composite

length” language as the grammar of Section 11.1.3, and is quite similar, but has a few subtle
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differences. The productions of this grammar are listed in Table 11.2. Start the brute-force parser

for this grammar, and start the parser working on the aaaaaaaaa string again (that is, a9).

Figure 11.3: The parse tree for a9 generated by ex11-composite-fast is on the left and

ex11-composite-short is on the right.

After some time, the parse tree will complete. If you expand the parse tree completely, you will

see a tree similar to that shown to the right in Figure 11.3; the parse tree to the left shows the

parse tree generated by the grammar of the previous section. The parse tree generated by the new

grammar is considerably shorter, though it took far longer to generate.

The ex11-composite-short grammar utilizes the same strategy as the ex11-composite-fast

grammar, with some exceptions. In the fast grammar, though making out the details of the parse

tree is perhaps slightly difficult, it is extremely easy to see the back and forth “sweeping” action

of the X, then Y , then Z symbols. However, consider Table 11.2’s production 4, analogous to

Table 11.1’s production 4: In the new grammar, the T symbol is not turned into a U , so that

this T symbol can continue generating multiple concurrent X and Z symbols that run at the same

time. The Y symbol is no longer necessary: Nothing needs to travel to the right to “inform” the

U symbol that it can turn back into a T symbol and generate more Z’s or the final X.

As one last enhancement, in the old grammar’s productions 4 and 11, the X and Z symbols

are generated without processing any symbols. In the new grammar’s productions 4 and 8, when

the X and Z symbols are first generated, the grammar not only generates these symbols but has

them process an a symbol.

As we see in Figure 11.3, the new grammar yields a smaller parse tree. However, parse tree

generation takes far longer with the new grammar versus the old grammar.
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Why is the old grammar faster? It has to do with how JFLAP performs searches. In the old

grammar, except during the generation of an initial string of a’s (productions 2 and 3), and the

choice between whether to perform an X or Z sweep (productions 4 and 11), there was always at

most one production that could ever be applied for each sentential form.

However, in the new grammar, since multiple X and Z symbols can concurrently exist within

the same sentential form, there is also a question of whether we progress the X or the Z at each

particular stage. The brute-force parser works through exhaustive search, and each “choice” creates

a new branch that the parser must explore, resulting in a far larger search space. Obviously, we

can tell that it makes no difference which X or Z symbol it progresses: However, JFLAP does not

possess this human insight.

JFLAP does use some aggressive pruning strategies in order to keep brute-force parsing from

becoming too difficult; this form of exhaustive search is still intractable, but not hopelessly in-

tractable. Unfortunately, these strategies have limits. For example, since multiple Z symbols can

concurrently exist, in the event that this is an where n is prime, the parser might never “reject” the

string since it can simply keep adding Z symbols to the sentential form in a search. That is why

productions 4 and 8 in the new grammar also process an a symbol: JFLAP can detect that an A

symbol or another a symbol will never “go away” and so cause successive sentential forms to shrink;

JFLAP therefore detects at some point that the sentential form is getting too large to successfully

generate the target string as new Z’s (and also A’s) are generated. However, JFLAP can also tell

that Z symbols can go away (because of production 7), so if production 4 were T → ZT , JFLAP

would keep adding Z’s, and would not know to prune a branch even if there were thousands of Z’s

doing nothing.

The new grammar is a more clever construction, but the old grammar works better due to

how JFLAP attempts to parse strings with unrestricted grammars. A clever, concise solution is

appealing, but using JFLAP’s brute-force parser often requires a solution where there is not too

much choice in how to progress the expansion. Otherwise the search space may become enormous.

11.2 Context-Sensitive Grammars

This section describes context-sensitive grammars, a subset of unrestricted grammars. Context-

sensitive grammars are essentially unrestricted grammars with one important difference: Each

production in the grammar must have at least as many symbols in the right side of a production

as in the left side. Productions of this type are called noncontracting productions, as sequential

sentential forms never decrease in size. To allow context-sensitive grammars to derive λ, the

definition of a context-sensitive grammar is expanded to allow the production S → λ, where S is

the start variable. This special case may be used only in the event that the start variable S never

appears in the right side of any other production in the grammar.
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Unrestricted grammars have the same power as Turing machines. Context-sensitive grammars,

with their noncontracting productions, have power equivalent to linear-bounded automata (LBA).

An LBA is a Turing machine restricted to use at most kn tape for input of size n, where k is a

constant noted in the machine specification. The set of context-sensitive languages is a subset of

recursively enumerable languages, and a superset of context-free languages.

Note JFLAP does not distinguish between unrestricted and context-sensitive grammars. The

methods for editing and parsing are the same. There will be no error message if a user

intends to enter a context-sensitive grammar, but uses a contracting production.

11.2.1 Simple Grammar

In this example we will edit a simple context-sensitive grammar that generates the language

anbmcndm, where n and m are positive integers. Either create the grammar that appears in

Figure 11.4, or open the file ex11-anbmcndm. The procedure to enter a context-sensitive grammar

is no different from entering an unrestricted grammar, or any other grammar.

Figure 11.4: Editing a Grammar That Generates the anbmcndm Language.

Parse the string abcd with the brute-force parser. The parse tree is pictured to the left in

Figure 11.5. This is the shortest string that this grammar can produce. Now parse the string

aabbbccddd with the brute-force parser. The parse tree is pictured to the right in Figure 11.5.

The grammar first generates an equal number of a’s and c’s using the productions S → aAcd and

A → aAc. The grammar then moves to generate b’s with A → B. Then, for each b generated,

produce a Z with B → bBZ. Move the Z’s harmlessly across the c symbols with production

Zc → cZ. Then whenever the Z runs into a d symbol, turn the Z into a d with production



11.2. CONTEXT-SENSITIVE GRAMMARS 177

Derived b from B.  Derivations complete.

b
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String accepted!  5 nodes generated.

abcdInput

Derived dd from Zd.  Derivations complete.
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S aAcd
A aAc
A B
B bBZ
B b
Zc cZ
Zd dd

Noninverted TreeStepPauseStart

String accepted!  88 nodes generated.

aabbbccdddInput

Figure 11.5: The parse trees for a1b1c1d1 (left) and a2b3c2d3 (right).

Zd→ dd. At some point the B will be turned into a b with production B → b.

11.2.2 Complex Grammar

In this example we will revisit the example unrestricted grammar of Section 11.1.3. This example

grammar generated the language an, where n is composite. Though it was phrased in the context

of an unrestricted grammar, this is a context-sensitive language, and it is possible to generate this

language with a context-sensitive grammar.

1. S → HC 5. AZ → ZA 9. aX → Xaa

2. C → aC 6. aZ → ZAa 10. AX → Xa

3. C → aT 7. HZ → HA 11. HX → aa

4. aT → ZAaT 8. aT → Xaa

Table 11.3: The productions of ex11-composite-cs.

Open the file chap12-composite-cs. The productions for this grammar are listed in Table 11.3.

This grammar is essentially identical to that of Table 11.2, except for a slight change in strategy: In

this new grammar, H not only denotes the head of a sentential form, but also acts like a placeholder

for an a symbol. A way to interpret the new strategy is that the new production 7 does in one

production what the old productions 6 and 7 did. Similarly, the new production 11 does in one

production what the old productions 9 and 11 did. Additionally, production 1 has changed: since

H now also acts like a placeholder for an a, the new grammar generates one fewer a than the old

grammar.

Open the old grammar in file chap12-composite-short again, and attempt to parse aaaaaaaaa.

Now attempt to parse the same string in the new grammar. Though the grammars take essentially
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the same strategy, the brute-force parser can generate the target string in the new grammar using

only a small fraction of the time and space used for the old grammar when parsing strings. Why

is JFLAP more efficient with the new grammar?

Section 6.1.4 gave details about how JFLAP’s brute-force parser works. Particularly, the

parser detected which variables are part of contracting productions. When all variables are in

noncontracting productions, JFLAP is certain that any sentential forms longer than the target

string cannot derive the target string. In the old grammar, variables H, Z, and X are part of

contracting productions; JFLAP cannot rule out as many sentential forms. In the new grammar,

there are no contracting productions; JFLAP can therefore prune the search tree more aggressively.

Unrestricted grammars can be more expressive, and even when the extra expressive power is

not being used, unrestricted grammars often are more intuitive than equivalent context-sensitive

grammars. However, within JFLAP, a context-sensitive grammar has an advantage over an un-

restricted grammar: the brute-force parser tends to find parsing using a noncontracting grammar

easier, since JFLAP is able to more effectively limit the search space.

11.3 Summary

Unrestricted grammars allow multiple symbols on the left side of productions, not just a single

variable. Instead of using a production to replace a single variable, JFLAP can use an unrestricted

production to replace multiple symbols. This flexibility gives unrestricted grammars the power to

generate any recursively enumerable language.

When parsing a string using an unrestricted grammar with the brute-force parser, when multiple

symbols are being replaced, the multiple nodes for those symbols are bracketed into a supernode,

with replacement symbols as children nodes of the supernode. This allows users to visualize unre-

stricted parses as familiar parse tree-like structures.

For the brute-force parser, a grammar with sentential forms that leave little ambiguity about

what expansion should be attempted next tends to be more efficient. If a sentential form allows a

large choice of what expansion to attempt, each choice will give another branch in the search tree.

A large choice makes brute-force parsing very inefficient. As with any search tree, a tree with a

lower branching factor will tend to be more efficient.

Context-sensitive grammars are a special case of unrestricted grammars. A context-sensitive

grammar must have productions where the right side of a production is at least as long as the left

side of a production; in other words, productions must be noncontracting. To allow context-sensitive

grammars to generate λ, a special case production S → λ is allowed if the start variable S does

not appear on the right side of any production. Context-sensitive grammars have equal power to

linear-bounded automata.

One of the nice things about context-sensitive grammars and the brute-force parser is that
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noncontracting productions allow JFLAP to make tighter assumptions about what sentential forms

are valid, and perform a more aggressive pruning of the search tree of sentential forms, leading to

quicker parses. All else being equal, JFLAP will tend to parse strings slowly using a grammar with

contracting productions (unrestricted but not context-sensitive), and quickly using a grammar with

non-contracting productions (context-sensitive).

11.4 Exercises

1. For the unrestricted grammar in ex11.4a, list four strings in the language and give a written

description of the language.

2. Write an unrestricted grammar for the following grammars. Create a set of test strings that

include strings that should be in the language and strings that should not be in the language

and verify with JFLAP. Hint: Be careful that your grammar does not have too many choices

for selecting the next production in a parse, or the parser will run slowly. Use several symbols

on the left side of a production to help in restricting the number of choices. If there is any

choice, then you will probably only be able to test short strings.

(a) L = {anbmcndm | n > 1,m > n}

(b) L = {anbmcp | 0 < n < m < p}

(c) {w ∈ Σ∗ | na(w) = nb(w) = nc(w), |w| > 0},Σ = {a, b, c}

(d) {anbn2 |n > 0}

3. Write a context-sensitive grammar for the following grammars. Create a set of test strings

that include strings that should be in the language and strings that should not be in the

language and verify with JFLAP.

(a) L = {anbmcndm | n > 1,m > n}

(b) L = {anbmcp | 0 < n < m < p}

(c) {w ∈ Σ∗ | na(w) = nb(w) = nc(w), |w| > 0},Σ = {a, b, c}

(d) {anbn2 |n > 1}



Appendix A

L-system Quick Reference

This is the quick reference for L-system turtle commands and parameters used in drawing. These

commands are discussed in more depth with examples of use throughout Chapter 10.

180
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A.1 Turtle Commands

Command Description

g or g(value) Move forward distance or the evaluation of value pixels in the y direction. If

not building a polygon, the pen is down, producing a line of width lineWidth

and color color. If building a polygon, no line is drawn, but the end-point

of the move is added to the polygon.

f or f(value) Move forward distance or the evaluation of value pixels in the y direction.

This only moves the turtle. No line is produced, nor points added to a

polygon.

+ or +(value) Yaw the turtle right by angle or the evaluation of value degrees. (A clockwise

turn in 2D.)

− or −(value) Yaw the turtle left by angle or the evaluation of value degrees. (A

counter-clockwise turn in 2D.)

& or &(value) Pitch the turtle down by angle or the evaluation of value degrees.

^ or ^(value) Pitch the turtle up by angle or the evaluation of value degrees.

/ or /(value) Roll the turtle to the right by angle or the evaluation of value degrees.

∗ or ∗(value) Roll the turtle to the left by angle or the evaluation of value degrees.

% Yaw the turtle by 180◦.

[ or ] Push or pop a turtle from the stack, respectively.

! or !(value) Increment lineWidth by lineIncrement or the evaluation of value.

∼ or ∼ (value) Decrement lineWidth by lineIncrement or the evaluation of value.

{ Begin a polygon. The current turtle position is the first point in the polygon.

} End a polygon. The current turtle position is not added to the polygon.

The polygon is filled with polygonColor.

# or #(value) Increment the hue angle of color by hueChange or the evaluation of value

degrees.

@ or @(value) Decrement the hue angle of color by hueChange or the evaluation of value

degrees.

## or ##(value) Increment the hue angle of polygonColor by hueChange or the evaluation

of value degrees.

@@ or @@(value) Decrement the hue angle of polygonColor by hueChange or the evaluation

of value degrees.

param = value Sets the parameter param to the evaluation of value.

A command with multiple characters must not have spaces anywhere in the text of the command.
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A.2 Parameters

Name Default Description

distance 15 The g and f commands move the turtle forward by length distance.

color black Lines are drawn with the color specified by color. Colors may

be specified by name. Color names are case sensitive! The

acceptable color names are: black, blue, brown, cyan, darkGray,

darkOliveGreen, darkOliveGreen2, dukeBlue, forestGreen,

goldenrod, gray, green, lightGray, magenta, maroon, oliveDrab,

orange, orangeRed, pink, purple, red, springGreen, violetRed,

white, and yellow.

Additionally, one may specify a given color according to three

numbers of the form a, b, c. If a, b, and c are all within the range

of [0.0, 1.0], they are interpreted as hue, saturation, and brightness

values, respectively (where the hue range of 0 through 1 represents

a full tour around the color wheel), and are used to define a color

appropriately. If any of those values is outside of that range they are

treated as standard red, green, blue, respectively, with each channel

value ranging in increasing intensity from 0 to 255. For example,

blue may be defined either as an HSB color by 0.667, 1, 1, or as an

RGB color by 0, 0, 255.

polygonColor red Polygons are filled with the color specified by polygonColor. This

parameter accepts the same value types as the color parameter.

angle 15 Whenever the turtle is turned, pitched, or rolled, it does so with

angle degrees.

hueChange 10 When the command to increment the hue of the current drawing

color is given the degrees the hue is turned is hueChange.

lineWidth 1.0 Lines are drawn with a pixel-width of lineWidth. This parameter

accepts real number values greater or equal to zero (e.g., 4, 1.5, 0).

lineIncrement 1.0 When the line width (the parameter lineWidth) is incremented or

decremented, it is incremented or decremented by this amount.
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JFLAP .jff File Format

This appendix describes the .jff format that JFLAP uses to save structures to files. The .jff

format uses XML, a simplification of SGML that is currently used for a variety of applications for

storing and transmitting structured data. This appendix assumes basic familiarity with XML1,

and instead focuses on how JFLAP encodes a structure as XML.

After a brief review of basic XML terminology, the appendix describes how the .jff format is

used to define automata, grammars, regular expressions, and L-systems.

B.1 Brief Review of XML Terminology

We now briefly review some XML-related terminology to establish some common nomenclature.

A tag refers to either a start tag of the form <example>, or an end tag of the form </example>.

Sometimes start tags have attributes, where <person name="Bob"> is a <person> start tag with

the attribute named name with value Bob. Values of attributes must appear in double quotes, as

shown.

The text after a start tag and before the corresponding end tag is called data, which may contain

more tags, or strings, or other markup. The start tag, data, and end tag are collectively referred

to as an element. In the event that the data for an element is empty, one can use an element

of the form <example/>, which is shorthand for the equivalent <example></example> (that is, an

<example> element with empty data). If the data for an element <super> contains another element

<sub>, then there is a <sub> subelement to the <super> element. If an element <B> is a subelement

of another element <A>, then the start and end tags for the element <B> must be contained wholly

within the data for <A>.

To avoid confusion, in most XML literature, a subelement of another element need not be the

direct child element; that is, a subelement is not necessarily a child, but perhaps a child of a child.

1A full formal treatment on XML may be found at http://www.w3.org/xml/ or http://www.xml.org/.
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<?xml version="1.0"?>

<structure>

<type>fa</type>

<state id="0">

<x>100</x>

<y>200</y>

<initial />

</state>

</structure>

Table B.1: A Simple Example of XML Syntax As It Is Used in a .jff File.

For the convenience of this discussion, however, a subelement always refers to a direct child within

this appendix. In Table B.1, for example, <x> is a subelement of <state>, which is a subelement

of <structure>, but <x> is not a subelement of <structure>.

In XML there is exactly one root element. All other elements are subelements of the root

element, or subelements of those subelements, and so forth.

Table B.1 shows a simple example of a JFLAP saved file. It is of a finite automaton, with a

single initial state and no transitions. It has a <structure> root element, which contains <type>

and <state> subelements. The latter contains <x> and <y> subelements. The <state> start tag

has the attribute id with value 0. We will go over the meaning of this markup shortly: The point

now is not to understand the semantics, but rather the general structure of XML.

The leading <?xml version="1.0"?> “tag” is actually not a tag, but a processing instruction.

This identifies the document as a document conforming to XML version 1.0. Applications other

than JFLAP often use more sophisticated processing instructions, but JFLAP uses only this one

instruction to identify that this is indeed XML markup. One may consider this simply as a required

prefix, and otherwise ignore it. Processing instructions are not discussed further.

B.2 Elements Common to All Structures

Throughout this manual, the term structure has referred to any sort of formal language structure

that may be defined in JFLAP. Correspondingly, the root element of any .jff file is a single

<structure> element.

Every <structure> element requires a <type> subelement to identify the type of structure.

The data of this <element> must be one of fa (Finite Automaton), pda (Pushdown Automaton),

turing (Turing Machine), re (Regular Expression), grammar (Grammar), or lsystem (L-System).

For example, a <type>fa</type> element denotes a finite automaton.

Other elements required vary according to the type of structure. The sections that follow
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describe other subelements of <structure> required for various structures.

B.3 Automaton

This section describes the elements used to define an automaton. The elements used to define the

states and transitions are discussed, in that order.

B.3.1 Defining States

Elements and subelements to define states are the same for every type of automaton. For every

state in the automaton there must be a corresponding <state> element that is a subelement of the

<structure> element. The <state> start tags require an id attribute whose value may be any

string. No two <state> tags may have the same string value for the id attribute.

To define the position of a state, give <x> and <y> subelements for the <state> element. The

data for these elements defines the x and y coordinates of the state, respectively, and must be a

real number. Position x = 0, y = 0 corresponds to the upper-left corner of the automaton editing

window, and the data for the <x> and <y> elements indicate how many pixels to the right and

down the state is offset from this position, respectively. JFLAP will use its graph layout algorithm

to position any states whose corresponding <state> element did not come with the positional

subelements.

To define that a state is an initial state or final state, give a <state> element either an <initial>

or <final> subelement respectively. The data for these elements are ignored, so one may as well use

the abbreviated <initial/> and <final/> form. If either element is not included, then that state

is either not initial or final respectively. Only one <state> element should contain the <initial>

subelement.

To define the label for a state, provide a <label> subelement. The data for this element is the

text of the label. If there is no <label> subelement, the state has no label.

For example, the state defined by the <state> element in Table B.1 is placed 100 pixels to the

right and 200 pixels down from the upper-left corner of the automata editing window. It is an

initial state, not a final state. Its state ID is “0”. It has no label.

B.3.2 Defining Transitions

For every transition in the automaton there must be a corresponding <transition> element that

is a subelement of the <structure> element.

Every <transition> element requires two subelements <from> and <to> that specify the states

a transition comes from and goes to respectively. The data for each of these elements must be exactly

the same as the value for some id attribute of a <state> start tag.
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Unlike states, there are also subelements of <transition> that differ among the types of au-

tomata.

The <read> element can occur in FA and PDA transitions. The data of this element indicates

the input the transition reads.

The <pop> and <push> elements can occur in PDA transitions. The data of these elements

indicate the symbols the transition pops off and pushes onto the stack, respectively.

If a transition in an FA or PDA omits any of the <read>, <pop>, or <push> elements, the blank

string λ is assumed for the corresponding aspect of the transition.

The <read>, <write> elements can occur in TM transitions. The data for these must be a string

of length at most one that indicates the character to read from or write to the tape respectively.

The blank tape symbol � is represented with empty data. If a transition omits a <read> element or

a <write> element, the transition is assumed to read or write the blank tape symbol � respectively.

The <move> element can occur in TM transitions, and the data must be one of the single

character strings L, S, or R. If the <move> element is omitted, the transition is assumed to move

the tape head right.

For Turing machines, <read>, <write>, and <move> start tags have an attribute tape whose

value must be some integer between 1 and the number of tapes inclusive to indicate which tape

this read, write, or move will apply to. The tape attribute has a default value of 1 for all of these

elements.

The following is a portion of a .jff file that defines a transition within a two-tape Turing

machine. The transition is from the state with ID 3 to the state with ID 5. On tape 1, the

transition reads the blank tape symbol, writes a, and moves the tape head to the left. On tape 2,

the transition reads b, writes c, and the tape head stays.

<transition>

<from>3</from> <to>5</to>

<read tape="1"><read> <write tape="1">a<write> <move tape="1">L</move>

<read tape="2">b<read> <write tape="2">c<write> <move tape="2">S</move>

</transition>

B.3.3 Tapes for Turing Machines

In addition to these elements, if a Turing machine has multiple tapes it must define a <tapes>

subelement of the root <structure> element, whose data is a positive integer indicating the number

of tapes. For example, the element <tapes>3</tapes> signifies that a Turing machine has three

tapes.
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B.4 Grammar

The tag structure for grammars is the same for all types of grammars. For every production in a

grammar, there must be a <production> subelement of the <structure> root element.

The <left> and <right> elements can occur as subelements of each <production> element.

The data for these elements define the left side and right side of a production, respectively.

The <left> subelement must exist and have nonempty data. If a production omits a <right>

subelement, the production is assumed to be a λ-production.

The following is a portion of a .jff file that defines the production S → aaB within a grammar.

<production> <left>S</left> <right>aaB</right> </production>

Productions will appear in the JFLAP grammar editor table in the same order that their

corresponding <production> elements are defined within the loaded save file.

B.5 Regular Expression

The tag structure for regular expressions is simple. There can be a single <expression> subelement

of the <structure> element, whose data is the string containing the regular expression. If this

<expression> element does not exist, then JFLAP assumes the regular expression is the empty

string.

B.6 L-System

The tag structure for an L-system requires elements to specify the axiom, the rewriting rules, and

any drawing parameters.

The axiom for an L-system is defined with a single <axiom> subelement of the root <structure>

element. The data of the <axiom> element holds the axiom. For example, <axiom>g + + G</axiom>

defines an axiom g + + G. The <axiom> element must exist.

The rewriting rules for an L-system are defined with <production> subelements of the root

<structure> element. These differ from a grammar’s <production> elements in some respects.

A <production> element must have one <left> subelement to define the symbols to rewrite; the

data for the <left> subelement must be in the same format as we would type it into the L-system

editor. A <production> element must have zero or more <right> subelements. For each <right>

subelement, a rewriting rule is added to the L-system where symbols in the data of the <right>

element rewrites the symbol in the <left> element. This means that in the case of stochastic

L-systems, a <production> element may contain multiple <right> elements to define multiple

rewritings for the symbol in the <left> element’s data. Correspondingly, if a <production> element

does not contain any <right> elements, no rewriting rules are added.
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The following is a portion of a .jff file that defines two rewriting rules g → g g and g → + f g

for an L-system.

<production>

<left>g</left> <right>g g</right> <right>+ f g</right>

</production>

Drawing parameters are defined with <parameter> subelements of the root <structure> el-

ement. A <parameter> element has two subelements <name> and <value>. The data for these

elements hold the name and the value for a parameter, respectively.

The following is a portion of a .jff file that defines two parameters, distance with value 5, and

color with value green. For example, this L-system will draw green line segments of length 5 when

the g turtle command is encountered.

<parameter> <name>distance</name> <value>5</value> </parameter>

<parameter> <name>color</name> <value>green</value> </parameter>

If a <parameter> element does not contain a <name> subelement, the <parameter> is ignored.

If the <parameter> does not contain a <value> subelement, it is assumed that the parameter value

is an empty string.
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