Moore Machine - Exercise ## Problem: Construct a Moore machine which takes a binary number and replaces the first 1 with a 0 from every substring starting with 1. For example, 0001001110 becomes 0000000110. This type of "bit stuffing" may be used in data transmission and telecommunications for run-length coding to limit the number of consecutive bits of the same value. A bit of the opposite value is inserted after the maximum allowed number of consecutive bits. ## Solution: Open JFLAP and create a Moore machine with an initial state. Create three states as follows: - 1. q_0 with an output of 0 to represent a 0 read. - 2. q_1 with an output of 0 to represent the first 1 read within a substring of 1s. - 3. q_2 with an output of 1 to represent the remaining 1's read after the first 1 was read. ## Next, add the transitions: - 1. At q_0 and an input of 0, stay at q_0 . - 2. At q_0 and an input of 1, go to q_1 . - 3. At q_1 and an input of 0, go back to q_0 . - 4. At q_1 and an input of 1, go to q_2 . - 5. At q_2 and an input of 0, go all the way back to q_0 . - 6. At q_2 and an input of 1, stay at q_2 . The Moore machine is complete, run some test strings using *Input > Multiple Runs*.