Exercise: Context Free Grammar with Brackets_{JP}

Simple Sentence

Consider the following context-free grammar that defines a very small subset of valid English sentences. Note that the terminal symbols have the following English interpretations: $\mathbf{a} = \text{``a''}$, $\mathbf{t} = \text{``the''}$, $\mathbf{d} = \text{``dog''}$, $\mathbf{r} = \text{``ran''}$.

$$V = \{ S, Article, Noun, Subject, Verb \}$$

$$T = \{ a, d, r, t \}$$

$$S = S$$

$$S \rightarrow Subject \ Verb$$

$$Subject \rightarrow Article \ Noun$$

$$Article \rightarrow a \mid t$$

$$Noun \rightarrow d$$

$$Verb \rightarrow r$$

Enter the context-free grammar in JFLAP using multi-character non-terminal symbols.

Here is an example of the result.

Now use the Generate Language feature of JFLAP to produce sentences in the language. In this example we have entered 5 as the number of strings to generate.

Notice that only 2 strings have been generated, because that is the cardinality of this language. We would get the same result had we asked for 3 strings.

What set of strings does this grammar produce?

ANSWER: { adr, tdr }

Using the interpretation of terminal symbols, what English sentences do these strings represent?

ANSWER: A dog ran. The dog ran.

Sample Solution (see CFGsentence.jflap)

Brute Force Parser

Use the brute force parser to explore the derivation of string "atr".

The following sequence of images explores the derivation of string "atr" using the *Brute Force Parse* feature.

To begin, provide the input string "tdr" and select *Set*. Then step through the derivation.

The derivation is complete at this point. Dismiss the Brute Force Parse tab and choose *Derivation View* to explore the derivation tree.

Generate Language

Use the generate language feature of FLAP to generate strings in the language.

Sample Solution

Dismiss the Brute Force Parse tab and choose *Generate Language* to have JFLAP generate strings in the language

Enter the number 5 as the maximum number of strings to generate and select # of Strings. Review the strings produced.

Enter the number 3 as the length of produced strings and select *String Length*. Review the strings produced.

Enter the number 2 as the length of produced strings and select *String Length*. Why is the set of strings produced now empty?

