## Moore Machine - Exercise

## Problem:

Construct a Moore machine which takes a binary number and replaces the first 1 with a 0 from every substring starting with 1. For example, 0001001110 becomes 0000000110. This type of "bit stuffing" may be used in data transmission and telecommunications for run-length coding to limit the number of consecutive bits of the same value. A bit of the opposite value is inserted after the maximum allowed number of consecutive bits.

## Solution:

Open JFLAP and create a Moore machine with an initial state. Create three states as follows:

- 1.  $q_0$  with an output of 0 to represent a 0 read.
- 2.  $q_1$  with an output of 0 to represent the first 1 read within a substring of 1s.
- 3.  $q_2$  with an output of 1 to represent the remaining 1's read after the first 1 was read.



## Next, add the transitions:

- 1. At  $q_0$  and an input of 0, stay at  $q_0$ .
- 2. At  $q_0$  and an input of 1, go to  $q_1$ .
- 3. At  $q_1$  and an input of 0, go back to  $q_0$ .
- 4. At  $q_1$  and an input of 1, go to  $q_2$ .
- 5. At  $q_2$  and an input of 0, go all the way back to  $q_0$ .
- 6. At  $q_2$  and an input of 1, stay at  $q_2$ .



The Moore machine is complete, run some test strings using *Input > Multiple Runs*.

