
Duke University Department of Computer Science

Department of Computer Science
Box 90129
Duke University
Durham, NC 27708-0129
jflap@cs.duke.edu

July 11, 2007

2007 Premier Award

Greetings:

Enclosed is a submission of JFLAP, a software tool for formal languages and automata
theory in computer science, and a tutorial on JFLAP for consideration for the 2007 NEEDS
Premier Award. Included are 15 copies of the submission packet. JFLAP was submitted to
NEEDS last year. The newest version of JFLAP, Version 6.1, is available for downloading
from www.jflap.org. The web tutorial on JFLAP is also available from this same page.

I am the sole faculty member who has developed JFLAP and related tools over the past 17
years, supervising many students. I’m including several former and current Duke students
I’ve contacted who worked on the current version of JFLAP and its tutorial: Thomas Fin-
ley (tomf@cs.cornell.edu) (now at Cornell University), Stephen Reading (srr27@duke.edu),
Bartlett Bressler (bpb3@duke.edu), Ryan Cavalcante (RyanCav@microsoft.com) (now at
Microsoft), Jinghui Lim (jl95@duke.edu), Chris Morgan (cmm24@duke.edu) and Kyung
Min (Jason) Lee (kl44@duke.edu). I am authorized to submit the software for the Premier
competition. My contact information is above. I hold the copyright on JFLAP.

Susan Rodger authorizes NEEDS to become a non-exclusive distributor of the JFLAP
software as submitted.

JFLAP is software for experimenting with formal languages and automata theory and can
be used with a course in Formal Languages, Discrete Mathematics, or Compilers. With
JFLAP one can create and test automata, pushdown automata, multi-tape Turing machines,
regular grammars, context-free grammars, unrestricted grammars and L-systems. One can
also experiment with LL and SLR parsing and proofs such as converting an NFA to a DFA,
to a minimal state DFA and to a regular expression. The JFLAP web page, www.jflap.org,
has the JFLAP software, a JFLAP tutorial and additional resources available.

Sincerely,

Susan H. Rodger
Associate Professor of the Practice

Contact info for Dept Chair and Deans at Duke

Pankaj Agarwal
Professor and Chair
Department of Computer Science, Box 90129
Duke University, Durham, NC 27708-0129
Email: pankaj@cs.duke.edu
Phone: (919)-660-6548

Robert J. Thompson, Jr.
Dean of Trinity College
114 Allen Building
Box 90042
Durham, NC 27708
Email: bobt@asdean.duke.edu
Phone: 919-684-3465

George McLendon
Dean of the Faculty of Arts and Sciences
104 Allen Building
Box 90046
Durham, NC 27708
Email: george.mclendon@duke.edu
Phone: 919-684-4510

JFLAP - Software for Experimenting with Formal Languages

1 Introduction

A major problem in computer science education is that many students obtain only a superficial understanding
of theory, even though theoretical concepts provide the fundamental basis for most areas of computer science.
In particular, a thorough understanding of the theory of formal languages and automata (FLA) is crucial
in designing programming languages and compilers. However, the traditional FLA course is taught in a
nonvisual and pencil-paper problem solving manner with no programming component. Students find this
approach frustrating as they have no visualization to relate to, they do not receive immediate feedback on
problems, and furthermore it is tedious and uninteresting to them to determine if their solutions are correct.
Many students turn in homework with errors as they do not bother to verify their solutions by hand. This
contrasts starkly with the hands-on nature in most of their other computer science courses which contain
programming assignments. In addition, many students leave the FLA course without understanding the
importance of this material. They are told it has applications in other areas, but they don’t experience the
applications.

The material in the traditional FLA course is important to the computer science major, as mentioned in
the Computer Science Volume of the ACM IEEE Computing Curricula 2001 document in several places.
Under intermediate courses, the core course CS 210, Algorithm Design and Analysis, includes topics in “an
introduction to automata theory and its application to language translation.” Under advanced courses there
is a course called CS 311 Automata and Language Theory. This course already includes such topics from
the Introductory Courses including discrete mathematics, formal proofs, algorithmic thinking and testing
and debugging.

We have developed a tool, JFLAP, that allows students in an FLA course to experiment with the theory
in this course, receiving immediate feedback, and making the course more interesting to students. JFLAP
(Java Formal Languages and Automata Package) is a long term NSF-supported software project (NSF grants
DUE 9596002, DUE 9555084, DUE 9752583, and DUE 0442513) . With JFLAP one can interactively build
automata and grammars and run test input on them. Also with JFLAP one can experiment with many of
the construction-type proofs taught in this course.

JFLAP is freely available and has been used in several types of computer science courses around the world.
We have published twelve papers, a JFLAP book, given over twenty presentations, and held three JFLAP
workshops. We recently developed a web tutorial on JFLAP that is available for free on the JFLAP web
site. This tutorial guides the user through the usage of JFLAP and includes many examples with JFLAP
files for loading and experimenting with.

2 Background

The development of JFLAP began back in 1990 when Rodger was teaching automata theory at Rensselaer
and students were turning in homework using pencil and paper. Problems to create an automaton and
grammar were almost always incorrect as it was too tedious to test and trace inputs on a handwritten
model. JFLAP began as several smaller tools (NPDA, LR Parser, LL Parser, TuBB, FLAP) for different
concepts in formal languages, written in C++ and X windows. We made these tools freely available and
universities started using them. However, with the many versions of C++ and X windows, some people
had difficulty installing it. Around 1996 at Duke University, FLAP was rewritten in Java, became JFLAP
and was much easier to install. Other smaller tools were continually developed (JeLLRap, Lsys, Pâté) and
eventually integrated into JFLAP. Around 2002, JFLAP was rewritten using Swing and has continued to
evolve.

Rodger has supervised many undergraduate and graduate students in the development of JFLAP and related
tools at Rensselaer Polytechnic Institute from 1990-1994 and at Duke University from 1994 to the present.
Those students who have worked on JFLAP related tools at Rensselaer include Dan Caugherty, Mike James,
Steve Blythe, Bhasker Vasudevan, Grant Poladian, Eric Luce, Danny Daglas, Jeffrey Nesheiwat, and Jasper
Wong. Those students who have worked on JFLAP related tools at Duke include Greg Badros, Steve
Wolfman, Ben Hardekopf, Ken Leider, Jason Salemme, Anna Bilska, Edwin Tsang, Magda Procopiuc,
Octavian Procopiuc, Alex Karweit, Robyn Geer, Eric Gramond, Lenore Ramm, Ted Hung, Ryan Cavalcante,
Thomas Finley, Bart Bressler, Stephen Reading, Jinghui Lim, Chris Morgan and Jason Lee. Many of these
students are co-authors with me on JFLAP papers and one (Finley) is a co-author on the JFLAP book.

JFLAP has been supported by four NSF grants. The first three grants, NSF DUE 9354791 from 1994-96
(this grant was transfered to Duke as NSF DUE 9596002), NSF DUE 9555084 from 1996-98, and NSF DUE
9752583 from 1998-2002) were focused mostly on the development of JFLAP and dissemination. The fourth
and current grant, NSF DUE CCLI 0442513 from 2005-2008, continues the development of JFLAP but
focuses on the evaluation of JFLAP and includes fourteen faculty adopters. More information on the study
is described in Section 6.

3 Objectives

The educational objectives of the JFLAP software are the following.

• To provide students with a tool for visualizing and interacting with theoretical models and concepts
in computer science.

JFLAP provides visualizations of automata and grammars; transition diagrams (graphs) of the three
types of automata and visual parse trees for the grammars. With JFLAP one can construct, test and
debug several theoretical models of computation.

• To provide students with the means of experimentation of construction-type proofs in formal languages.

After learning about the proof that the class of nondeterministic finite automata (NFA) are equivalent
to the class of deterministic finite automata (DFA), one can use JFLAP to construct an NFA and
then in steps construct the equivalent DFA. One can then run inputs on both of them to see their
equivalence.

• To provide students with the means for experimenting with formal languages in a computational
manner that can only be done with the use of a computer.

Besides the ability to construct an automaton and run it on multiple inputs, JFLAP has many other
uses that would be too tedious to do by hand. For example, JFLAP comes with a Universal Turing
machine students can run. It would be too tedious for students to draw one on paper and try to trace it.
As another example, in Section 3.7 of our SIGCSE 2006 paper included in the appendix, we present two
grammars that are equivalent, the first with a λ-production. On input aaababaabbb, the first grammar
generates 13286 nodes in the derivation tree, and the other grammar derives only 335 nodes.

• To provide students with hands-on experimentation of applications in theoretical computer science.

L-Systems are used to model biological systems and fractals. With the L-Systems in JFLAP, students
use another type of grammar that researchers use to model plants in environments. With SLR Parsing,
students see how DFA and pushdown automata can be used in writing a compiler.

• To enhance (not replace) the theoretical nature of the formal languages course.

JFLAP is not meant to replace the theoretical proofs taught in a formal languages course, but to
complement them. Students should still study a theoretical proof with its mathematical notation, and
then JFLAP will enhance and reinforce the theory with visualizations and experimentation with a
concrete example

4 Overview of JFLAP

JFLAP (Java Formal Languages and Automata Package) is an extensive visual and interactive tool for design-
ing and experimenting with different types of automata and grammars, studying proofs by the construction
of examples, studying parsing through LL, SLR and brute force methods, and transforming grammars.

Automata in JFLAP

With JFLAP one can graphically design and animate three types of automata: finite automata, pushdown
automata, and multi-tape Turing machines. These machines can be deterministic or nondeterministic. In
using the tool, one graphically draws one of the machines as a transition diagram, enters an input string,
and then controls the tracing of the input string through the machine. There are four simulation modes for
testing input including two types of step run that allows one to step through the automaton, a fast run that
returns information and validity of acceptance, and a multiple input tester that will check the acceptance
of many input strings at the same time. In addition, students can save and retrieve their designs and load
examples provided.

Figure 1: JFLAP NPDA example simulation

Figure 1 illustrates an NPDA created in JFLAP that represents nonempty palindromes of even length. This
NPDA was created in the editor mode (see the editor tab faded out) but is now in simulation mode. This
figure illustrates the nondeterminism in JFLAP. It shows one step in the execution of this NPDA on the
simulation of input string a10bba10, showing five possible configurations at this time step. Each of the five
configurations show the current state (shown as a circle), the input string (shown to the right of the state)
with the part of the input already processed shaded, and the current stack contents (shown below the state).
Notice that three of the states in the NPDA are shaded at this time step as these three states all have an
active configuration. With nondeterminism, JFLAP creates a tree of all configurations (not shown to the
user). At each step it expands any configuration that is a leaf node in the tree (with pruning), and then
shows the current configurations (the current leaf nodes). Another type of simulation mode, fast run (not
shown), with this same input string results in the input accepted, and displays only the acceptance path,
which in this case would be of length 24. Also shown in the figure is the ability to annotate states. An
annotation has been added to state q1 (store symbols) and an annotation has been added to state q2 (match
symbols).

Studying Proofs in JFLAP

JFLAP has been enhanced to allow one to study the proofs of several theorems that focus on conversions
of languages from one form to another by constructing an example and transforming the example into the
other form. With JFLAP one can enter an NFA and convert it to a DFA and then to a minimum state DFA,
or to a regular expression or a regular grammar. One can enter a regular expression and convert it to an
NFA, or one can enter a regular grammar and convert it to an NFA. One can enter a context-free grammar
and convert it to an NPDA in one of two formats, either an NPDA that models LL(1) parsing or an NPDA
that models SLR(1) parsing. One can enter an NPDA and convert it to a CFG. The conversion process is
interactive and provides helpful error messages as the user constructs the new form.

For example, in the conversion from NFA to DFA, the user would first construct an NFA. After selecting the
conversion to DFA option, the user would start constructing the new DFA by adding states. For each state
in the DFA, the user must enter the number from the corresponding states from the NFA. If the user enters
the wrong state number, JFLAP informs them. The user must connect the states with the appropriate
transition arc. JFLAP informs the user when their DFA is complete and the user has the option of placing
the newly constructed DFA in a new editor window.

Parsing in JFLAP

There are three types of parsing in JFLAP, a brute-force parser, LL parser and SLR parser. These were
incorporated from our tools JeLLRap and Pâté.

The brute-force parser allows one to parse restricted (regular and context-free) and unrestricted grammars,
showing the derivation and parse tree (including a “parse tree” for unrestricted grammars!). The LL and
SLR parser tools construct parse tables through a series of steps for LL(1), and SLR(1) grammars, and then
simulate the parsing of input strings using the constructed table and a stack, at the same time building the
parse tree. One can still build the parse table and also parse non-SLR(1) grammars by selecting choices for
conflict items.

For example, one enters an SLR(1) grammar, a window appears and one enters in FIRST sets. When correct,
one enters in FOLLOW sets. When correct, one builds the DFA that models the stack, including selecting
marked rules for each state. When correct, one enters in the entries of the SLR parse table. When correct,
one enters an input string, and steps through the parsing of the string seeing the stack and the parse tree
being built.

Transforming grammars in JFLAP

JFLAP allows the transformation of grammars from one form to another. The transformation component
is an instructional tool for converting a context-free grammar to CNF, including steps for removing lambda
productions, unit productions, and useless productions.

L-systems in JFLAP

With JFLAP one can create and render L-systems. One enters an L-system including an axiom, grammar
and graphical parameters. The strings of the L-system can then be visually displayed in order. For example,
an L-system can be used to describe the growth of a tree or plant. When rendered the strings generated
from the grammar are visually displayed showing the tree or plant growing.

Newest Version of JFLAP (6.1) and Current JFLAP work

We have included the newest version of JFLAP along with a new web tutorial in the submission. The new
features in this version of JFLAP include Turing Machine Building Blocks, Moore and Mealy machines,
experimentation with regular and context-free pumping lemma, and Batch grading to support the grading of
JFLAP files. These new additions are explained in our SIGCSE 2006 paper and ITiCSE 2007 paper in the
appendix. With Turing machine Building Blocks, one can build a Turing machine, name it and then reuse
it as a submachine or building block in another Turing machine. The run control allows one to control the
simulation, executing the building block in one step, or entering the building block and stepping through
state by state. This allows one to create more interesting Turing machines easily such as multiplying two
unary numbers.

We receive a steady stream of email from our users with requests for additions to JFLAP. Fo example, we
received many requests for Moore and Mealy machines, batch grading and preferences to change the empty
string to epsilon. All of these requests are in the current version of JFLAP.

5 Use of JFLAP Software

5.1 Types of Courses that use JFLAP

JFLAP’s target audience is for an undergraduate formal languages course that includes any of the topics
on automata, grammars and parsing. The majority of the letters in the appendix is for this type of course.
JFLAP has been used in more than five other computer science courses. Berwick at MIT states in his letter
that he uses JFLAP in an Artificial Intelligence course and a Natural Language Processing course. After
receiving his letter we added Moore and Mealy machines to JFLAP. Brown at the College of Wooster and
Harvey at Robert Morris University state in their letters they use JFLAP in a Discrete Mathematics course.
Dooley at Knox College states in his letter that he uses JFLAP in three courses: Algorithm Design and
Analysis, Theory of Computing and Software Development, and Software Design. Wallingford at University
of Northern Iowa and Walker at Hiram College state in their letters that they use JFLAP in a Compiler
course.

JFLAP is also being used in high school. Andreas Rittershofer, a mathematics, physics and computers
science high school teacher at Dietrich-Bonhoeffer-Gymnasium in Metzingen, Germany writes in a letter
“One part of the courses in computer science is about regular expressions, grammars, finite automata, stack
automata, turing machines, ... In the case of some spare time we also create some flowers und bushes with
L-Systems. ... JFlap is the ideal tool for my computer science courses... [JFLAP is] very easy to use, my
students are familar with its handling in only a few minutes. I cannot image how to deal with automata
without JFlap - and so do my students too.”

5.2 The Usage of JFLAP in Courses

Instructors use JFLAP in many ways as shown in the letters of support and the included JFLAP publications
in the appendices. One of the main uses is to use JFLAP during lecture. Instructors use JFLAP in the
classroom to demo the use of JFLAP and to explain an algorithm by working through an example in JFLAP.
Instructors can use JFLAP during lecture to work problems with students. For example, a Turing machine
in JFLAP can be shown for a particular language and students are asked to determine if the Turing machine
is correct and if not to correct it. Students can make suggestions and the instructor can make the changes
and test them out in front of the class. Instructors can answer questions by “showing” the answer with
JFLAP. JFLAP examples shown in class can be saved in files and made available for students to recreate
the lecture.

Other uses of JFLAP by an instructor include the following. Instructors can use JFLAP in office hours
one on one to help a student understand a concept. Baruah from UNC states in his letter that he uses
it extensively in office hours. Instructors can use JFLAP to create pictures for slides for a lecture or for
pictures in a homework writeup. JFLAP can be used as a separate lab. JFLAP can be used for homework
assignments in a variety of ways. Students can load a JFLAP file and experiment with it to determine the
language it represents. Students can construct their own examples of automata or grammars for a particular
language and then turn in the file. Graders can have a set of test strings, load student files, and run them
in the multiple run window easily determining the correctness. There are several examples of problems
that could be used as homework that explore formal languages in computational ways included in the 2006
SIGCSE paper in the appendix. Many problems in automata theory textbooks can be worked using JFLAP.
The JFLAP book has many exercises and all the files used in this book are available on the www.jflap.org
site.

We have used FLAP/JFLAP since 1994 at Duke in the course CompSci 140, Mathematical Foundations
of Computer Science. We use JFLAP extensively during lecture for demos and explaining algorithms
and students use JFLAP for homework assignments, turning in JFLAP files. The course web site at
www.cs.duke.edu/courses/spring07/cps140 contains our lecture notes and homework assignments for
the most recent version of this course. Many of the homework assignments have two parts, a theoretical part
and a hands on experimentation part. Seven of the eight homework assignments used JFLAP.

Students use JFLAP in many ways. Students use it for homework whether it is required or not. Some of the
letters in the appendix state that the instructor does not require JFLAP use, but instructors know students
are using it as they turn in homework with JFLAP pictures. Students use JFLAP for recreating concepts
learned in class and for working additional problems to understand a concept or to study for an exam.

5.3 JFLAP’s use in Research

The JFLAP source is available and users are free to modify it for their needs. JFLAP has been used with
modifications for research. A letter from Mariani from the University of Milano Bicocca states that he used
JFLAP for his PhD Thesis, integrating it into a technique called BCT, for synthesizing models of component
interactions from traces. JFLAP was successfully integrated into BCT to reuse its functionalities for handling
and visualizing automata. A letter from Siamak Kolahi at Concordia University shows he used JFLAP in
his MS thesis, as part of the interface for his automated composition platform. Tabakov, a PhD. student at
Rice University states in his letter he used JFLAP for visualizing automata as part of his research. Bidder,
a faculty member at the Swiss Institute of Technology in Zurich states in her letter that a student named
Hildenbrand used JFLAP for his thesis, extending JFLAP to Mealy Automata.

5.4 World Usage

JFLAP is used around the world. When we released JFLAP 4.0 in January 2003, we created a user form
to track and collect information on the downloading of JFLAP. From January 2003 to July 2006 there were
over 35,000 downloads of the software JFLAP from over 160 countries. On www.jflap.org selecting “World
Usage” gives statistics on these forms. All the countries in which someone has downloaded JFLAP are listed.
The top five countries (from those who filled out the form) have the following number of downloads: USA
(7779), Germany (2455), Brazil (2059), Mexico (1610), and Spain (1172). The number of downloads from
each US institution are listed (from those who filled out the form). The top six number of downloads from
US institutions had the following number of downloads: Harvey Mudd (325), RIT (276), Houston (224),
Millersville (241), Duke (181), and UC Davis (161). 50 US schools have 20 or more downloads. Another 55
US schools have 10-19 downloads.

The JFLAP web site (www.jflap.org) and its predecessor page combined have received over 125,000 hits

since 1996. A search of JFLAP (which appears to be a unique name, and not a word in any language) on
Google returns about 20,000 pages. These pages list JFLAP on several types of web pages including course
web sites as a resource or as part of a homework, and as a reference to JFLAP as educational software such
as Citidel. In some cases, the JFLAP web pages have been translated into another language. Note that
Google can only search publicly available web sites and many schools use a system such as Blackboard for
their courses which is password protected, so we expect that JFLAP appears on many more course websites.
In the appendix we have included letters from mostly faculty and a few graduate students from fourteen
countries who have used JFLAP.

6 Assessment of JFLAP Software

As shown in the previous section, JFLAP has obtained widespread use and as shown in the appendix, JFLAP
has received positive feedback from faculty from a large variety of computer science courses and from high
school to graduate school courses.

The current NSF grant supporting JFLAP, NSF DUE CCLI 0442513, includes an assessment of JFLAP.
Eric Wiebe, Associate Professor in the Mathematics, Science and Technology Education Dept at North
Carolina State University is in charge of the JFLAP study which will run from 2005-2007. In the first year
there were twelve faculty adopters including Duke. The other eleven schools are University of California
Davis, University of North Carolina Chapel Hill, Emory University, University of Richmond, Fayetteville
State University, Winston-Salem State University, United States Naval Academy, Norfolk State University,
Virginia State University, Rensselaer Polytechnic Institute and University of Houston. Four of these schools
are predominately minority institutions. The faculty adopters attended a 2-day workshop in June 2005 and
used JFLAP in their courses during the academic year 2005-2006.

We show some partial results from the first year of the study on the usage of JFLAP from 36 students from
6 institutions. See the appendix for more results.

• 20 of the 36 students replied that they used JFLAP to study for in-class exams.

• 30 of 36 students replied that it was easier to use JFLAP software than to draw it out by hand.

• 31 of 36 students replied that it was easy to install JFLAP and the other 5 stated it was neither easy
nor difficult.

• When asked what the overall assessment of JFLAP was, 10 replied very good, 24 replied good, 2 replied
neither poor nor good, and 0 replied poor or very poor.

For 2006-2007, we added two additional schools to our study, San Jose State University and Rochester
Institute of Technology. Faculty adopters met for a second time in June 2006 at Duke for a 2-day workshop
to discuss strategies and experiences with JFLAP. From this study we have over 130 responses. The analysis
of the second year is under way this summer as San Jose State didn’t complete their course until June 2007.

Ross, a Professor from Montana State University is a developer of educational software systems and a
computer science evaluator on our current JFLAP NSF grant. He is also the editor of SIGACT News and
the former editor of the SIGACT News Educational Forum. He includes a letter in the appendix stating 10
highlights of JFLAP. Four of those are:

• JFLAP is the only currently generally distributed software that animates the theory of computing.

• There is a class of students who find it relatively easy to master abstract concepts and do not really
need a system such as JFLAP to help them learn. Such students nonetheless find such animation tools
engaging and are often the ones who can be utilized to extend the software (i.e., enhance JFLAP).

• There is a much larger class of students who find it moderately to highly difficult to master abstract
concepts. Many of these students are quite definitely helped by JFLAP. Perhaps the most appreciated
aspect of JFLAP by these students is that they receive immediate and consistent feedback on exercises
they perform within the software.

• A general trend noticed from the use of JFLAP is that most students, regardless of their innate talent,
are more motivated and excited about learning the theory of computing when JFLAP is incorporated
into the course. This may actually be the most important contribution of JFLAP.

He also states the following in his letter. “As already noted, JFLAP is a software system that supports the
teaching and learning of the theory of computing. This subject is the foundation of the study of computer
science, yet it is widely viewed by computer science students as the most dreaded and/or dry course in the
curriculum due to its abstract, theoretical nature. In a nutshell, JFLAP aids the teaching and learning of
many of the abstract concepts of the subject by brining them to life. That is, students are presented with
computer-animated, visual depictions of the key abstract models of the theory, and they are allowed (and
often required) to work with the models an active-learning mode as they progress through the material.
The abstract models animated in JFLAP include deterministic and nondeterministic finite state automata,
deterministic and nondeterministic pushdown automata, Turing machines, and grammars-the essential, key
computational models of the theory of computing. In visualizing and animating these concepts, JFLAP
effectively provides students with functionally correct mental models of these concepts with which they can
interact until the concepts are understood. No static textbook presentation can match this kind of active
learning environment.”

7 Publications and Presentations

Rodger and her students have been publishing papers and giving presentations on JFLAP and related tools
since 1992. This includes one book, twelve papers, twenty talks, three posters, two panels, one tutorial, and
two demonstrations on JFLAP.

We have included three JFLAP papers in the appendix. The ITiCSE 2007 paper describes Moore and Mealy
machines, pumping lemma, and batch grading. The SIGCSE 2006 paper includes a section on problem
solving with JFLAP, describing thirteen ways to use JFLAP computationally that would be too tedious to
do with pencil and papers. This paper also describes the Turing machine Building Blocks. The SIGCSE 2004
paper describes how JFLAP’s topics fit into a formal languages course, describes many of the algorithms in
JFLAP, and describes how we use JFLAP in CompSci 140 at Duke. This paper also illustrates the explosive
use of JFLAP. The paper was completed in November 2003 and it states that JFLAP appears on over 2000
web pages and has over 3800 downloads since January 2003. In Section 5.4 we state that JFLAP since 2006
appears on over 20,000 web pages and has been downloaded over 35,000 times.

There have been three JFLAP workshops. In March at SIGCSE 2006, Rodger, Finley and Linz gave a 3-hour
workshop on getting started with JFLAP. In June 2005 and June 2006 JFLAP faculty adopter workshops
were held at Duke. Information on these workshops and the slides from the SIGCSE workshop are available
on the www.jflap.org website under “Workshops”.

Other people are citing and using JFLAP. Ganesh Gopalakrishnan states in his letter that he has just
published a new textbook entitled “Computation Engineering: Applied Automata Theory and Logic”. He
states “in the treatment of finite automata, and especially pertaining to Turing machines, I have employed
JFLAP to illustrate numerous subtle details.” He has exercises in his book where he encourages the use of
JFLAP to solve the exercises. Rakesh Verma at University of Houston received an NSF CCLI A&I Grant
0311407 that built on JFLAP and used Rodger as a consultant on the grant. Valerie Harvey from Robert
Morris University in her letter lists four presentations/publications in which she has cited or demoed JFLAP.

8 Summary of How JFLAP Addresses NEEDS Criteria

1. Instructional Design

• Learning Objectives
Learning objectives are presented in this submission packet and are given on the JFLAP web site
under Instructor Use.
Coomes from William Patterson University states in her letter “When I first took over the course
(CS 445), the student interest in it was dying. The course was very theoretical and abstract and
it was failing to make connections with other topics and other courses. While I have maintained
a substantial portion of theory and proof, there is now a healthy dose of application, experimen-
tation, and project and presentations. JFLAP has become an integral part of the course. It has
helped to make CS 445 a vital course again.” Chaudhary from Millersville University states “I am
certain that JFLAP improves the students’ algorithmic thinking and thereby helps them better
understanding the theory.”

• Interactivity
JFLAP has been designed with interactivity in mind as students must construct models, design
input, and run simulations. Students can create their own examples if they want to spend more
time on a topic. JFLAP is helpful with its error messages in trying to guide the user through
construction proofs. In combination with the JFLAP tutorial and described in the JFLAP papers
in the appendix, there are different types of exercises to guide the user through a topic. Different
forms of exercises include 1) load an NFA file and determine the language, 2) load an NFA file and
determine what is wrong with it and fix it, and 3) construct an NFA for a particular language.
Brown from USNA states in his letter that “the fact that these models can be run on inputs [with
JFLAP] encourages students to question whether the machines they construct are correct, test
them and debug them”.

• Cognition/conceptual change
With JFLAP one can study a concept in multiple ways. For example, with SLR parsing. One can
build a pushdown automaton for a language and run inputs on it, seeing that it is nondeterministic.
For the same language, one can build an SLR(1) parse table for it, and run the same inputs, seeing
how the lookaheads help in removing the nondeterminism.
Many of the letters in the appendix state that JFLAP has improved student interest in computer
science and in learning. For example, Busch from RPI states in his letter “In the past... I taught
the same course without JFLAP where I noticed the student had a hard time in learning basic
concepts...JFLAP helped to make a better connection between the basic theoretical concepts of
the course and their applications in the practical domain”. See Section 6 for more information on
our current JFLAP study.

• Content
JFLAP’s content covers a large number of topics in a formal languages course including the
main computational models (finite automata, pushdown automata and several versions of Turing
machines), and all the related grammars (regular, context-free and unrestricted). In addition,
JFLAP covers many of the connections between them such as the proof that the class of context-
free grammars are equivalent to the class of nondeterministic pushdown automata and vice versa.
Furthermore, JFLAP covers the applications of L-systems and SLR parsing.

• Multimedia Use
The graphical editor has been designed with simplicity in mind, few colors are used. When
simulating an NFA, red is used to indicate a configuration is stuck and green (and also a picture
of a final state) is used to indicate acceptance. States can be annotated so the user can assign a
meaning to it. Some windows have multiple panes that can be resized.

• Instructional use/adaptability

JFLAP’s web tutorial explains how to use the graphical editor, and the algorithms for the proofs.
Also on JFLAP web page under Instructor Use we describe how instructors can use JFLAP. The
JFLAP 2006 SIGCSE paper in the appendix explains many computational uses of JFLAP.
Section 5 on the usage of JFLAP shows the wide use of JFLAP by others in five different courses
and even high schools. JFLAP is freely available and this section also shows how users have
modified JFLAP for their needs.
Instructors have found JFLAP easy to use during lecture and many state in their letters that
JFLAP has enhanced their teaching. Brown from The College of Wooster states “[JFLAP] has
substantially enhanced the effectiveness of my teaching in the classes where it applies.” Sloan from
University of Illinois at Chicago states that “[JFLAP] has helped me to win a major teaching award
at my university”.

2. Software Design

• Engagement
JFLAP provides immediate feedback. Students want feedback and will use it whether it is required
or not. Brown from USNA states “From that point on [JFLAP’s] use is optional, but most students
keep using it, as evidenced by the JFLAP screen captures that they turn in as part of their later
homework assignments.” The multiple run window encourages students to do thorough testing of
their constructions.

• Learner interface and navigation
The JFLAP editor for all types of automata is very similar, making it easy for a user to learn the
next type of automaton. The editor for grammars is also similar for all the types of grammars.
For the complicated algorithms such as SLR parsing, grammar transformation to CNF, or NFA
to DFA, JFLAP has multiple tabs, making it easy for the user to backtrack. Many of the letters
included statements that students find JFLAP easy to use.

• Technical reliability
Elenbogen at the University of Michigan Dearborn states “”I have been using JFLAP for over 10
years and am writing concerning its benefits to teaching my classes. ... Its visual interface is so
easy to use that it is wonderful for demonstrations in class. .. The output of JFLAP has improved
over the years but it was always of such high quality that, I proudly posted the examples I did in
class to the class website for examples. The interface is so well designed that students use it for
homework problems even when it is not required.”

3. Engineering Content

• Accuracy of Content
JFLAP covers general definitions of models to fit more closely with multiple formal languages
textbooks.

• Appropriateness of content
JFLAP covers the majority of material from a computer science formal languages course, and
others have found it useful in four other types of computer science courses.

9 Appendices

Following are five appendices that include a list of JFLAP publications and presentations, 3 JFLAP publi-
cations, the preface from the JFLAP book, some partial results from our JFLAP study in 2005-2006, and
68 letters from 14 countries in support of JFLAP.

Resubmission Documentation of JFLAP

We previously submitted the software JFLAP to the NEEDS 2006 competition. In this document we describe
how JFLAP has changed and how the changes address the suggestions given by the judges last year.

We edited the body of the text to reflect the new changes, but we also describe these new changes here.

1 The changes to JFLAP

This year we are submitting the newest version of the JFLAP software and also submitting with it a JFLAP
web tutorial that explains how to use JFLAP.

The additions of new topics to the JFLAP software were not requested by the judges, but rather we are
continually adding new constructs and algorithms to JFLAP so that it will include a broader number of
topics.

Additions to JFLAP include Moore and Mealy machines, Turing machine Building Blocks, Batch grading,
regular pumping lemma proof, context-free pumping lemma proof and many small items such as adding
preferences to select the type of empty string to appear (lambda or epsilon). These new structures and
examples are explained in the 2006 and 2007 papers included in the appendix.

We have also created an extensive JFLAP Web tutorial that guides the user through the usage of topics in
JFLAP, with example JFLAP files that can be loaded and used to follow along. This addition to the JFLAP
web site is in response to the judges for JFLAP to provide more guidance in its use.

2 Addressing concerns of judges

1. The main concern of the judges was the lack of on-line help to guide the user.

The newest change to the JFLAP web site is an online tutorial that covers the topics of JFLAP, guiding
users through the creation of automata, grammars and other structures, and the running and testing
of these creations. The tutorial guides the users through the many algorithms for construction proofs.
Tutorial topics use examples with JFLAP files that can be loaded into JFLAP or created from scratch
by the user. The user can load the example file and follow along in the tutorial. The tutorial includes
many screen shots to show the user how JFLAP should look at each stage.

The files for the tutorial can be downloaded for saving and loading into JFLAP as the user reads the
tutorial, or one can download a .zip file containing all the example files.

2. One concern was the syntax of the input descriptors. These should now be explained in the web
tutorial.

3. One concern is that the size of the working areas are too small. One can resize the JFLAP window
to full screen and move the horizontal and vertical bars to expand one portion of the JFLAP window.
This is explained in the tutorial.

4. One concern was the limit on the complexity of the models that can be constructed. JFLAP is an
instructional tool to learn concepts and is not a tool for solving real (large) problems. With JFLAP
one can learn how SLR parsing works with an example that has about 5 rules and 8 states. One would
not want to use JFLAP to visualize an SLR parser for the programming language Java. That is not
its intent.

5. One concern was they could not figure out how to create sub-machines. Building blocks can be created
for Turing machines. There are two tutorial pages on this topic. Under “Turing machines,” then
“Construct and Run, ” the tutorial guides you through constructing a Turing machine, saving it as
a building block, and then using it to solve another problem. Under “Turing Machines,” and then
“Building Blocks,” it describes building blocks in more detail. Also on the JFLAP web page under
“Sample Files” you can get a library of Turing machine Building Blocks and some sample files.

6. The judges suggest adding a library of sample models. We have done that in our tutorial by including
example files with all the concepts.

7. The judges suggest to improve on the use of icons. Many icons identify their name with the mouse
over them. We have also identified many of these icons in the tutorial as they are needed.

8. The judges suggest not to give the end result but rather to animate the process. JFLAP goes further
than that by having the user construct the result. Although JFLAP provides a “show” or “show step”
button to show the final result on many construction proofs, the user can also construct on their own
the final result. The tutorials guide the user in the step-by-step constructions.

9. The judges suggest to improve the efficiency of the software response. In some cases we do have JFLAP
come up and tell you if it is taking too long. See the tutorial page under “Grammar,” then “Convert
CFG to PDA(LR).” At the end of the tutorial it shows how to use multiple run with strings that take
too long to parse. A message appears and you have to cancel the parse.

List of Appendices

1. List of JFLAP Publications and Presentations

2. Three JFLAP publications

3. Preface from JFLAP book

4. Some Evaluation Results from JFLAP study 2005-2006

5. 68 Letters in Support of JFLAP

Appendix 1 - List of JFLAP Publications and Presentations

This is a list of JFLAP publications and presentations given by Rodger and her students. Many of these
publications or slides of talks appear on the web site www.jflap.org under “JFLAP papers” or “JFLAP
talks”.

Publications

Susan H. Rodger, Jinghui Lim and Stephen Reading, Increasing Interaction and Support in the Formal
Languages and Automata Theory Course, The 12th Annual Conference on Innovation and
Technology in Computer Science Education (ITiCSE 2007), Dundee, Scotland, June 25, p. 58-62,
2007.

Susan H. Rodger and Thomas W. Finley, JFLAP - An Interactive Formal Languages and Automata
Package, ISBN 0763738344, Jones and Bartlett Publishers, 2006.

Susan H. Rodger, Bart Bressler, Thomas Finley, and Stephen Reading, Turning Automata Theory into a
Hands-on Course, Thirty-seventh SIGCSE Technical Symposium on Computer Science Education, p.
379-383, 2006.

Ryan Cavalcante, Thomas Finley and Susan H. Rodger, “A Visual and Interactive Automata Theory
Course with JFLAP 4.0,” Thirty-fifth SIGCSE Technical Symposium on Computer Science
Education, p. 140-144, 2004.

S. H. Rodger, Using Hands-on Visualizations to Teach Computer Science from Beginning Courses to
Advanced Courses, Second Program Visualization Workshop, Hornstrup Centert, Denmark, p.
103-112, June 2002.

T. Hung and S. H. Rodger, “Increasing Visualization and Interaction in the Automata Theory Course,”
Thirty-first SIGCSE Technical Symposium on Computer Science Education, p. 6-10, 2000.

E. Gramond and S. H. Rodger, “Using JFLAP to Interact with Theorems in Automata Theory,” Thirtieth
SIGCSE Technical Symposium on Computer Science Education, p. 336-340, 1999.

A. O. Bilska, K. H. Leider, M. Procopiuc, O. Procopiuc, S. H. Rodger, J. R. Salemme and E. Tsang, “A
Collection of Tools for Making Automata Theory and Formal Languages Come Alive,”
Twenty-eighth SIGCSE Technical Symposium on Computer Science Education, p. 15-19, 1997.

M. Procopiuc, O. Procopiuc, and S. Rodger, “Visualization and Interaction in the Computer Science
Formal Languages Course with JFLAP,” 1996 Frontiers in Education Conference, Salt Lake City,
Utah, p. 121-125, 1996.

S. A. Blythe, M. C. James, and S. H. Rodger, “LLparse and LRparse: Visual and Interactive Tools for
Parsing,” Twenty-fifth SIGCSE Technical Symposium on Computer Science Education, p. 208-212,
March 1994.

D. Caugherty and S. H. Rodger, “NPDA: A Tool for Visualizing and Simulating Nondeterministic
Pushdown Automata,” in Computational Support for Discrete Mathematics, DIMACS Series in
Discrete Mathematics and Theoretical Computer Science, Vol. 15, N. Dean and G. E. Shannon (ed.),
p. 365-377, 1994.

E. Luce and S. H. Rodger, “A Visual Programming Environment for Turing Machines,” Proceedings of the
1993 IEEE Symposium on Visual Languages, p. 231-236, August 1993.

M. LoSacco and S. H. Rodger, “FLAP: A Tool for Drawing and Simulating Automata,” ED-MEDIA 93,
World Conference on Educational Multimedia and Hypermedia, p. 310-317, June 1993.

Presentations that include JFLAP

“Computer Science Concepts Come Alive,” Computer Science Department Colloquium, The Citadel, Feb.
20, 2007.

“Teaching Strategies and Learning Styles,” CRAW Workshop - Managing the Academic Career for Faculty
Women at Undergraduate Computer Science and Engineering Institutions, Cincinnati, OH, March 7,
2007.

“An Interactive Approach to Formal Languages and Automata with JFLAP,” NSF Showcase at
Thirty-eighth SIGCSE Technical Symposium on Computer Science Education, Cincinnati, Ohio,
March 9, 2007.

“Turning Automata Theory into a Hands-on Course,” Thirty-seventh SIGCSE Technical Symposium on
Computer Science Education, Houston, Texas, March 3, 2006.

Workshop: “A Hands on Approach to Formal Languages and Automata with JFLAP,” Thirty-seventh
SIGCSE Technical Symposium on Computer Science Education, Houston, Texas, March 4, 2006
(with P. Linz and T. Finley).

Panel: “Automata Theory - Its Relevance to Computer Science Students and Course Contents,” Panelist,
Thirty-seventh SIGCSE Technical Symposium on Computer Science Education, Houston, Texas,
March 2, 2006.

Panel: “Animation and Visualization in the Curriculum: Opportunities, Challenges, and Successes,”
Panelist, Thirty-seventh SIGCSE Technical Symposium on Computer Science Education, Houston,
Texas, March 3, 2006.

Demonstration: “Learning Automata and Formal Languages Interactively with JFLAP,” The Eleventh
Annual Conference on Innovation and Technology in Computer Science Education, University of
Bologna, Italy, June 28, 2006.

“A Visual and Interactive Automata Theory Course with JFLAP 4.0,” Thirty-fifth SIGCSE Technical
Symposium on Computer Science Education, Norfolk, Virginia, March 4, 2004.

“An Interactive and Visual Approach to Learning Computer Science,” Department of Computer Science,
University of Houston, Houston, Texas, November 30, 2004.

“Learning Computer Science Concepts via Interactive Visualizations,” Department of Computer Science,
Johns Hopkins University, Baltimore, MD, July 24, 2003.

“Using Hands-on Visualizations to Teach Computer Science from Beginning Courses to Advanced
Courses”, Second Program Visualization Workshop, Hornstrup Centret, Denmark, June 28, 2002.

“Using JFLAP for Visualization and Interaction in the Automata Theory Course,” Software Visualization
Workshop, Dagstuhl, Germany, May 25, 2001.

“Increasing Visualization and Interaction in the Automata Theory Course,” Thirty-first SIGCSE Technical
Symposium on Computer Science Education, Austin, TX, March 9, 2000.

“Using JFLAP to Interact with Theorems in Automata Theory,” Thirtieth SIGCSE Technical Symposium
on Computer Science Education, New Orleans, LA, March 27, 1999.

“Animation, Visualization and Interaction with Computer Science Concepts,” Department of Mathematics
and Computer Science, Wake Forest University, Winston-Salem, NC, December 1, 1998.

Poster: “JFLAP: An Aid to Studying Theorems in Automata Theory,” Integrating Technology into
Computer Science Education, Dublin, Ireland, August 20, 1998 (with E. Gramond).

“A Collection of Tools for Making Automata Theory and Formal Languages Come Alive,” Twenty-eighth
SIGCSE Technical Symposium on Computer Science Education, San Jose, CA, February 27, 1997.

“Visualization and Interaction in the Computer Science Formal Languages Course with JFLAP,” 1996
Frontiers in Education Conference, Salt Lake City, Utah, November 5, 1996.

“Visual Demonstrations of Automata and Parsing,” Interactive and Visual Tools Workshop, Duke
University, March 30, 1996.

“Integrating Hands-On Work into the Formal Languages Course via Tools and Programming,” Workshop
on Implementing Automata, London, Ontario, August 30, 1996.

Demo of JFLAP, Workshop on Implementing Automata, London, Ontario, August 30, 1996.

Poster: “Interactive Tools for Teaching and Learning the Foundations of Computer Science,” American
Society for Engineering Education (ASEE) Conference, Washington, DC, June 24, 1996.

Tutorial: “Using Visual Demonstrations,” SIGCSE Technical Symposium on Computer Science Education,
Nashville, TN, March 2, 1995 (with S. Grissom, R. Ross, D. Schweitzer, T. Naps, and D. Hunkins).

“LLparse and LRparse: Visual and Interactive Tools for Parsing,” SIGCSE Technical Symposium on
Computer Science Education, Phoenix, Arizona, March 11, 1994.

Poster and demos for “Visual and Interactive Tools for Teaching Computer Science,” SIGCSE 94 Technical
Symposium, Phoenix, Arizona, March 10, 1994.

“A Visual Programming Environment for Turing Machines,” IEEE Symposium on Visual Languages 1993,
Bergen, Norway, August 26, 1993.

“FLAP: A Tool for Drawing and Simulating Automata,” ED-MEDIA 93, World Conference on Educational
Multimedia and Hypermedia, Orlando, FL, June 24, 1993.

“Computers in Teaching the Foundations of Computer Science,” Computers in Science Education and
Training Workshop, Acadia University, Wolfville, Nova Scotia, June 15, 1992.

Appendix 2 - Three JFLAP publications

We include the following three JFLAP publications.

• Susan H. Rodger, Jinghui Lim and Stephen Reading, Increasing Interaction and Support in the Formal
Languages and Automata Theory Course, The 12th Annual Conference on Innovation and Technology
in Computer Science Education (ITiCSE 2007), Dundee, Scotland, June 25, p. 58-62, 2007.

• Susan H. Rodger, Bart Bressler, Thomas Finley, and Stephen Reading, Turning Automata Theory into
a Hands-on Course, Thirty-seventh SIGCSE Technical Symposium on Computer Science Education,
p. 379-383, 2006.

• Ryan Cavalcante, Thomas Finley and Susan H. Rodger, “A Visual and Interactive Automata Theory
Course with JFLAP 4.0,” Thirty-fifth SIGCSE Technical Symposium on Computer Science Education,
p. 140-144, 2004.

Increasing Interaction and Support in the Formal
Languages and Automata Theory Course∗

[Extended Abstract]

Susan H. Rodger
Computer Science

Department
Duke University

Durham, NC 27708
rodger@cs.duke.edu

Jinghui Lim
Computer Science

Department
Duke University

Durham, NC 27708

Stephen Reading
Computer Science

Department
Duke University

Durham, NC 27708

ABSTRACT
The introduction of educational software such as JFLAP
into the course Formal Languages and Automata (FLA) has
created a learning environment with automatic feedback on
theoretical topics. In this paper we show how we further in-
crease the interaction in the FLA course with the expansion
of additional theoretical topics in JFLAP, and how we have
added grading support into JFLAP for instructors.

Categories and Subject Descriptors
F.4.3 [Theory of Computation]: Mathematical Logic and
Formal Languages Formal Languages; D.1.7 [Software]: Pro-
gramming Techniques Visual Programming

General Terms
Theory

Keywords
JFLAP, automata, formal languages, pumping lemma, Moore
machine, Mealy machine

1. INTRODUCTION
The teaching of formal languages and automata (FLA) is

moving from a pencil and paper environment to an inter-
active learning environment with the introduction of educa-
tional software to experiment with the many concepts in this
course. This approach has both advantages and disadvan-
tages. The advantages allow students to experiment with
concepts that would be difficult and tedious to do on paper,

∗The work of all three authors was supported in part by
the National Science Foundation through grant NSF DUE
CCLI-EMD 0442513

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ITiCSE’07, June 23–27, 2007, Dundee, Scotland, United Kingdom.
Copyright 2007 ACM 978-1-59593-610-3/07/0006 ...$5.00.

and to receive immediate feedback on problem solving. The
disadvantages include the difficulty for the instructor choos-
ing to move this route with a large number and variety of
tools being developed, the added burden of grading home-
works in a format other than paper, and the difficulty on
students learning several tools with different formats.

A large variety of tools have been developed to experi-
ment with one or more concepts from the FLA course. We
list a few of those tools here, there are many more[5]. Tur-
ings World[1] is for experimenting extensively with Turing
machines. Forlan[10] is a toolset for experimenting with reg-
ular languages. Language Emulator[12] is a toolkit for regu-
lar languages and includes Moore and Mealy machines. The
tool jFAST[13] allows experimentation with finite automata,
pushdown automata and Turing machines. Grinder[4] fo-
cuses on finite state automata. RegEx[2] allows experimen-
tation with regular expressions.

A single tool that covers a large number of topics takes
enormous development time, but can be easier on instructors
and students in moving from one concept to another. There
are three efforts to create a large collection of FLA concepts
in one tool. Taylor[11] explores many types of machines
including Turing machines, finite automata, pushdown au-
tomata, and linear bounded automata using the software
Deus Ex Machina, but does not include support for other
topics such as grammars or transformations between gram-
mars and automata. Ross[3] is in the process of develop-
ing an extensive hypertextbook called Webworks that will
include many topics in automata theory, and incorporates
text, sound, pictures, illustrations, slide shows, video clips
and active learning models. This is a huge development
effort in the works for several years now. JFLAP[8, 9], de-
scribed in more detail in Section 2, is a software tool un-
der development for over fifteen years to incorporate many
topics in automata theory in one tool including automata,
grammars and experimentation with proofs.

In this paper we show how we further increase the in-
teraction in the FLA course with the expansion of addi-
tional theoretical topics in JFLAP, and how we encourage
the creation of JFLAP files for grading by providing grading
support for instructors within JFLAP. The main additional
theoretical topics in JFLAP are described in Section 3 and
include Moore and Mealy machines, and games for learning
about regular and context-free pumping lemmas. The batch
grading support is described in Section 4, and includes an

interface for loading and grading a large number of student
JFLAP files.

2. OVERVIEW OF JFLAP
JFLAP (Java Formal Languages and Automata Package)

is instructional software for experimenting with automata
and grammars, but goes further in allowing one to experi-
ment with proofs and applications related to these topics.
JFLAP’s main feature is the ability to experiment with theo-
retical machines and grammars. With JFLAP one can build
and run user-defined input on finite automata, pushdown
automata, multi-tape Turing machines, regular grammars,
context-free grammars (CFG), unrestricted grammars, and
L-systems. After constructing the automaton or grammar,
one can trace through a single input string or receive auto-
matic feedback on multiple inputs.

JFLAP’s second feature is the ability to construct in steps
the proof of the transformation of one form to another form.
For example, after constructing a nondeterministic finite au-
tomata (NFA), one can step through its conversion to a de-
terministic finite automata (DFA), then to a minimal state
DFA, and then to regular grammar. As another example,
one can build a CFG and construct in steps the equivalent
nondeterministic PDA.

JFLAP’s third feature is the experimentation with appli-
cations of theoretical material. One example is experiment-
ing with parsing by constructing the SLR(1) parse table in
steps, and then stepping through the parsing of input strings
and the construction of the equivalent parse tree. The con-
struction of the parse table includes building a special DFA
that models the parsing process, thus seeing a use for a DFA.
Another application is building an L-system grammar of a
plant, and rendering it to watch a simulation of the plant
growing.

3. NEW TOPICS IN JFLAP 6.0
In this section we describe new topics we have integrated

into JFLAP. All these topics allow students to experiment
with them and receive immediate feedback.

One new topic is transducers. A transducer is a finite au-
tomaton that generates output. JFLAP now provides exper-
imentation with two types of transducers: Mealy machines
for generating output based on transitions and Moore ma-
chines for generating output based on states.

Another new topic is the pumping lemma. We provide
pumping lemma games for both the regular pumping lemma
and the context-free pumping lemma. Given a language,
the student plays against the computer to help categorize
the language. For example, if the language is not regular,
the game will prove it is not regular, and if the language
is regular, a partition is found to show the pumping lemma
holds for that language.

3.1 Mealy Machines
A Mealy machine is similar to a finite state automaton,

but it does not have final states and it can produce output
through its transitions. Adding Mealy machines to JFLAP
expands on applications of automata as Mealy machines can
model problems in many disciplines. We first provide a def-
inition of a Mealy machine and then give an example of a
Mealy machine implemented in JFLAP.

Definition: A Mealy machine is defined as a 6-tuple,

Figure 1: A Mealy Machine built with JFLAP

Figure 2: Mealy Output from Several Inputs

(Q,Σ,Γ,δ,ω, q0), where
Q is finite set of states
Σ is input alphabet
Γ is output alphabet
q0 is initial state
δ is the transition function, δ:Q×Σ→Q
ω is the output function, ω:Q×Σ→ Γ

Using JFLAP we build a Mealy machine to output infor-
mation describing whether there is an odd number of 1’s in
a string. Since a Mealy machine doesn’t have a final state,
we will output the current status of a binary string based
on how many digits have been viewed. Figure 1 shows the
corresponding Mealy machine. There are two states q0 and
q1, with q0 indicated as the start state. The meaning of
state q0 is an even number of 1’s have been seen and the
meaning of state q1 is an odd number of 1’s have been seen.
The transition 1; O from q0 to q1 means if a 1 is processed,
output the letter O meaning an odd number of 1’s have been
processed, and the transition 1; E from q1 to q0 means if a 1
is seen output the letter E meaning there is an even number
of 1’s. The output for several inputs run in JFLAP is shown
in Figure 2.

3.2 Moore Machines
A Moore machine is a transducer similar to a Mealy ma-

chine, but generates output based on states instead of tran-
sitions. Like the Mealy machine, the definition of a Moore
machine is a 6-tuple, but with ω defined as ω : Q → Γ.

We build an example of a Moore machine in JFLAP shown
in Figure 3 that divides binary numbers in half with trun-
cation. One way to divide a binary number in half is to
remove its last digit. However, Moore machines process the
input string from left to right and do not have final states.
Thus our algorithm keeps track of two symbols at a time
(the previous and current symbol) and outputs the previous
symbol.

This example also illustrates a feature of JFLAP that al-
lows one to change the name of states to more meaningful
names. The states in this machine have been renamed to
be the previous and current symbol seen. Here the start

Figure 3: Moore Machine - Dividing Binary Num-
bers

Figure 4: Moore Machine Output Runs in JFLAP

state (indicated by the triangular arrow) has been renamed
from the default q0 to 00. Assuming 0’s preceeding any bi-
nary number are ignored, this start state represents the two
previous and current nonexistant symbols as both 0 before
processing any input. The output associated with each state
is shown as a box attached to the top-right side of the state.
The output for each state in this example is the previous
symbol processed, which also happens to be the leftmost
symbol of the state name. Thus, the output for state 00 is
0 and the output for state 10 is 1.

Let’s process the string 101. Starting in state 00 automat-
ically outputs the output for that state, 0. Processing the
1 moves to state 01 and outputs 0. Processing the 0 moves
to state 10 and outputs 1. Processing the final 1 moves to
state 01 and outputs 0. Thus the resulting output is 0010,
which is equivalent to 10. Results of several inputs for this
problem run in JFLAP are shown in Figure 4.

3.3 Regular Pumping Lemma Game
The pumping lemma is a more abstract concept than an

automaton. In the FLA course, students experiment with
a regular language in the form of an automaton, which is
a concrete item that can be built and traced through with
input. Then they are asked to identify a language, whether
or not it is regular. If they can build a DFA for the language,
they can easily answer the question. If they cannot, then
they must consider proving the language is not regular. One
such procedure is to use the pumping lemma. In this section
we describe how we have created a pumping lemma game
students can play to learn this concept. We modeled our
pumping lemma game after the descriptions in [6].

First, we give the definition of the pumping lemma for
regular languages.

Pumping Lemma: Let L be an infinite regular lan-
guage. Then there is a constant m > 0 such that for any
w ∈ L, with |w| ≥ m, w can be partitioned into three parts
w = xyz with

|xy| ≤ m
|y| ≥ 1
xyiz ∈ L for all i ≥ 0

The pumping lemma can be used to prove a language is
not regular.

The game approach with JFLAP involves two players, the
student and JFLAP. JFLAP’s goal is to prove the language
is not regular. The student’s goal is to make it as hard as
possible. The game proceeds as follows.

First the student selects a language for the game (one of
nine choices) and selects an integer for m, the constant in the
pumping lemma. JFLAP then picks a string in the language
such that the string is of length greater than or equal to m.
The student then has to partition the string into the three
parts x, y, and z such that xyiz is in the language for all
i ≥ 0.

Here is an example shown in Figure 5 for the language
{anbn|n ≥ 0}. In step 1, the user selected 7. In step 2
JFLAP shows the string a7b7 and asks the user to select
a decomposition. Step 3 starts with the slider bars all the
way to the left. The user slid the first bar over two spaces
to indicate the selection of x = aa, the second bar over an
additional two spaces to indicate the selection of y = aa and
z becomes the rest of the string, z = a3b7. JFLAP provides
helpful messages to guide the user. When the user selects
x, the second slider bar moves along also, and if the user
slides the second bar back to the left, an error message is
shown. If the user slides the bar too far to the right, making
the condition |xy| ≤ m not true, JFLAP displays a mes-
sage showing this condition has been violated and the user
must make another selection. Once the user has a correct
partition, in step 4, JFLAP shows a choice of i that gives a
contradiction, 0 in this case and the generated string that is
not in the language. Step 5 provides further explanation by
providing an animation of building the pumped string that
is not in the language.

One has a choice of nine languages to choose from, one
of which is regular. In this case, the student can find a
partition that allows the string to be pumped.

3.4 Context-Free Pumping Lemma
The pumping lemma game for context-free languages (CFL)

is more complicated as there may be many cases to consider.
We first give the definition of the pumping lemma for CFL’s.

Pumping Lemma for CFL’s Let L be an infinite context-
free language. Then there is a constant m > 0, such that
for any w ∈ L, with |w| ≥ m, w can be partitioned into five
parts w = uvxyz with

|vxy| ≤ m, (limit on size of substring)
|vy| ≥ 1, (v and y not both empty)
For all i ≥ 0, uvixyiz ∈L

In this pumping lemma game, the user starts by selecting
a language from a list of nine possible languages. The win-
dow is partitioned into two parts. The left side looks similar

Figure 5: Regular Pumping Lemma Game

to the window for the regular pumping lemma. The right
side of the window is for categorizing all the cases describ-
ing the choices for v and y (explained below), and starts as
empty. The user plays the game by selecting the choice of
m in step 1. JFLAP shows a string in step 2 that is in the
language and whose length is greater than or equal to m.
In step three the user moves the slider bars to partition the
string into five parts u, v, x, y and z. In step 4 JFLAP finds
an i to give a contradiction and step 5 shows an animation
of building the string that provides the contradiction. At
this point, the user can add the case to the right side of the
window, and then start over to find another case.

We now explain the cases for a language. Consider the
language anbncn. The condition |vxy| ≤ m limits the size of
this substring, but doesn’t restrict where it can start. (Note
that in the regular pumping lemma, the substring xy always
started on the left end of the string.) To prove a language
is not CFL, every possible partition must be considered and
proven that it fails. Without a starting restriction for vxy we
must consider all possible starting positions. We have done
this by focusing on the contents for v and y and describing
what type of letter they contain. For example, v has a′s
then there are three cases for y: 1) y is all a’s, 2) y is a’s
followed by b’s and 3) y is b’s. Note that y cannot have c’s
or |vxy| > m. In this example, there are 11 cases that the
student must find. The user can find as many cases as they
want, and at some point they can select “Find” to show all
the cases.

3.5 Other New Features of JFLAP 6.0
We would like to mention a few other features that have

been added to JFLAP. Annotations (called notes) can now
be added in the editor pane at any location. In Figure 3 we
added a note with a title to the Moore machine. Copying
portions of a drawing is now easier by allowing one to select
a bounding box area to copy.

Multi-run input has been added to Grammars. In previ-
ous versions of JFLAP, only one input could be tested at a
time on a grammar, with the result being either a derivation
or a parse tree. Now one can run several inputs at the same
time, and then select one at a time from the results to view
the derivation or parse tree.

One change to make JFLAP fit with more textbooks has
been a new preference to select the representation of the
empty string, either lambda or epsilon. JFLAP stores your
preference in a file and displays the empty string from any
file with your preference.

4. BATCH GRADING SUPPORT
In previous versions of JFLAP, running multiple inputs

at once for an automaton was added to aid in grading and
to provide students with faster testing. In particular, one
machine would be loaded and run on several inputs. The
next machines loaded would use the same inputs, so the
grader would not have to reenter them. However, grading
could still take a long time for a large course as each machine
has to be loaded and run.

In JFLAP 6.0, batch grading support has been added that

Figure 6: Batch Grading Three Automata

allows one to load and produce output for multiple machines
at once. Before using, the grader should place all the files
in one directory and create an input text file with accept or
reject status for each string. From the main JFLAP menu
one selects Batch and then selects the automata files to run
followed by selecting the input file. A window then appears
with a picture of one of the automaton in the left side of the
window, and the right side of the window lists the name of
the files and the input strings to test. After selecting Run In-
puts the results are displayed. For example, Figure 6 shows
a run with three automata named fa1.jff, fa2.jff and fa5.jff.
The machine fa5.jff has been selected and highlighted, and
its graphic picture is shown on the left side of the window.
On the right side are shown the results of running four input
strings on each of these three files. The results for file fa1.jff
are shown first, then the results for file fa2.jff and then the
results for fa5.jff. The file fa5.jff accepts all four strings,
and the other two files reject all four strings.

There are several options with batch grading. By selecting
a different automaton on the right, the picture on the left
changes to correspond to that automaton. One can add an
additional automaton, and it is added with all the current
inputs. One can add an input string, adding a line for each
automaton. Files can be selected and edited to fix a bug.
A trace for a specific automaton and string can be viewed.
Most important, the results can be saved to files. Selecting
Save Results writes each input string and its result for each
file to a file of the same name with a “.txt” extension added.
These files can be returned to students.

Batch grading is available for finite automata, pushdown
automata, Turing machines and grammars.

5. USE OF JFLAP
JFLAP is used world wide in over 160 countries in formal

languages courses, compiler courses, discrete math courses
and artificial intelligence courses. The JFLAP web site [7]
tracks usage of JFLAP. This web site allows users to down-
load JFLAP for free and has had over 35,000 downloads
since 2003. This site provides many resources including sam-
ple files, tutorial, slides, and papers.

JFLAP is used at Duke University in the course CompSci
140 and informal feedback from students over the past ten
years has been very positive. JFLAP is currently under-
going a formal two-year study from 2005-2007 with twelve
universities participating to evaluate JFLAP’s effectiveness
in learning automata theory topics.

6. CONCLUSION
We continue to develop JFLAP into an extensive tool

covering many of the topics in a formal languages course

including experimentation with automata, grammars, and
proofs involving these concepts. We have recently added
the experimentation of transducers to JFLAP, Moore and
Mealy machines, and a new approach of games for learning
the pumping lemmas. We also address concerns of grading
JFLAP files by providing an interface for grading a large
number of JFLAP files.

7. ACKNOWLEDGMENTS
Thanks to Peter Linz for suggestions on improving the

pumping lemma interface.

8. REFERENCES
[1] J. Barwise and J. Etchemendy. Turing’s World 3.0 for

the Macintosh. CSLI, Cambridge University Press,
1993.

[2] C. W. Brown and E. A. Hardisty. Regexex: An
interactive system providing regular expression
exercises. In Thirty-eighth SIGCSE Technical
Symposium on Computer Science Education, page (to
appear). SIGCSE, March 2007.

[3] J. Cogliati, F. Goosey, M. Grinder, B. Pascoe,
R. Ross, and C. Williams. Realizing the promise of
visualization in the theory of computing. JERIC, 5,
2005.

[4] M. T. Grinder. A preliminary empirical evaluation of
the effectiveness of a finite state automaton animator.
In Thirty-fourth SIGCSE Technical Symposium on
Computer Science Education, pages 157–161. SIGCSE,
February 2003.

[5] V. J. Harvey and S. H. Rodger. Editorial for the
special issue on software support for teaching discrete
mathematics. Journal on Educational Resources in
Computing, 5(2):1–16, June 2005.

[6] P. Linz. An Introduction to Formal Languages and
Automata, 4th Edition. Jones and Bartlett, Sudbury,
MA, 2006.

[7] S. H. Rodger. Jflap web site, 2006. www.jflap.org.

[8] S. H. Rodger, B. Bressler, T. Finley, and S. Reading.
Turning automata theory into a hands-on course. In
Thirty-seventh SIGCSE Technical Symposium on
Computer Science Education, pages 379–383. SIGCSE,
March 2006.

[9] S. H. Rodger and T. W. Finley. JFLAP - An
Interactive Formal Languages and Automata Package.
Jones and Bartlett, Sudbury, MA, 2006.

[10] A. Stoughton. Experimenting with formal languages.
In Thirty-sixth SIGCSE Technical Symposium on
Computer Science Education, page 566. SIGCSE,
February 2005.

[11] R. Taylor. Models of Computation and Formal
Languages. Oxford University Press, New York, 1998.

[12] L. F. M. Vieira, M. A. M. Vieira, and N. J. Vieira.
Language emulator, a helpful toolkit in the learning
process of computer theory. In Thirty-fifth SIGCSE
Technical Symposium on Computer Science Education,
pages 135–139. SIGCSE, March 2004.

[13] T. M. White and T. P. Way. jfast: A java finite
automata simulator. In Thirty-seventh SIGCSE
Technical Symposium on Computer Science Education,
pages 384–388. SIGCSE, March 2006.

Turning Automata Theory into a Hands-on Course ∗

Susan H. Rodger
Computer Science

Duke University
Durham, NC 27708

rodger@cs.duke.edu

Bart Bressler
Computer Science

Duke University
Durham, NC 27708

Thomas Finley
Computer Science
Cornell University
Ithaca, NY 14853

Stephen Reading
Computer Science

Duke University
Durham, NC 27708

ABSTRACT
We present a hands-on approach to problem solving in the
formal languages and automata theory course. Using the
tool JFLAP, students can solve a wide range of problems
that are tedious to solve using pencil and paper. In combi-
nation with the more traditional theory problems, students
study a wider-range of problems on a topic. Thus, students
explore the formal languages and automata concepts compu-
tationally and visually with JFLAP, and theoretically with-
out JFLAP. In addition, we present a new feature in JFLAP,
Turing machine building blocks. One can now build com-
plex Turing machines by using other Turing machines as
components or building blocks.

Categories and Subject Descriptors
F.4.3 [Theory of Computation]: Mathematical Logic and
Formal Languages Formal Languages; D.1.7 [Software]: Pro-
gramming Techniques Visual Programming

General Terms
Theory

Keywords
JFLAP, automata, pushdown automata, Turing machine,
grammar, SLR parsing, LL parsing, L-system

1. INTRODUCTION
Traditionally, the formal languages and automata (FLA)

courses have assigned pencil and paper homework exercises
of two types: proofs and construction exercises. The second
of these types of problems are limited to small examples.
Even on a moderate-size example of constructing an au-
tomaton with eight states, students are unlikely to do much

∗The work of all four authors was supported in part by
the National Science Foundation through grant NSF DUE
CCLI-EMD 0442513.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’06March 1–5, 2006, Houston, Texas, USA.
Copyright 2006 ACM 1-59593-259-3/06/0003 ...$5.00.

testing as it is tedious to trace by hand. Grading such prob-
lems is similarly slow and error prone.

We describe a hands-on approach to the FLA course that
allows students to explore many of the FLA concepts com-
putationally and visually using the tool JFLAP. We are not
advocating to remove the proof type of exercises from the
course, but rather to supplement them with hands-on explo-
rations of related topics. For example, consider the problem
of proving that if a language L is regular, then so is the lan-
guage LR (the language with all strings from L reversed).
This is a common proof-type problem given in this course.
For some students, before proving this, it might be helpful
to visualize an example first. They start with some regular
language L, build a deterministic finite automaton (DFA)
for it, and then convert this DFA into a DFA for LR. They
must create test data for both DFA to convince themselves
that the DFA are correct. This approach relates the FLA
course more in line with the majority of their computer sci-
ence courses which are hands on and involve constructing,
debugging and testing.

Others have taken similar hands-on approaches to the
FLA course, but focus on a smaller number of topics. Tur-
ing’s World[1] allows one to create and experiment with
Turing machines and automata. The focus is on Turing ma-
chines and submachines. Taylor[8] uses the software Deus Ex
Machina letting users experiment with Turing machines, fi-
nite automata, pushdown automata, and several other types
of automata. Forlan[7] is a toolset used in conjunction with
Standard ML for creating and experimenting with finite au-
tomata, regular expressions and grammars. Language Emu-
lator[9] is a toolkit for a number of forms of regular lan-
guages including Moore and Mealy machines, and many
types of translations between the forms. Grinder[4] has de-
veloped the FSA Simulator for experimenting with finite
state automata. It is part of Webworks[3], an extensive hy-
pertextbook under development that will cover many topics
in automata theory. It incorporates text, sound, pictures, il-
lustrations, slide shows, video clips and active learning mod-
els.

In this paper we present an overview of JFLAP and then
give several examples of how it can be used computationally
and visually to explore FLA concepts in depth. We then
present new features of JFLAP including the ability to build
more interesting Turing machines with building blocks. Tur-
ing machines built can be named and reused as a component
in another Turing machine. We conclude with an evaluation
of JFLAP’s use around the world and a description of future
work.

2. AN OVERVIEW OF JFLAP
JFLAP[5, 6, 2] is an instructional tool for creating and

experimenting with several types of nondeterministic au-
tomata, grammars, regular expressions, L-systems, and ex-
perimenting with the conversion from one structure to an-
other. With JFLAP one can build a finite automaton (FA),
a pushdown automaton (PDA), or a multi-tape Turing ma-
chine (TM) and observe its simulation on several inputs.
One can enter a regular grammar, a context-free grammar
(CFG), or an unrestricted grammar and observe the brute-
force parsing of strings in this grammar with the result
shown either as a derivation or a parse tree.

JFLAP allows the conversion from one form to another.
One can convert an NFA to a DFA to a minimal state DFA,
convert between NFA and regular grammars, or convert be-
tween NFA and regular expressions. One can convert a
nondeterministic PDA (NPDA) to a CFG or a CFG to an
NPDA. One can convert a CFG to Chomsky Normal Form,
along the way removing λ-productions, unit productions and
useless productions. One can convert a CFG to either an
LL(1) or SLR(1) parse table and then parse strings in the
language. Finally, one can create an L-system, a different
type of grammar that can be used for modeling the growth
of plants and fractals.

3. PROBLEM SOLVING WITH JFLAP
The previous section described the construction and test-

ing of automata and grammars in JFLAP, and the conver-
sion from one form to another. That in itself allows for users
to build and test automata more easily than can be created
using pencil and paper.

We now describe several other types of problem solving
with JFLAP that are tedious to do with pencil and paper.

3.1 Comparison of Finite Automata
Given two different FA, determine if they are equivalent

and if not, then show that they do not accept the same lan-
guage. A student can either be given the two FA in files, or
can build them with JFLAP. The student must determine
a good set of test data and then run simulations on the in-
put strings. The multiple run window allows for the testing
of multiple inputs simultaneously. Alternatively, they can
minimize the two FA and compare their results. Finally,
JFLAP’s Compare Equivalence will announce if the two FA
are equivalent. If the two FA are not equivalent, a student
needs to determine one string that is accepted in one FA
and not in the other.

3.2 Comparison of Regular Expressions
Given two regular expressions, determine if they are equiv-

alent or not. In JFLAP one cannot test strings for a regular
expression. However, one can convert a regular expression
to an equivalent FA and then run a series of test strings
similar to the comparison of two FA.

3.3 Working Backwards - DFA to NFA
This problem shows the understanding of how an NFA is

transformed into a DFA, but works backwards. The stu-
dents are given a DFA from JFLAP that was transformed
from an NFA. The DFA has each state labeled with the num-
bers of the states from the NFA. The problem is to create
the original NFA. There is an assumption that the original
NFA did not have any λ-transitions. Once the original NFA

has been created, students can use the Compare Equivalence
option with the DFA to determine if they have created the
correct NFA.

3.4 Creating Automata Based on Properties
JFLAP can be used to construct examples that illustrate

the properties of languages. For example, given two au-
tomata, build an automaton that represents the union of
the two. The two automata may already be constructed.
Using the Combine Automata option, both automaton are
placed in the same window, one of them losing its start state
status as only one state can retain this status. The user can
then connect and modify them. In this case, a new start
state is created and λ-productions are added from the new
start state to each of the previous start states. The user can
then test the new automaton on multiple inputs.

A more complicated example is to consider the property
called SwapFirstLast(L), which takes the first letter of each
string in L and swaps it with the last letter of that string.
Students are to show that if L is regular, than SwapFirst-
Last(L) is regular. Students would approach this problem
in two ways. First, using JFLAP they would construct a
simple DFA M with language L, and then convert it to the
DFA M2 for the language SwapFirstLast(L). Second, with-
out JFLAP they would formally prove SwapFirstLast(L) is
regular.

3.5 Determining Distinguishable States
One of the transformations in JFLAP is converting a DFA

to a minimal state DFA. The algorithm in JFLAP assumes
initially that all the final states are indistinguishable and all
the nonfinal states are indistinguishable, grouping indistin-
guishable states into two sets, one for final states and one for
non-final states. The algorithm then attempts to determine
if some of the states in a set are distinguishable, thus split-
ting a set into two or more sets. If a user suspects that two
states in the same set are distinguishable, they can modify
the DFA to make each of these states a start state (at dif-
ferent times) and determine a string that is accepted by one
of the modified DFAs and not the other. If there is such a
string, then these states are distinguishable and need to be
placed into separate sets.

3.6 Exploring with Nondeterminism
Most students are used to thinking sequentially. When

given a problem that can only be solved nondeterministi-
cally, many students struggle. The problem of determining
if a string is a palindrome can be solved by a nondeter-
ministic PDA (NPDA), and not by a deterministic PDA
(DPDA). Students taking the sequential approach to this
problem want to find the middle and then determine if the
right and left half match up. But this approach does not
work with a DPDA. With JFLAP, students can build an
NPDA for this problem and then observe how the nondeter-
minism works. When running the simulation with JFLAP,
each current configuration is shown. For a valid input string,
one of those configurations reaches the middle of the string
and the simulation begins matching the left and right halves,
continuing to acceptance.

3.7 Exponential Growth in Grammars
JFLAP can show the exponential growth in grammars,

and the result of transforming the grammar. For example,

students are given the grammar on the left that contains a
λ-production and asked to transform it into an equivalent
grammar with no lambda-productions or unit-productions,
the resulting CFG shown on the right. They are then asked
to compare brute-force parsing of the two grammars. For
input aaababaabbb, the grammar on the left takes a long time
to accept, generating 13286 nodes in the derivation tree. The
grammar on the right accepts quickly after generating 335
nodes in the derivation tree.

S → aB S → aB
S → Ba S → Ba
B → aBb S → a
B → BB B → aBb
B → bBa B → BB
B → λ B → bBa

B → ab
B → ba

Similar examples can be shown with unrestricted gram-
mars. Those grammars with more items on the left side of
a production will proceed more quickly in parsing.

3.8 Determining the Language of a Grammar
JFLAP can be used in determining the language of a

given CFG. In one approach, the CFG can be tested on
multiple inputs. In another approach, the user can divide
the problem into smaller components. For each variable,
enter its productions to determine the capability of that
variable (replacing other variables with temporary termi-
nals). For example, consider the grammar below with seven
productions. The user can enter all the B productions in
a new grammar window, with a small s for S (otherwise
derivations are not possible). The user then derives strings

{b, ab, bs, aabs, absa, . . .} and determines that B
∗⇒ a∗b(λ +

S)a∗. Entering only S productions with a special termi-
nal to represent the variable B, the user can determine that

S
∗⇒ a∗bBa∗. Putting them together, S

∗⇒ a∗ba∗b(λ + S)a∗

or (a∗ba∗b)∗a∗. The user can then test the language by de-
veloping a set of test strings.

S → aS S → Sa S → bB B → aB
B → Ba B → bS B → b

3.9 In Depth Study of FOLLOW sets
One of the early steps in LL or SLR parsing is to compute

the FOLLOW set for each variable in the grammar. The
FOLLOW set of a variable is the set of all terminals that
can follow this variable in some derivation. Students are
given an algorithm for computing the FOLLOW sets, and
many can follow the algorithm, but it is not clear that they
really understand the meaning of the FOLLOW sets. For
this problem, students are given a grammar and are asked
to compute the FIRST and FOLLOW sets for the variables
in the grammar. Then they are asked to show the sentential
form in a derivation for each symbol in a FOLLOW set that
shows that terminal immediately following the correspond-
ing variable. They can solve this problem partially using
JFLAP by parsing strings with the brute-force parser. A
derivation is shown for each string and one can observe the
sentential forms in the derivation. Several strings may be
needed and a few sentential forms may not be found due to
the order JFLAP replaces productions when given a choice.

3.10 Parsing Algorithms: Two Approaches
We show how JFLAP can be used to extensively study

SLR parsing from two approaches. A similar approach ap-
plies to LL parsing. Given an SLR(1) grammar, the first
approach is to convert the grammar to an NPDA using the
SLR parsing method. The resulting NPDA has three states
and is likely to be nondeterministic. Students then run the
NPDA on several inputs, making the run deterministic by
choosing the lookahead each time and freezing configura-
tions that are not chosen. Next students view the parsing
from a second approach. They build an SLR(1) parse table
for the grammar and step through the parsing of the same
inputs with the same lookaheads.

3.11 Parsing grammars that are not SLR(1)
With JFLAP one can build an SLR(1) parse table even

if there is a conflict in the table. For each entry that has
a conflict, the user chooses one of them. Then the user
can proceed and parse strings using the parse table. Not
all strings in the grammar can be parsed using the choices
chosen. Here is a problem given to students to test their
understanding of the parse table. Given a CFG that is not
SLR(1) and a given input string, find the correct choices for
conflicts in the parse table so the string can be parsed.

3.12 Running a Universal Turing machine
With JFLAP’s 3-tape Turing machine, we have constructed

a Universal Turing machine that has 34 states. Using the
Universal Turing machine, a student can encode a simple
Turing machine with a few transitions, each encoded tran-
sition will be a string of 0’s and 1’s of about length 15. A
student can then enter an input consisting of the encoded
machine followed by an encoded input string and observe
the simulation.

3.13 Comparison of one-tape and two-tape TM
Students are given the language anbncn and asked to build

a one-tape TM in JFLAP for this language, and then to
build a two-tape TM in JFLAP for this language. They
then compare the running of several input strings of different
lengths on each TM. In this example, an efficient one-tape
TM will run in O(n2) time and an efficient two-tape TM
will run in O(n) time.

4. NEW FEATURE: BUILDING BLOCKS
A new feature of JFLAP is Turing machine building blocks.

A building block is a Turing machine with a specific pur-
pose that can be used as a component in building Turing
machines. One can build a complex Turing machine more
easily using building blocks than states.

4.1 Creation of Building Blocks
To create a building block, create a Turing machine using

states and transitions, and save it in a file. The Turing ma-
chine can then be read in as a building block by selecting
the Building Block Creator. The building block appears as
a box and can be connected with transitions. We provide
special transitions for hooking up building blocks more eas-
ily. Building blocks can also be formed using a combination
of states and building blocks.

With building blocks one wants to start with a simple
foundation. We list simple Turing machines that can form

Figure 1: Building Block for Rnot b

a library with which to build more complicated Turing ma-
chines. These building blocks can be provided for students
to use or they can build some or all of them.

R Move right once
R a move right once, keep

moving right until an a
Rnot a move right once, keep

moving right until not an a
a write an a (don’t move)
start starting block
halt halting block

Each of these represent a simple Turing machine. There
are analogous machines for moving left L, L a and Lnot a

and analogous machines for other symbols of the alphabet.
Building blocks can be connected using standard Turing

machine transitions. In JFLAP the standard TM transition
a; b, R means to read the symbol a, write the symbol b and
move right. We have created special symbols for transitions
and a new type of transition. The symbol ∼ means to ignore
a read or write. The transition ∼;∼, R means to ignore the
symbol to read, ignore the symbol to write and move right.
The symbol !x used in the read position means to match any
terminal that is not the terminal x. For example, Figure 1 is
a Turing machine for moving right once and then continuing
to move right until there is a symbol that is not a b. We
have named this Turing machine Rnot b and will use it as
a building block.

One may want to connect two building blocks in one of two
ways. First, one may want to connect them so they execute
in sequence, connecting them with ∼;∼, S (S means stay
put). Second, one may want to move to a second building
block depending on the current symbol after processing the
first building block. For example a;∼, S means if a is the
current symbol on the tape then enter this building block
and do not move on the tape head. To further simplify the
connection between two building blocks, we have created
a Block Transition Creator that only shows the read and
assumes the write is ∼ and the move is S. To reduce the
duplication of code that is similar except for one symbol, we
allow the notation a1, a2, . . . an}v. This means if one of the
ai is read, any occurence of v later is replaced by ai.

Figure 2 shows a Turing machine built solely with build-
ing blocks to represent the transducer f(w) = w′ such that
w′ has all the a’s from w listed first, followed by all the b’s
in w. For example, f(babba) = aabbb. The Turing machine
starts in a start building block, which represents a simple
Turing machine of one state that is a start state and a final
state. It then repeatedly moves right finding the first a past
a b, replaces it with a b and then replaces the leftmost b
with an a. When all the a’s are to the left of all the b’s, the
tape head moves to the leftmost symbol and enters the halt
building block. In this Turing machine, all the transitions

were created with the Block Transition Creator. For exam-
ple, the start block has an a transition to the Rnot a block.
This a transition means “if there is an a on the tape head,
do not write on the tape and do not move the tape head,
but go to the Rnot a block for the next instruction.”

Building block machines can be quite complicated. Tur-
ing machines built with building blocks can be named and
saved in a file and used as a building block. Once a building
block is read in using the Building Block Creator, a copy
of its definition is stored in the new Turing machine. If the
same building block is read in a second time, then it’s old
definition in the file is used. Once a building block is part of
a Turing machine, it can be modified. When the Attribute
Editor is selected, one can click on a block and then select
the option Edit Block. The Turing machine for that block
appears in a new tab and can be modified. Be cautious: if
there are multiple uses of this block in a TM, modifying one
creates a new definition only for that block. It is best to
build and test a block before using it in Turing machines so
that it does not need to be modified later.

The default name of a building block is the name of the
file when the building block is read in. This name can be
changed with the Set Name option.

4.2 Simulation with Building Blocks
There are five options for the simulation of input strings

with Turing machines containing building blocks. One op-
tion, Step, provides a trace through the Turing machine one
state at a time. When the trace enters a building block, the
building block is highlighted as long as the trace is in a state
within the building block. Selecting the Focus option will
automatically change the view to display the transition di-
agram for the current building block, with the current state
highlighted. Selecting the Defocus option changes the dis-
play back to the original Turing machine with its building
block highlighted.

A second option, Step by Building Block displays the tran-
sition diagram of the original Turing machine and each block
is considered one step in the simulation. Thus, the Turing
machine moves quickly through a trace. If a block represents
“Move right until a blank is seen,” then in one step the tape
head moves to the right to a blank. There are three fast run
options. The Fast Run takes one input string and gives the
result of acceptance or not without a trace. Multiple Run
and Multiple Run (Transducer) return the result of several
strings without providing a trace.

4.3 Other New Features
There are other new features of JFLAP. One is the abil-

ity to change the name of a state for all types of automata
in JFLAP. The default names for states for all types of au-
tomata are qX where X is the number of the state starting
with 0 . Figure 1 shows the default naming of states q0, q1
and q2. Figure 3 shows a Turing machine in which the four
states have been renamed to start, 1, 2, and 3. This Turing
machine is a transducer for f(w) = w′ in which w must start
with an a and have at least one b. The output is a string
of b’s equal in length to the first group of a’s. Another new
feature is that Turing machines that are transducers can be
run with multiple inputs. Figure 4 shows the simulation of
several input strings and the output of those strings. The
fourth input string is invalid as it does not contain a b.

Figure 2: Turing machine to put a’s first

Figure 3: Change first group of a’s to b’s

Figure 4: Multiple input for TM transducer

5. JFLAP’S USE AROUND THE WORLD
Since January 2003, JFLAP has been downloaded over

25,000 times in over 120 countries. The type of user was 29%
undergraduate student, 18% graduate student, and 16% fac-
ulty. JFLAP was required use by 33% and not required by
36%. The type of use of JFLAP was 48% as a resource, 25%
for homework, 15% as lecture and 12% as lab. The reason
for using JFLAP was 46% taking a course, 14% teaching a
course, and 6% research. These statistics do not add up to
100% as some users elected not to respond.

6. CONCLUSIONS AND FUTURE WORK
We are continuing to develop JFLAP with additional al-

gorithms and ways to use JFLAP in the FLA course. We
recently started a two-year study to evaluate JFLAP’s ef-
fectiveness as a learning tool. A dozen universities are using
JFLAP and participating in the study. A two-day JFLAP

workshop was held in June 2005 and we received feedback
on the use of JFLAP and now have many ideas for improve-
ments that we plan to implement.

7. REFERENCES
[1] J. Barwise and J. Etchemendy. Turing’s World 3.0 for

the Macintosh. CSLI, Cambridge University Press,
1993.

[2] R. Cavalcante, T. Finley, and S. H. Rodger. A visual
and interactive automata theory course with jflap 4.0.
In Thirty-fifth SIGCSE Technical Symposium on
Computer Science Education, pages 140–144. SIGCSE,
March 2004.

[3] J. Cogliati, F. Goosey, M. Grinder, B. Pascoe, R. Ross,
and C. Williams. Realizing the promise of visualization
in the theory of computing. JERIC, to appear, 2006.

[4] M. T. Grinder. A preliminary empirical evaluation of
the effectiveness of a finite state automaton animator.
In Thirty-fourth SIGCSE Technical Symposium on
Computer Science Education, pages 157–161. SIGCSE,
February 2003.

[5] S. H. Rodger. Jflap web site, 2005. www.jflap.org.

[6] S. H. Rodger and T. W. Finley. JFLAP - An
Interactive Formal Languages and Automata Package.
Jones and Bartlett, Sudbury, MA, 2006.

[7] A. Stoughton. Experimenting with formal languages. In
Thirty-sixth SIGCSE Technical Symposium on
Computer Science Education, page 566. SIGCSE,
February 2005.

[8] R. Taylor. Models of Computation and Formal
Languages. Oxford University Press, New York, 1998.

[9] L. F. M. Vieira, M. A. M. Vieira, and N. J. Vieira.
Language emulator, a helpful toolkit in the learning
process of computer theory. In Thirty-fifth SIGCSE
Technical Symposium on Computer Science Education,
pages 135–139. SIGCSE, March 2004.

A Visual and Interactive Automata Theory Course with
JFLAP 4.0

Ryan Cavalcante
∗

Dept of Computer Science
Duke University

Durham, NC 27708-0129

Thomas Finley
†

Dept of Computer Science
Cornell University

Ithaca, NY 14853-7501

Susan H. Rodger
‡

Dept of Computer Science
Duke University

Durham, NC 27708-0129

rodger@cs.duke.edu

ABSTRACT
We describe the instructional software JFLAP 4.0 and how
it can be used to provide a hands-on formal languages and
automata theory course. JFLAP 4.0 doubles the number
of chapters worth of material from JFLAP 3.1, now cover-
ing topics from eleven of thirteen chapters for a semester
course. JFLAP 4.0 has easier interactive approaches to pre-
vious topics and covers many new topics including three
parsing algorithms, multi-tape Turing machines, L-systems,
and grammar transformations.

Categories and Subject Descriptors
F.4.3 [Theory of Computation]: Mathematical Logic and
Formal Languages Formal Languages; D.1.7 [Software]: Pro-
gramming Techniques Visual Programming

General Terms
Theory

Keywords
JFLAP, automata, pushdown automata, Turing machine,
grammar, SLR parsing, LL parsing, L-system

1. INTRODUCTION
Many computer science students obtain only a superficial

understanding of theory, even though theoretical concepts
provide the fundamental basis for most areas of computer

∗The work of this author is supported in part by the
National Science Foundation through grant NSF DUE-
9752583.†The work of this author is supported in part by the National
Science Foundation through grant NSF DUE-9752583. This
work was done while the author was at Duke University.
‡The work of this author is supported in part by the National
Science Foundation through grant NSF DUE-9752583.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’04,March3–7,2004,Norfolk, Virginia, USA
Copyright 2004 ACM 0-58113-798-2/04/0003 ...$5.00.

science. In particular, a thorough understanding of the the-
ory of formal languages and automata (FLA) is crucial in
designing programming languages and compilers. However,
the traditional FLA course is taught in a nonvisual and
pencil-paper problem solving manner. Students find this
approach frustrating as they have no visualization to relate
to and they do not receive immediate feedback on prob-
lems. This contrasts starkly with the hands-on nature in
most of their other computer science courses which contain
programming assignments.

Over the past twelve years, several software tools have
been developed that attempt to change the traditional FLA
course from a textual presentation to a more visual and
interactive approach. Many of these tools focus on one
particular concept such as finite automata[9, 10] or Tur-
ing Machines[1]. One tool[11] allows experimentation with
several machines, with a focus on Turing machines. A tab-
ular approach [4] covers many topics but has no graphical
representation. A web-based textbook [3] that is partially
complete allows experimentation with concepts through ap-
plets. JFLAP [5] is an instructional tool that covers many
FLA topics in a visual and interactive manner, from ex-
perimenting with machines and grammars to experimenting
with related proofs.

In this paper we describe JFLAP 4.0[8], a new version of
JFLAP that can be used with topics from eleven chapters of
an FLA course, double the number of chapters of material
JFLAP 3.1[5] covered. JFLAP 4.0 includes many new top-
ics such as multi-tape Turing machines, L-systems, grammar
transformations, and three types of parsing (LL(1), SLR(1),
and brute force). JFLAP 4.0 has new approaches for con-
verting NFA to regular expressions (RE), and for the con-
version of a regular expression to an NFA. JFLAP 4.0 has
new features such as combining two automata and compar-
ing the equivalence of two automata. With these new ad-
ditions, JFLAP 4.0 can be used with almost all topics in
an FLA course. We describe JFLAP 4.0’s differences from
JFLAP 3.1, JFLAP 4.0’s new additions, its use in a FLA
course at Duke University and feedback from using JFLAP.

2. JFLAP 4.0 VS. JFLAP 3.1
This section compares JFLAP 4.0 and JFLAP 3.1’s cov-

erage of topics by referring to a typical FLA textbook [6].
A typical automata theory course would cover Chapters 1
through 11 of this textbook and possibly two additional
chapters of material either from this book or outside of this
textbook. We list those 11 chapters plus two extra topics.

Ch. 1 Mathematical Preliminaries
Ch. 2 Finite Automata
Ch. 3 Regular Languages and Grammars
Ch. 4 Properties of Regular Languages
Ch. 5 Context-Free Languages
Ch. 6 Simplification of Context-Free Grammars
Ch. 7 Pushdown Automata
Ch. 8 Properties of Context-Free Languages
Ch. 9 Turing Machines
Ch. 10 Other Models of Turing Machines
Ch. 11 A Hierarchy of Formal Languages
Extra 1 L-Systems
Extra 2 LL and SLR Parsing

The following shows what part of the chapter (where 1 is
most of the chapter) that JFLAP 4.0 and JFLAP 3.1 can
be used with.

Chapter JFLAP 3.1 JFLAP 4.0
Ch. 1
Ch. 2 1 1
Ch. 3 3/4 1
Ch. 4 1/2
Ch. 5 1/2 1
Ch. 6 1
Ch. 7 1 1
Ch. 8
Ch. 9 1/2 3/4
Ch. 10 1/4 1/2
Ch. 11 1/4
Extra 1 1
Extra 2 1

JFLAP 3.1 covered four chapters of material from this
textbook, spread out over six chapters. JFLAP 4.0 covered
nine chapters of material, spread out over eleven chapters.

3. JFLAP 4.0 NEW FEATURES
In this section we describe the many new topics and fea-

tures of JFLAP 4.0. JFLAP is written in Java.

3.1 New Approach for NFA to RE
The new approach in JFLAP 4.0 for converting an NFA to

a regular expression (RE) is more visual and easier to under-
stand for the user than in JFLAP 3.1. In the new approach
one first enters an NFA. For example, we have entered the
NFA in Figure 1. The NFA must be in a particular format
with exactly one final state, which cannot be the start state,
and there must be exactly one transition from every pair of
states. JFLAP helps the user in collapsing multiple transi-
tions from pairs of states and in adding ∅ between two states
that did not previously have a transition.

All states except the initial and final state are removed
one at a time. In our example we first remove state q2.
When q2 is removed, its meaning must be incorporated into
all the other transitions. Figure 2 shows the regular ex-
pressions that will be placed on the arcs after state q2 is
removed, and Figure 3 shows the resulting NFA (actually
a general transition diagram (GTG) since there are regular
expressions on the arcs) after removing state q2. Similarly,
state q1 is removed and the resulting regular expression is
shown in Figure 4.

3.2 New Approach for RE to NFA
In JFLAP 3.1, a bottom-up approach was used to convert

an RE to an NFA. One constructed NFA submachines corre-

Figure 1: An NFA to convert

Figure 2: Table in Removing state q2

Figure 3: NFA after removing state q2

Figure 4: The equivalent regular expression

sponding to low level operands of the RE and then connected
these submachines into larger and larger submachines until
the final equivalent NFA was constructed. For example, to
convert the RE ab + (c + d)∗ one first constructed two NFA
that recognized the languages ab and c + d, then reformed
the c + d machine to recognize (c + d)∗, and then combined
the two machines to recognize ab+(c+d)∗. How did JFLAP
know to create the ab NFA, and then the c + d NFA, and so
forth? Implicitly JFLAP parsed the RE down to its lowest
level operands. JFLAP 4.0 now makes this parsing more
explicit without unduly complicating the conversion.

JFLAP 4.0 takes a top-down approach. The user works
in the same direction the parser does, and observes and in-
teracts with the parser. This serves to make the steps of the
algorithm less “magical” by dividing the previously wholly
implicit parsing of the RE into more easily comprehensi-
ble small chunks. One starts with a GTG with one initial
state, one final state, and a single RE transition from the
initial to the final state on the RE to convert. Using a mod-
ified automaton editor, the user repeatedly reduces each RE
transition on an RE R into many RE transitions consisting
of R’s operands, and the user adds lambda transitions to
duplicate the functionality of R’s lost operators. At each
stage the GTG is equivalent to the initial RE. After enough
transition reductions the GTG becomes an NFA.

3.3 LL and LR Parsing
In JFLAP 4.0 one can start with a CFG and build an

LL(1) parse table or an SLR(1) parse table through a se-
ries of steps, and then simulate the parsing of input strings.
These tools were modeled after the LL and LR parsing in
the tool JeLLRap[2].

We give an example of building the SLR(1) parse table
for the grammar S → aSb, S → b. In JFLAP, the user first
enters the CFG and selects the option to build the SLR(1)
parse table. The window in Figure 5 appears with the gram-
mar (not shown) and the fields in the window would be
blank. The user would first enter in the FIRST sets for the
variables, followed by the FOLLOW sets for the variables.
Then the user would construct the DFA that models the
parsing stack. Each state has marked rules or items asso-
ciated with it. These items can be easily selected from a
menu; they would be too tedious to type in as users had to
do in JeLLRap. JFLAP gives hints along the way in the
construction of the DFA such as an error message if you
try to add a transition that doesn’t exist, or if you have the
wrong items for a state. Once the DFA is complete, the user
enters in the entries in the parse table. Figure 5 shows the
completed First and Follow sets, DFA and parse table.

Once the parse table is complete, the user can parse an
input string. The parsing window is divided into four views:
the grammar, the parse table, the parse tree and the input.
The user enters an input string and steps through the pars-
ing. For each step, the stack is adjusted, the current move
in the parse table is highlighted, the new additions to the
parse tree are added and a message such as “shifting a” is
displayed. The user can view either a parse tree, an inverted
parse tree or the derivation table.

If the grammar is not LL(1) or SLR(1), the user is allowed
to continue, building a parse table that will have conflicts.
If there is a conflict in the SLR(1) parse table, the user can
choose one of the conflicts as valid and proceed to parse
input strings.

Figure 5: Building the SLR(1) Parse Table

3.4 Brute Force Parsing
The brute force parser in JFLAP 4.0 owes its heritage to

Pâté’s brute force parser[2]. The brute force parser allows
the derivation of strings in the language of restricted and
unrestricted grammars through exhaustive search. JFLAP’s
brute force parser improves over Pâté’s in speed, memory
requirements, pruning strategies, and aesthetics.

One first enters a restricted or unrestricted grammar in
JFLAP and selects the option to perform brute force pars-
ing. The interface is similar to JFLAP’s interface for LL(1)
and SLR(1) parsers. Figure 6 shows JFLAP’s brute force
parser. The näivetè of the parser’s exhaustive search ex-
plains two differences in the interface: the parse table’s
absence and the “pause” button’s presence. Additionally,
unrestricted productions allow multiple symbols to be re-
placed rather than single variables; if the step from one sen-
tential form to another requires an unrestricted production
that replaces multiple symbols, the corresponding nodes are
grouped together in a bracket, and the replacement sym-
bols appear as children of that “bracket node” as shown in
Figure 6 with aa replaced by b.

3.5 L-Systems
In JFLAP 4.0 one may create and render L-systems[7].

Figure 7 shows the editor for L-systems: from top to bottom
are components for the axiom, rewriting rules, and initial
values of graphical parameters (colors, line width, turn an-
gles, etc.). Figure 8 shows JFLAP’s L-system renderer: the
top of the window allows control of which derivation step to
render (Figure 8 displays the 6th derivation), the large white
panel shows derivation’s rendering (a tree), and controls on
the bottom turn the L-system, useful for 3D renderings.

JFLAP’s L-systems have additional features beyond those
standard in most L-systems tools. The turtle may turn in
three dimensions, allowing the rendering of 3D structures.
Some turtle commands take arguments, e.g. g will draw a
line with default length, but g(30) will draw a line 30 pixels
long. Arguments may also be mathematical expressions.
JFLAP also supports contextual rewriting rules that may

Figure 6: Brute Force Parser

rewrite a symbol only if it is prefixed and suffixed by certain
symbols. JFLAP’s L-systems are stochastic: if more than
one rule may rewrite a symbol, a rule is uniformly randomly
chosen from applicable rules to rewrite the symbol.

3.6 Transform Grammar
In JFLAP 4.0, one can transform a CFG to Chomsky nor-

mal form (CNF) in an easier to use interface than in Pâté[2].
One enters a CFG and then applies several algorithms to
the CFG until the CNF is obtained. The algorithms are
removing lambda productions, removing unit productions,
removing useless productions, and converting the resulting
grammar to CNF. Each algorithm has one or more interac-
tive steps with some steps including a visual interpretation
of the rules.

3.7 Other Features
Other new features in JFLAP 4.0 include the following.

One can now create multi-tape Turing machines for up to
five tapes. With three tapes, one can now create a Univer-
sal Turing machine. One can compare two finite automaton
for equivalence. This allows students to check their design
against another solution that may appear to be different.
In particular, students can construct an automaton using
properties (for example, reversal) and compare the result
against a solution automaton. One can combine several au-
tomaton in the same window. This allows one to build a new
automaton faster by using parts from other automaton.

4. JFLAP’S USE IN COURSE
We describe how we use JFLAP in teaching the FLA

course CPS 140 at Duke University. JFLAP was designed
to be general and to be used with most automata theory
textbooks, such as [6]. We teach in a classroom with a com-
puter whose monitor is displayed via a projector to a large
screen. We use JFLAP during class in a number of ways.

Figure 7: L-System Editor

Figure 8: Rendering of Figure 7’s L-system

• In the beginning we use JFLAP to show students how
to use the editor to construct an automaton. For ex-
ample, we demonstrate that states can be moved after
they are created. In earlier years when students used
JFLAP and we did not demo it in class, their designs
were cluttered as they did not realize they could move
states to make a prettier picture.

• We use JFLAP to solve problems during class. For ex-
ample, we ask students to build an NPDA for the lan-
guage wwR (an even length palindrome). This NPDA
cannot be built deterministically, and students are not
used to thinking nondeterministically. They want to
find the middle first. We build this NPDA with stu-
dent input and test its correctness with several input
strings.

• We use JFLAP to debug. For example, we will build an
incorrect Turing machine for anbncn and ask students
if it is correct and if not, for them to describe how
to fix it. The machine we give them works for strings
of the form anbncn, however it also accepts incorrect
strings. We ask for input strings that work and do
not work and run them in class. Students then tell us
how to fix the machine. We fix it and retry our input
strings.

• We use JFLAP for illustrating proofs. For example we
step through the conversion of a DFA to an RE.

• We use JFLAP to relate to other computer science
concepts, such as running time. We compare the run-
ning time of an algorithm for anbncn on a one-tape
Turing machine with an algorithm for it on a two-tape
Turing machine.

• We use JFLAP to show how a PDA is used for LR
parsing. We convert a CFG to a PDA and show it is
nondeterministic. Then we ask the students to suggest
lookaheads so that we can step through the parsing in
linear time.

Students can use JFLAP for homework either to create an
automaton to submit for grading, or to go through the steps
in an algorithm. They can also use JFLAP to load examples
done in class and to create additional problems to help them
in understanding. JFLAP can be used outside of class by
the instructor to grade students JFLAP submissions.

5. FEEDBACK
We have some feedback from JFLAP’s use in CPS 140 at

Duke University. In the spring of 2003 we used JFLAP for 6
of 9 homeworks. A questionnaire was given after their first
use of JFLAP. In response to the question “Was JFLAP
easy to use?”, all 33 students responded yes. In response to
the question “Did you look at the help at all? If so, what
part did you look at and was it helpful?”, 27 students did
not look at the help. The 6 students who looked at the
help said it was helpful. In response to the question “Do
you prefer creating FA using JFLAP or drawing them on
paper?”, 17 students preferred to use JFLAP, 12 students
preferred to use paper first, then JFLAP for testing and 2
students preferred paper.

JFLAP is being used around the world. A search of
JFLAP (which appears to be a unique name) on Google

showed over 2000 web pages have the word JFLAP on them.
Many courses use JFLAP in some way and have it listed on
their course web page. Our download site of JFLAP 4.0 has
over 3800 downloads since January 2003. From a combina-
tion of course web pages and download feedback, we have
determined that JFLAP is being used in over 40 countries.

6. CONCLUSION
JFLAP 4.0 can be used along with an automata theory

textbook to create a hands-on FLA course. JFLAP 4.0 al-
lows one to interact with concepts in eleven of thirteen chap-
ters for an FLA course, doubling the amount of material
JFLAP 3.1 covered. The instructor can use JFLAP during
class to solve problems. Students can use JFLAP outside of
class for homework and additional problems to aid in under-
standing of theory concepts. JFLAP is available for free [8].

7. REFERENCES
[1] J. Barwise and J. Etchemendy. Turing’s World 3.0 for

the Macintosh. CSLI, Cambridge University Press,
1993.

[2] A. O. Bilska, K. H. Leider, M. Procopiuc,
O. Procopiuc, S. H. Rodger, J. R. Salemme, and
E. Tsang. A collection of tools for making automata
theory and formal languages come alive. In
Twenty-eighth SIGCSE Technical Symposium on
Computer Science Education, pages 15–19. SIGCSE,
March 1997.

[3] C. Boroni, F. Goosey, M. Grinder, and R. Ross.
Engaging students with active learning resources:
Hypertextbooks for the web. In Thirty-second
SIGCSE Technical Symposium on Computer Science
Education, pages 65–69. SIGCSE, February 2001.

[4] D. Hannay. Hypercard automata simulation: Finite
state, pushdown and turing machines. SIGCSE
Bulletin, 24(2):55–58, June 1992.

[5] T. Hung and S. H. Rodger. Increasing visualization
and interaction in the automata theory course. In
Thirty-first SIGCSE Technical Symposium on
Computer Science Education, pages 6–10. SIGCSE,
March 2000.

[6] P. Linz. An Introduction to Formal Languages and
Automata, 3rd Edition. Jones and Bartlett, Sudbury,
MA, 2001.

[7] P. Prusinkiewicz and A. Lindenmayer. The
Algorithmic Beauty of Plants. Springer-Verlag, New
York, 1990.

[8] S. H. Rodger. Jflap web site, 2003.
www.cs.duke.edu/∼rodger/tools/.

[9] M. Stallman, R. Cleaveland, and P. Hebbar. Gdr: A
visualization tool for graph algorithms. In Proceedings
of Computational Support for Discrete Mathematics,
pages 17–28. American Mathematical Society, 1994.

[10] K. Sutner. Implementing finite state machines. In
DIMACS Workshop on Computational Support for
Discrete Mathematics, pages 347–363. DIMACS,
March 1992.

[11] R. Taylor. Models of Computation and Formal
Languages. Oxford University Press, New York, 1998.

Appendix 3 - Preface from JFLAP book

JFLAP: An Interactive Formal Languages and Automata Package
by

Susan H. Rodger and Thomas W. Finley
Copyright 2006 Jones & Bartlett Publishers

ISBN 0763738344

Preface (abridged)

This book is a hands-on guide through the Java Formal Language and Au-
tomata Package (JFLAP), an interactive visualization and teaching tool for
formal languages. This book is intended as a supplement to an undergraduate
automata theory course or an undergraduate compiler course. This book is not
a textbook! We assume the user is using a textbook along with our book. Our
book guides users interactively through many of the concepts in an automata
theory course or the early topics in a compiler course, including descriptions of
algorithms JFLAP has implemented and sample problems for reinforcement of
concepts. However, our book assumes that the user has read briefly about these
concepts first in an automata theory textbook or compiler textbook.

JFLAP allows users to create and operate on automata, grammars, L-
systems, and regular expressions; the term structure is used to refer to any
single automaton, grammar, L-system, or regular expression. JFLAP offers the
following major groups of operations to apply to structures:

Explore the Language of Structures JFLAP has the ability to simulate in-
put strings on nondeterministic automata, build parse tables and parse
trees for grammars, and render successive expansions of L-systems. The
automata represented in JFLAP are finite automata (FA), pushdown au-
tomata (PDA), and multitape Turing machines. The parsing algorithms
in JFLAP are brute-force parsing, LL(1) parsing, and SLR(1) parsing.

Convert Between Equivalent Structures A wide range of conversion abil-
ities are available, e.g., regular expression to FA, nondeterministic FA to
deterministic FA (DFA), PDA to grammar, grammar to PDA, DFA to
minimized DFA, context-free grammar to Chomsky Normal Form gram-
mar, and others.

Miscellaneous Analysis of Structures JFLAP also offers a few sundry anal-
ysis tools to display properties of structures, like highlighting λ-transitions,
highlighting nondeterministic states, and determining the equivalence of
two FAs.

In addition to designing the structures listed above, our book guides the user
through interactive alternative perspectives that would be difficult to do with
pencil and paper. Here we list several examples from the book.

• In Chapter 2 users convert a deterministic finite automaton (DFA) to a
minimal DFA. During the conversion, users must determine whether or

1

not two states p and q are distinguishable. With JFLAP users make two
copies of the DFA — one with p a start state and the other with q a start
state — and run both DFAs on the same set of input strings to determine
whether the states are distinguishable.

• In Chapter 6 users parse context-free grammars using a brute-force parser.
To determine the language of a grammar, users enter each variable’s pro-
ductions separately (when possible) and determine the language of each
variable first, then put them together for the language of the grammar.

• In Chapter 8 users parse a grammar with an SLR(1) parser. They then
build an NPDA that models the SLR(1) parsing process for this grammar
and run the NPDA with the same strings. The NPDA is likely nondeter-
ministic, so the students guide the run with lookaheads.

JFLAP uses general definitions of its structures to allow it to fit with a range
of textbooks. We mention some of these definitions here. Definitions for each
structure are in the corresponding chapter. Instructors might prefer to require
students to use a subset of the JFLAP definition if that fits with their textbook.

• Finite automata allow users to enter strings of length zero or greater.
Instead, an instructor might want to require students to enter strings of
length zero or one.

• Pushdown automata can pop zero or more symbols from the stack in each
transition. An instructor might want to require students to always pop
one symbol.

• Turing machine movements for the tape head are Right, Left, and Stay.
An instructor might want to require students to use only Right and Left.

Organization

This book covers topics from a formal languages and automata theory course,
with additional topics on parsing and L-systems. We find that undergraduate
students need to see an application to understand why this material is impor-
tant. With SLR(1) parsing, students see the use of DFAs and PDAs. L-systems
are included as an alternative grammar that results in interesting visual pictures.

We recommend chapters for an automata theory course and for the first part
of a compiler course. Both courses should have students look at the JFLAP
Startup section following the preface before reading the chapters.

For an automata theory course, the minimal coverage would be Chapters
1–6, and 9. Our book covers automata before grammars, so if your textbook
covers grammars before automata then for regular languages you should cover
Sections 3.1–3.2, 1, 2, 3.3–3.4. in that order. If context-free grammars are
covered before PDA in your textbook, then cover them in the order 6.1, 5, 6.2
and 6.3. Optional topics include Chapters 7, 8, 10 and 11. If instructors want

2

to cover SLR(1) parsing only, but not LL(1) parsing, then cover Sections 8.1
and 8.3.

For a compiler course, related chapters on parsing are Chapters 1–2, 3.1–3.3,
5, 6.1, 6.2, 8, and 11. Skip Section 8.2 if you are not covering LL(1) parsing.
Chapter 11 is optional but provides some interesting thoughts on how one parses
other types of grammars, including the “parse tree” for unrestricted grammars
in JFLAP. This is not really a tree, but rather a directed acyclic graph.

We now give a brief description of the highlights of each chapter.

Chapter 1, Finite Automata guides the user through editing and simulat-
ing both deterministic and nondeterministic automata.

Chapter 2, NFA to DFA to Minimal DFA guides the user through trans-
forming an NFA into a DFA and then a minimal state DFA. In the NFA
to DFA algorithm, a DFA state represents corresponding states reachable
from the NFA. In the DFA to minimal DFA algorithm, states are grouped
into sets of indistinguishable states using a tree method.

Chapter 3, Regular Grammars guides the user through editing and parsing
grammars. Its conversion algorithms between FA and right-linear gram-
mars are standard.

Chapter 4, Regular Expressions has conversion algorithms that use gener-
alized transition graphs (GTG), wherein a transition label can be a reg-
ular expression. The regular expression to NFA algorithm starts with
a GTG with one transition containing the regular expression and de-
expressionifies one operation at a time until the result is an NFA. The
FA to regular expression algorithm starts with an FA represented as a
GTG with a transition between every pair of states (using ∅ if there was
no transition). The algorithm removes one state at a time, replacing tran-
sitions with regular expressions, until there are only two states remaining.

Chapter 5, Pushdown Automata introduces the editing and simulation of
NPDAs.

Chapter 6, Context-Free Grammars revisits the brute-force parser and goes
into detail in terms of how it works. Two algorithms are presented. The
CFG to NPDA algorithm uses the model for LL parsing. Students do not
need to know LL parsing for this chapter. The NPDA to CFG algorithm
can easily result in a rather large grammar with many useless productions,
and thus seems magical to students. After the conversion students test
the same strings in both the original NPDA and the resulting CFG.

Chapter 7, Transforming Grammars covers the transformation of a CFG
to Chomsky Normal Form. Several transformations occur including re-
moving λ-productions, unit productions, and useless productions. Stu-
dents test the same strings in the transformed and original grammars.

3

Chapter 8, LL and SLR Parsing describes FIRST and FOLLOW sets that
are needed in parsing, and the two parsing methods LL and SLR. For
both LL and SLR parsing, students are shown how to convert a CFG
to an NPDA for that method, how to build the parse table, and how to
compare the NPDA with parsing. In parsing a string, students can view
either the derivation or a parse tree.

Chapter 9, Turing Machines shows how to edit and simulate a one-tape
Turing machine first, then expands to multi-tape Turing machines, in-
cluding an example of a universal Turing machine.

Chapter 10, L-systems describes how to edit L-systems and use them to
produce plants, fractals, and other graphical structures.

Chapter 11, Other Grammars in the Hierarchy describes how to use the
brute-force parser to parse strings with unrestricted and context-sensitive
grammars, and some insight about how to structure these grammars so
brute-force parsing is not totally intractable.

JFLAP Software

JFLAP and all files referenced in this book are available at www.jflap.org and
are free! We recommend that files be used in conjunction with the text.

4

Appendix 4 - Some Evaluation Results from JFLAP study 2005-2006

Partial results from the first year of the JFLAP study, receiving 36 valid responses on the Implementation
section from a total of six participating schools.

13

Implementation Questions
Question Response Options Frequency

Yes 35Were you required to use the JFLAP
software for this course? No 1

Yes 36Was use of the JFLAP software
demonstrated in class? No 0

Yes 12
No 4

Did your professor use JFLAP to
demonstrate concepts during office
hours? Not applicable 20

Yes 18Was the JFLAP manual required
reading? No 18

Yes 28Was use of the JFLAP software
required for homework assignments? No 7

Yes 3
No 18

Was use of the JFLAP software
required for group projects?

Not Applicable 15
Yes 6
No 10

Was use of the JFLAP software
required for take home exams?

Not Applicable 20
Yes 20Did you use JFLAP software to study

for in-class exams? No 16
Yes 33Did the professor use JFLAP

software as part of lectures? No 3
Yes 22Did you use JFLAP software for in

class exercises? No 13
Yes 10
No 9

Did you use JFLAP software for
labs?*

Not Applicable 16
Yes 33Did you feel that you had time to

learn how to use the JFLAP
software?

No 2

Yes 3Did you feel that using the software
took time away from other study
activities? No 33

Yes 23Did the time and effort it took to use
JFLAP help you get a better grade in
the course? No 13

It was easier to use
the software. 30

Was it easier to use the JFLAP
software or was it easier to draw it
out by hand? It was easier to

draw it out by
hand.

6

Yes 18
No 13

Did you feel that you would have
done as well in the course if you had
not used the JFLAP software? Not Applicable 5

0-25 percent. 16
26-50 percent 15
51-75 percent 3

What percentage of the course
utilized the JFLAP software?

76-100 percent 2

14

Question Response Options Frequency of Response
Very easy 19
Easy 12
Neither Easy nor Difficult 5
Difficult 0

How easy was it to install the
JFLAP software?

Very Difficult 0
Very easy 18
Easy 12
Neither Easy nor Difficult 6
Difficult 0

How easy was it to use the
drawing tools of the JFLAP
software?

Very Difficult 0
Very easy 19
Easy 14
Neither Easy nor Difficult 2
Difficult 1

How easy was it to run the
automata you designed with
JFLAP software?

Very Difficult 0
Very easy 13
Easy 16
Neither Easy nor Difficult 6
Difficult 1

How easy was it to interpret
results from the test run in
JFLAP software?

Very Difficult 0
Very clear 8
Clear 19
Neither Clear nor Unclear 6
Unclear 2

How clear were the JFLAP
software menus?

Very Unclear 1
Very flexible 11
Flexible 22
Neither flexible nor inflexible 3
Flexible 0

How flexible was the JFLAP
software in simulating the
automaton for your course?

Very inflexible 0
Very frustrating 0
Frustrating 3
Neither frustrating nor appealing 13
Appealing 18

How frustrating was it to use
the JFLAP software?

Very appealing 2
Very weak 0
Weak 1
Neither weak nor powerful 9
Powerful 18

Does the JFLAP software
have sufficient power to meet
the programming challenges
of the course?

Very powerful 8
Very poor 0
Poor 0
Neither poor nor good 2
Good 24

What is your overall
assessment of the JFLAP
Software?

Very good 10

Appendix 5 - 68 Letters in Support of JFLAP

We have categorized the letters in support of JFLAP into four categories. 1) Letters from 48 faculty from
47 US institutions using JFLAP in teaching 2) Letters from 15 Faculty in Non-US institutions using JFLAP
in teaching and 3) Five Other Letters including the use of JFLAP in research and a letter from Rockford
Ross, one of the evaluators on our current NSF grant.

We provide a lists of who submitted letters, followed by the actual letters.

Letters from 48 Faculty from 47 US institutions using JFLAP in teaching

Robert Berwick, Professor of Computer Science, Engineering and Computational Linguistics, MIT
Ran Libeskind-Hadas, Professor of Computer Science, Harvey Mudd College
Christoper Brown, Associate Professor, Dept of Computer Science, United States Naval Academy
Sanjoy Baruah, Professor, Dept of Computer Science, Univ. of North Carolina at Chapel Hill
Costas Busch, Assistant Prof, Dept of Computer Science, Rensselaer Polytechnic Institute
Ralph Wilkerson, Professor of Computer Science, University of Missouri Rolla
Eugene Wallingford, Associate Professor, Dept of Computer Science, University of Northen Iowa
Valerie Harvey, Professor, Computer and Information Systems, Robert Morris University
David Taylor, Assistant Professor, Dept of Computer Science, San Jose State University
Lynn Andrea Stein, Prof. of Computer \& Cognitive Science, Franklin W. Olin College of Engineering
Kelly Shaw, Assistant Professor, Dept of Math and Computer Science, University of Richmond
Shannon Pollard, Assistant Professor of Computer Science, Elon University
Andrew Phillips, Professor of Computer Science, University of Wisconsin - Eau Claire
Michelangelo Grigni, Associate Prof., Dept of Math and Computer Science, Emory University
Robert Sloan, University Illinois Chicago
Peter Linz, Emeritus Professor, Dept of Computer Science, University California Davis
Jacquelyn Long, Assistant Professor, Computer Science Department, Norfolk State University
Gary Lewandowski, Professor, Math and Computer Science, Xavier University
Chris Lane, Assistant Professor, Dept of Math and Computer Science, Pacific University
Martha Kosa, Associate Professor, Dept of Computer Science, Tennessee Tech University
David Kay, Lecturer S.O.E. in Computer Science, University California Irvine
Dwight House, Associate Professor, Dept of Math and CS, Fayetteville State University
Dawit Haile, Chair, Dept of Math and Computer Science, Virginia State University
Ganesh Gopalakrishnan, Professor, School of Computing, University of Utah
William Turkett, Assistant Professor, Dept of Computer Science, Wake Forest University
Dale Brown, Professor of Computer Science, College of Wooster
Judy Goldsmith, Professor, Computer Science, University of Kentucky
Judith Gersting, Chair, Computer Science Dept, University of Hawaii Hilo
John Dooley, Associate Prof and Chair, Dept of Computer Science, Knox College
Wanda Dann, Associate Professor of Computer Science, Ithaca College
Jose Cordova, Associate Prof and Chair of Computer Science, Univ. of Louisiana Monroe
Muhammad Chaudhary, Associate Professor of Computer Science, Millersville Univ.
Louis Ziantz, Instructor of Computer Science, Dickinson College
Denise Byrnes, Associate Professor of Computer Science, College of Wooster
Judith Coomes, Associate Professor, Dept of Computer Science, William Patterson Univ.
Alice Dean, Professor of Mathematics, Math and Computer Science Dept, Skidmore College
Bruce Elenbogen, Assoc. Prof., Computer and Information Science, Univ Michigan Dearborn
Joan Lucas, Associate Professor, Computer Science Dept, SUNY Brockport
James Riely, Associate Professor, School of Computer Science, DePaul University
Nancy Van Ness, Senior Lecturer II, Computer Science Dept, Univ Texas at Dallas
Rakesh Verma, Professor, Computer Science Deptartment, University of Houston
Soe Than, Professor, Dept of Math and Computer Science, Virginia Military Institute
Michael Gousie, Associate Professor of Computer Science, Wheaton College

Ellen Walker, Professor of Computer Science, Hiram College
Ralph Zegarelli, Computer Science Faculty, University of Hartford
Jill Zimmerman, Associate Professor, Math and CS Dept, Goucher College
Fereydoun Kazemian, Assoc Prof of Computer Science, Rochester Institute of Technology
Harry Harrison, Faculty, Park University, Missouri

Letters from 15 Faculty in Non-US institutions using JFLAP in teaching

Lars Asker, Assoc. Prof., Dept of Computer and System Sciences, Stockholm Univ, Sweden
Albert Hoogewijs, Tenured academic staff, Dept of Pure math and Algebra, Ghent Univ, Belgium
James Harland, Associate Professor, RMIT University Melbourne, Australia
Lila Kari, Assoc Prof, Dept of Computer Science, Univ of Western Ontario, London, Canada
Germana Nobrega, Professor, Computer Science, Universidade Catolica de Brasilia, Brazil
Mina Zolfy Lignvan, Lecturer of Information Technology Dept, University of Tabriz, Iran
Antonio Dourado, Professor, Dept of Informatics Engineering, University of Coimbra, Portugal
Piotr Dziurzanski, Assistant Professor, Sczcecin University of Technology, Poland
Stefano Crespi Reghizzi, Full Professor of Computer Science, Politecnico di Milano, Italy
Andreas Rittershofer, Computer Science HS teacher, Dietrich-Bonhoeffer-Gymnasium, Germany
Jairo Rocha, Associated Professor, Univ. of the Baleric Islands, Palma, Spain
Kamilla Klonowska, PhD Student, School of Engineering, Blekinge Inst of Tech, Ronneby, Sweden
Yih-Kuen Tsay, Associate Professor, National Taiwan University, Taiwan
Frank Neven, Hasselt University, Belgium
Rosa Rodriguez Sanchez, Faculty, University of Granada, Spain

Other Letters

Rocky Ross, Professor of Computer Science, Montana State University, USA
Siamak Kolahi, Masters Student, Dept of Computer Science, Concordia University, Canada
Leonardo Mariana, Researcher, University of Milano Biccoca
Diana von Bidder, Dipl Informatik-Ing, Swiss Institute of Technology, Zurich
Deian Tabakov, PhD. Student, Rice University, USA

Massachusetts Institute of Technology

Robert C. Berwick
Professor of Computer Science
Stata Center
Building 32D–728

77 Massachusetts Avenue
Cambridge, Massachusetts
02139–4307

Phone 617–253–8918
Fax 617–253–3578
Email berwick(at)csail.mit.edu

June 15, 2006

Professor Susan Rodger
Associate Professor of the Practice
Computer Science Dept. Box 90129
Duke University, Durham NC
27708-0129

Dear Susan:

This letter is to voice my strong support for your quite marvelous Java program, JFLAP. I’ve been a professor in CS
(and Brain and Cognitive Sciences) here at MIT for nearly a quarter-century, and for the past several years, I’ve
used this program in several undergraduate (and a few graduate) classes. In particular, I’ve found it extremely
helpful for students unfamiliar with formal automata to gain a quick, visual appreciation of what these devices are
all about. Here, I’ve used it in our undergraduate class in AI, 6.034, since many of the students there come to the
class without first taking a class in automata theory. Equally, I’ve found that for the Brain and Cognitive Science
students who take my course in natural language processing, 6.863J, in order to understand the role of finite-state
devices and transducers in morphology and language, JFLAP proves indispensable – I require warm-up exercises
using the system in some of the problem sets. I also use the system in class to illustrate some simple points about
the Chomsky hierarchy. All very effective! The students really appreciate this kind of visual demonstration.
Indeed, some of the students in 6.863J have extended JFLAP so that it works as a finite-state transducer (i.e., an
automaton with outputs), since this is a good model for linear morphology. So, JFLAP is also readily extendable as
well – far more than one could hope for in even commercial software. The design choice of Java works well here.

So in brief, a great teaching tool that has worked well for undergrads here at MIT, and graduate students in other
departments unfamiliar with automata theory – a great visual supplement. JFLAP serves as a wonderful model for
this kind of interactive teaching aid.

Sincerely,

Robert C. Berwick
Professor of Computer Science and Engineering and Computational Linguistics

Department of Computer Science
Harvey Mudd College
301 Platt Boulevard
Claremont, CA 91711

May 30, 2006

Needs Premier Award 2006 Selection Committee

Dear Members of the Selection Committee,

I am writing in strong support of the Jflap automata simulation tool developed
by Dr. Susan Rodger at Duke University. I am a professor of Computer Science at
Harvey Mudd College in Claremont, California and the Joseph B. Platt Endowed
Chair for Effective Teaching.

According to the Jflap web site, Harvey Mudd College is the largest user of the tool
(based on the number of downloads). My colleagues and I have been using Jflap in
our “CS 60: Principles of Computer Science” for the last six years. This is the second
course in our computer science sequence and is based on a “breadth-first” model in
which students are exposed to some of the major intellectual ideas of computer
science. The course is typically taken by freshmen and sophomore computer science
majors but also by students in all disciplines with an interest in computer science.

In this course, Jflap is required for several assignments dealing with deterministic
and nondeterministic finite automata and Turing Machines. We give several demon-
strations of Jflap in class and then ask students to solve a number of challenging
problems using the tool. The use of Jflap is augmented by having students write
formal proofs of the “optimality” (minimum number of states used) of the automata
that they construct.

In my opinion, Jflap is an outstanding learning tool. It is powerful and feature-rich,
and yet is easy for students to quickly use and master. (The documentation in Haiku
is a very nice touch!) The tool helps reinforce theoretical concepts in a concrete way.
In my estimation, students understand automata and Turing Machines in a deeper
way than when we simply drew them on paper in the “olden days”. The ability
to simulate the automata and Turing Machines is extraordinarily compelling and
helps reinforce concepts. In particular, nondeterminism is a challenging concept
for many students and Jflap offers a very nice way of visualizing the behavior of

nondeterministic machines.

Our students report that they thoroughly enjoy Jflap. One testament to its pop-
ularity is that students tend to work on optional bonus problems in CS 60 that
use Jflap to a greater extent than other optional pencil-and-paper or programming
problems in the course. They also frequently explore the other models of computa-
tion that Jflap supports but that are not discussed in CS 60. From my perspective
as a teacher, the fact that Jflap encourages students to explore material beyond
the scope of the course is wonderful and exciting.

Sincerely,

Ran Libeskind-Hadas
Professor of Computer Science
Joseph B. Platt Endowed Chair

2

An Open Letter Concerning the Effectiveness of JFLAP

I have been using JFLAP in our course SI472, “Theory of Computing”, for the last three years, and it has been
used by the department for even longer. I use JFLAP to help with Finite Automata and Turing Machines. In
both cases I spend one period in a lab with a sequence of JFLAP exercises for my classes, followed by an
assignment that must be done in JFLAP. From that point on its use is optional, but most students keep using
it, as evidenced by the JFLAP screen captures that they turn in as part of later homework assignments.

I think JFLAP is an important tool for teaching theory of computing. It addresses two key issues: the
difficulty students have in thinking of computational models as concrete, and sloppiness of thought and work.
The dynamic nature of JFLAP models and the manipulative nature of students' interactions with the models
they build makes them seem more real to students than diagrams they draw. Moreover, the fact that these
models can be run on inputs encourages students to question whether the machines they construct are correct,
test them and debug them – something they are manifestly unwilling to do with machine models they create
with pencil and paper. Moreover, there is an undeniable “fun factor” to creating machines in JFLAP.
Students like it.

In short, I think JFLAP is an excellent system that really helps students learn some key concepts in the theory
of computing.

Christopher W. Brown
Associate Professor
Department of Computer Science
United States Naval Academy

Sanjoy Baruah, Professor Department of Computer Science
Phone: +1 919 962-1803 Campus Box 3175, Sitterson Hall
e-mail: baruah@cs.unc.edu Chapel Hill, NC 27599-3175

To whom it may concern

I am writing this letter concerning my experiences with the JFLAP package for teaching
automata theory. I have used JFLAP with the course COMP 181: Models of Language and
Computation at the University of North Carolina. This is a course taken primarily by junior and
senior undergraduates in computer science, and by graduate students in computer science who
feel that their undergraduate education was not rigorous enough in theoretical aspects of
computer science.

I have used JFLAP as part of COMP 181 for about three years now. I recommend it to the class
near the beginning of the semester (accompanied by a demonstration of its installation and use),
and encourage the students to use it to complement the lectures. I also use it extensively during
office hours to help those students that find the more abstract concepts harder to grasp. In
addition, I have occasionally used it as a demonstration tool during lectures.

I find JFLAP to be particularly helpful in a one-on-one setting with students – students who have
difficulty with abstraction find the “experimental” aspect of a tool like JFLAP immensely useful.
COMP 181 is taught in a rather theoretical/ abstract manner, and there typically is a minority of
students who find abstraction difficult to deal with. These students seem to find JFLAP
invaluable in helping them with abstract ideas and concepts, by letting them visualize these
ideas and concepts and hence rendering them more concrete. JFLAP’s ease of use encourages
students to experiment extensively and repeatedly to thoroughly understand and internalize
difficult aspects of automata behavior.

In summary, I find JFLAP to be a very valuable tool that greatly facilitates the course objective
of communicating difficult theoretical concepts. I fully intend to continue using it in class, and
in fact consider it quite likely that I will be using it more and more in the future.

Sincerely yours,

Sanjoy K. Baruah

Costas Busch
Assistant Professor
Department of Computer Science
Rensselaer Polytechnic Institute
Troy, NY 12180, USA
Email: buschc@cs.rpi.edu
Web: http://www.cs.rpi.edu/∼buschc
Phone: 518-276-2782

June 28, 2006

To whom it may concern:

I am very happy to write this letter of support for the courseware JFLAP developed by Prof.
Susan H. Rodger.

I have been using JFLAP since the Fall of 2005 in the course CSCI-2400 “Models of Compu-
tation”. The topic of the course is an introduction to the theory of computation which is a
fundamental subject in computer science. The course explores a variety of subjects such as:
theory of automata including finite automata, pushdown automata, and Turing machines;
theory of grammars including context-free, context-sensitive, and unrestricted grammars;
decidability and time complexity theory. Due to its theoretical nature, the students consider
this course as one of the hardest courses in the computer science curriculum.

JFLAP is a software tool which helps to design and simulate automata, grammars, and
parsers. It also supports conversions between automata and grammars. I used JFLAP for the
first time in Fall 2005 when I taught the course to a class of 60 students. The course consisted
of 10 homeworks in which the students were required to use JFLAP. In the homeworks, the
students designed and simulated automata and grammars with JFLAP. In particular, they
used the following options of JFLAP: Finite Automaton, Grammar, PushDown Automaton,
and Turing Machine. They also used the additional option which converts grammars to
automata. I have demoed JFLAP in the first lectures of the course after which the students
were able to use JFLAP on their own.

JFLAP has proven to be an extremely useful learning tool for the theory of computation. In
the past (before the Fall of 2005) I taught the same course without JFLAP where I noticed
that the students had a hard time in learning basic concepts of computability theory such
as non-determinism in automata and the functionality of grammars; the student’s couldn’t
make a connection between the theoretical concepts and their applications. Ever since, I was
looking for methods that could improve the learning level of the course. JFLAP proved to be
the solution I was looking for since it made the course concepts clearer to the students and
easier to understand. In essence, JFLAP helped to make a better connection between the

basic theoretical concepts of the course and their applications in the practical domain, since
the students were able to build explicit automata and grammars which could be simulated.
As a consequence of using JFLAP, the students got higher grades than previous years, which
indicated that they learned the material better. Furthermore, I received very nice comments
from the students which appreciated the usefulness of JFLAP and were proactive to solving
the homeworks with it.

In sum, JFLAP is a well developed courseware aimed to improve the teaching of the difficult
subject of theory of computation. JFLAP makes an important contribution to computer
science by bridging the gap between theory and practice and making theory accessible to
students. Therefore, I strongly support JFLAP.

Yours sincerely,

Costas Busch

2

 U N I V E R S I T Y O F M I S S O U R I - R O L L A

May 31, 2006

To Whom It May Concern:

I have been asked by Professor Susan Rodger to submit a letter of support for the
academic software package that she developed for the teaching of Automata Theory,
specifically the package JFLAP. I have been teaching CS 330, Automata Theory, for
many years and the first time I encountered this software was during a talk given by Dr.
Rodger at a national conference on computer science education. Since then I have
supplied my classes with the links to the JFLAP website and also explained its use in
class. While the use of the software is optional on the part of the students, they soon
find that it is an invaluable aid in checking their solutions to problems that I assign in
class. Typically, I cover most of the material in the first 9 chapters of Peter Linz’s book
“An Introduction to Formal Languages and Automata” during our 15 week semester.
The class has a mixture of both undergraduate and graduate students on a campus that
is 80% engineering and science students.

Students have remarked favorably to having the tool available for the course. I think
this is partly due to the fact that most students want to actually see the application of a
computational tool to an area of mathematics/computer science that is considered fairly
abstract by most students. I have been very impressed by the ease with which most
students are able to make effective use of JFLAP. The learning curve is not very steep
for the beginning user. I just wish there were more tools for teaching the more abstract
concepts of computer science.

Ralph Wilkerson
Associate Dean for Research and Graduate Studies
College of Arts and Sciences
Professor of Computer Science
Department of Computer Science
University of Missouri-Rolla
Rolla, MO 65401

Ph: 573-341-4653
Email: ralphw@umr.edu

Department of Computer Science � 325 Comp Sci Bldg. � Rolla, MO 65409-0350 � 573-341-4491 � http://www.cs.umr.edu

January 19, 2006

Susan H. Rodger, Ph.D.
Department of Computer Science
Dept. Box 90129
Duke University
Durham NC 27708-0129

Dear Dr. Rodger,

My name is Eugene Wallingford, and I am Associate Professor and head of the
Department of Computer Science at the University of Northern Iowa. I use
JFLAP in my compiler course, 810:155 Translation of Programming Languages. I
have been using JFLAP in this course since the fall of 2003.

My students learn JFLAP when they need to create regular expressions in order
to implement a language scanner, but they really begin to use it when they
develop parsers. I do not require students to use JFLAP, but I know that students
use it both from their questions and from the print-outs of finite state automata
that they show me. I use the tool in lecture to show conversions, but I do not
show students very much of JFLAP’s power, leaving them to explore and learn a
lot on their own.

JFLAP’s support for nondeterministic and deterministic finite automata—and
especially conversions from NFAs to DFAs and from DFAs to minimal DFAs—
helps students to make connections between the ideas they see in their theory
course (and in the theoretical material in their compiler text) and the ideas they
learn about implementing a compiler. With a language of significant size, theory-
based approaches to implementing scanners and parsers are essential, and JFLAP
makes using thoase approaches possible. I also like that JFLAP embodies
another key principle of computer science: building tools that do routine and
tedious work for us. Students come to appreciate this mindset in this course.

Students find JFLAP to be a useful tool, and I find that it makes implementing a
compiler—the true goal of my course—more doable. I will continue to use it and
make it available to my students.

Sincerely,

Eugene Wallingford

Statement about the JFLAP teaching software regarding the Needs Premier Award 2006.

Valerie J. Harvey, RT(R) PhD
Professor, C&IS
Computer & Information Systems
Robert Morris University

INFS3450 – Quantitative Analysis for Information Systems Professionals. This is a
discrete mathematics applications course designed by an interdisciplinary committee
representing information systems, computer science, mathematics, mathematics
education, and software engineering. Two of the faculty involved in the design of the
curriculum and materials have engineering degrees (Peter Wu and Sushil Acharya).

I have been using JFLAP since 2003. This is clearly one of my most valuable teaching
tools for discrete mathematics

Usage of JFLAP is required (although there are optional assignments). I think the
experience with JFLAP is far too valuable to leave it to chance. However there is ample
evidence that the students utilize the software beyond the requirement (1) for practice, (2)
for review, and (3) to explore optional capabilities of the software.
A demonstration of the required assignment and one or more optional exercises is given
in lecture. In additional to documentation internal to the software, which is fully
adequate, documentation of the required assignment, which is quite simple, is provided to
the students online (http://home.earthlink.net/~inforef/i3450fsa.htm) and in hard copy
format. Additional documentation is furnished by a course textbook: Richard
Johnsonbaugh, Discrete Mathematics, 5th ed. (Prentice Hall, 2001) in the following
sections: §10.1 Sequential machines and Finite-State Machines, §10.2 Finite State
Automata, §10.3 Languages and grammar, §10.4 Nondeterministic Finite-State
Automata, and §10.5 Relationships between Languages and Automata.. With permission,
this documentation is also included in the second edition of our custom textbook, Valerie
J. Harvey, Sushil Acharya, E. Gregory Holdan, Mark M. Maxwell, David F. Wood, Peter
Wu, eds., Discrete Mathematics Applications for Information Systems Professionals, 2nd
ed. (Pearson, 2006), in press, Pearson/Prentice Hall, as a supplement to Richard
Johnsonbaugh, Discrete Mathematics, 6th ed. (Prentice Hall, 2006).
Students give demonstrations when presenting projects involving JFLAP.
There are both required assignments and optional assignments. In the required
assignment, student must deliver a print or screen-print showing trace and the finite state
automaton (FSA) developed using JFLAP.

I use JFLAP with the following topics:

Finite State Automata (required for all INFS3450 students). Students must understand
state transition conceptually as a fundamental building block of software and as a
practical matter must be adept at interpreting documentation of process and thread
management in operating systems. Among the applications and extensions to which
students are guided in this regard: Finite state diagrams in documenting operating system
concepts: see William Stallings, Operating Systems, Internals and Design Principles, 4th

http://home.earthlink.net/%7Einforef/i3450fsa.htm

ed. (Prentice Hall, 2001); Petri nets in enterprise process modeling: Nikunj P. Dalal,
Manjunath Kamath, William J. Kolarik, and Eswar Sivaraman, “Toward an Integrated
Framework for Modeling Enterprise Processes,” CACM 47, 3 (March 2004): 83-87.
Linear-Order String matching Algorithms in Data Mining - Sushita Mitra and Tinku
Acharya, Data Mining: Multimedia, Soft Computing, and Bioinformatics (Wiley, 2003),
§4.2, pp. 150ff. String Matching with finite automata, §4.3 String matching in
Bioinformatics.

• Regular Expressions (required for RMU students doing project presentations on
pattern matching and regular expressions where they complete an assignment in
JFLAP as well as practical interactive demonstrations using grep
(Unix/Linux/Xen) and/or ISO standard M pattern match syntax (used primarily in
health care software and stock market and international financial transactions
software). Capability with grep is required for use of Unix/Linux/Xen in all RMU
operating systems courses, in RMU graduate networking courses for routing
information protocol assignments and projects, and for intrusion detection
assignments (to review contents of system logs looking for evidence of intrusion
“exploits”) for RMU graduate courses in information security and assurance.
Capability with M (or MUMPS or InterSystems Caché ObjectScript) pattern
match syntax is required for RMU students developing health care system (such
as radiology system) demonstrations in our undergraduate health care track or
students working with VistA/WorldVistA or OpenVistA hospital information
systems or electronic health record (EHR) systems technology. JFLAP is a vital
interactive conceptual practice environment and provides a general foundation for
all of these practical applications of regular expressions.

• L-Systems (required for students doing project presentations on L-Systems and
turtle graphics and their applications) L-systems experience is important for RMU
students with an interest in bioinformatics. External documentation used with this
includes Chris Lucas, “Classifier, IFS [Iterated Function Systems], L-Systems and
Beyond,” at http://www.calresco.org/lucas/classify.htm ; Lindenmeyer Systems
and biological growth simulation, Texas A&M University, at
http://acadia2000.tamu.edu/exhibit/DME/2000_49/moss1.htm

• Languages and grammars (optional). This topic is important so that students
understand formal documentation of computing languages (BNF).

JFLAP is also used to develop finite automata for quiz and exam questions which the
students might encounter, including on the final examination for INFS3450, where they
could be required to devise strings that (1) would be accepted or (2) would not be
accepted by a particular finite state automaton or (3) are asked to judge whether a
particular string would or would not be accepted. A sample question of this type is
provided online for students.

JFLAP is useful in teaching because of its applicability as described above and:

• it is easy to learn
• the graphic representation is excellent and approximates the examples seen in

textbooks. It is very important that teaching software have this quality. For
example, note that in developing a finite automaton, if there are transitions in both
directions between the same two states, this is adjusted automatically in the

http://www.calresco.org/lucas/classify.htm
http://acadia2000.tamu.edu/exhibit/DME/2000_49/moss1.htm

JFLAP graphics without explicit student action, so that a professional-looking
result is achieved. Step 1, only a:q0 -> q1 and a:q1 -> q1 are shown:

Step 2: Student adds b:q1 -> q0 with the automatic result:

• Feedback is excellent in testing input strings (colors to show acceptance and non-
acceptance of strings and traces.

Students are pleased to be able to develop professional-looking results in their work.

Perhaps most important is the integrated treatment of languages, grammars, and finite
automata in JFLAP. One the most important experiences of discrete mathematics in the
computing disciplines or for software engineering is to learn to recognize alternative
and equivalent representations “of the same thing.” Using JFLAP it is as easy to deal
with equivalent representations as it is to see equivalent representations of relational
database queries in SQL and QBE (Query by Example)-based tabular graphic format in
Microsoft Access.

It is possible to use JFLAP equally well for introductory or advanced learning.

I can state that students like JFLAP software because they often do more elaborate
exercises or more exercises than I assign, and because they report using it in the review
process toward the end of the semester. Every semester I ask students which software
they have found most useful in review and JFLAP is invariably cited. Because the
graphic representations of the automata are self-documenting, they are easily used in
correcting errors and helping the student understand concepts. All incorrect submissions
must be corrected and resubmitted. I don’t observe frustration in this resubmission
process.

I have cited and/or demonstrated JFLAP in the following presentations or papers:

• “Workshop Report: Practical Examples for Teaching Discrete Mathematics in an
Information Systems Curriculum,” AMCIS 2005, available online as part of
SIGCSE 2006 Discrete Math Workshop materials at

http://blue.butler.edu/~phenders/sigcse2006/activitiesworkshop/amcisa2c-1.doc
Co-authors/presenters, Peter Y. Wu and John C. Turchek.

• “Coordinated Topic Presentations in Information Systems Core Curriculum and
Discrete Mathematics Courses,” presented at ISECON 2005 in Columbus, OH,
and published in ISECON 2005 Proceedings. Co-presenters: Peter Wu and John
Turchek. This has been accepted for publication in ISEDJ.

• “Insights from Teaching Discrete Mathematics in Information Systems
Programs,” Report for the Discussion Forum, CoLogNet/Formal Methods Europe
Symposium on Teaching Formal Methods (TFM’04), November 19, 2004, Ghent,
Belgium. Co-author with E. Gregory Holdan

• “Workshop on Discrete Mathematics for Programs Conforming to ABET
Information Systems Accreditation,” Co-presenters: Peter Y. Wu and John C.
Turchek, ISECON, November 4, 2004, Newport, RI

Teaching of automata was cited in:
• “Life-long Learning: Making Discrete Math Relevant for Information Systems

Professionals,” IACIS 2005, available online at
http://www.iacis.org/iis/2005_IIS/PDFs/Wood_Harvey_Kohun.pdf David F.
Wood, Valerie J. Harvey, and Frederick G. Kohun.

I particularly respect the instructional usefulness of JFLAP because I taught automata
theory in computer science in 1988 when I didn’t have such a tool.

http://blue.butler.edu/%7Ephenders/sigcse2006/activitiesworkshop/amcisa2c-1.doc
http://www.iacis.org/iis/2005_IIS/PDFs/Wood_Harvey_Kohun.pdf

June 14, 2006

National Engineering Education Delivery System
Premier Award 2006 Nominations

Evaluation Committee Members,

I only became aware of the JFLAP software package in April, 2006. My spring semester
course (CS 154, Formal Languages and Computability) was already almost 2/3 finished,
so it was too late for me to thoroughly integrate the software into the course. However,
I liked the software so much that I felt I at least needed to demonstrate it to my class.
At that point, we had already completed our coverage of Finite Automata and Pushdown
Automata, but were still covering Turing Machines.

Beyond showing students the software, and including a link to it on my website, I didn’t
require students to use it in any way. Nevertheless, about 75% of students used JFLAP
for (at least) the next homework, in which they needed to give Turing Machines for two
different functions.

I got only positive feedback from students, some of whom went back to study previously
covered topics using JFLAP. Several commented that they found it quite fun to use, and
two students (one of whom wasn’t even in my class, but heard about it from the other)
have expressed interest in helping to modify the software itself after having looked at the
source code. These two students are from our student Linux Users Group, and both were
attracted by the software engineering aspect of the project.

I was so impressed by the software that I wrote to Professor Rodger to compliment it, and
to get textbook recommendations from her. To quote the first paragraph of that email:

First of all, my compliments on the JFLAP system. It is such a nice tool that
I hope it will provide me a much needed kick-in-the-pants to reorganize my
automata/formal languages course. I had been thinking about how much work
it would be to create such a system, but thankfully, you guys have already done
the work for us.

To summarize, although I have just started using JFLAP, I am so impressed with it that
I plan to completely reorganize my course next year in order to properly incorporate the
software into it. I think that it helps students not only to learn the material, but to get
excited about it.

Best regards,

David Scot Taylor
Assistant Professor
Department of Computer Science
San José State University
One Washington Square
San José, CA 95192-0249
taylor@cs.sjsu.edu

28 June 2006

Dear Susan,

I am pleased to write this letter in support of your JFLAP program. I’ve used
JFLAP in my course (ENGR 3520, Foundations of Compuer Science) for several
years now and find it to be the most compelling piece of software for the
students of any that we use. I use it to show students how automata work,
and they invariably choose to use it to produce their problem sets. JFLAP is
designed to be easy to use and to bring to life a topic that is often difficult for
the students to really experience; it makes automata theory into a hands-on
learning experience! And, as all educators know, doing something is an
excellent way to reinforce learning. It’s just that we computer scientists
sometimes find it hard to actually build things in the way that our more
mechanically inclined colleagues do….With JFLAP, our students can have this
kind of experience too. In fact, last year my TA was so taken with JFLAP that
he wrote a little sprite animation program that takes JFLAP’s XML output as its
control program, so now my students can build finite state automata and
watch them walk little creatures around the screen!

Thanks for making such a great tool available!

Sincerely,

Lynn Andrea Stein

Professor of Computer and Cognitive Science

las@olin.edu

June 10, 2006

To Whom It May Concern,

I am an Assistant Professor in the Department of Mathematics and Computer Science at the
University of Richmond in Richmond, Virginia. I used JFLAP this fall when I taught the Theory
of Computation course (CMSC 330) for the first time. I chose to use JFLAP in this course
because I believe it enables computer science students to more easily grasp the very theoretical
material presented in the course. For those students who are less mathematically inclined,
JFLAP helps them understand the abstract ideas from lecture by allowing them to create, modify,
and test the different types of automata, observing how the algorithms work in a step-by-step
fashion. All of the students, including those with the greatest theoretical ability, better
understand the subtleties of the course material because they are able to use JFLAP to effectively
debug their understanding. When the students are unsure of some aspect of the course material,
they can simply construct a corresponding example and observe how JFLAP handles that test
case.

In this course, I required JFLAP to be used in the lab assignments and permitted students to use
it on their homework assignments. (The course has a lab component, and the students are graded
on their work.) The assignments over the course of the semester covered a large portion of
JFLAP including finite state machines, pushdown automata, grammars, and Turing machines.
The feedback I received from the students was positive. I found it extremely enjoyable to watch
them use JFLAP in order to clarify their understanding of the algorithms.

I believe JFLAP is a fabulous tool which makes it easier to teach a wide variety of computer
science students the material in this course. I look forward to using it again in lab the next time I
teach this course, and I also intend to use it in my lectures when I illustrate the theoretical
concepts with examples.

Sincerely,
Kelly A. Shaw

Sincerely,
Kelly A. Shaw

To Whom It May Concern:

I would like to recommend the JFLAP software for consideration for the Needs Premier
Award. I am an Assistant Professor of Computer Science at Elon University in Elon, NC.
I have been using JFLAP for three years in my Theory of Computation course, CSC 351.

The theory course is required for all Computer Science majors and is generally taken in
the spring of either their junior or senior years. Math majors are also eligible for the class
and often are drawn to the theoretical aspect of computing. The theory class is different
from every other class in the Computer Science curriculum in that there is no
programming component (the students write automata, of course, but do not write any
programs in high-level languages.) This is generally quite worrisome to the students at
first, as most of our Computer Science students do not rank Math classes as their favorite
or best classes. The use of software in a theoretical, non-programming class is like a
safety blanket for a Computing student.

I explain all of this in order to highlight the part that the JFLAP software plays in the
class. JFLAP allows the students to create automata using an easy, point-and-click
interface, and then to check their work by working through example strings. The
software allows them to visualize the process defined by the automata. I use it routinely
in class when introducing new concepts or working through examples with the students.
JFLAP is an excellent tool when the student originally proposes an incorrect answer.
Their proposed automata can be created and tested in the software, and the student can
see exactly where the problem is. Also, the student can fix the automata, and the new
solution can be checked. Without the software, this testing and debugging phase would
be too lengthy and abstract to do in class.

When I began teaching the class, I would show a power point presentation to begin a new
topic. We would first discuss the properties of an automaton, and then we would use
JFLAP to do examples. I found that the students were not engaged in the first half of the
class, and it was also clear to me that they did not really understand the topic until they
saw the JFLAP visualization. Now I introduce the automaton through JFLAP first. I use
the software for modeling deterministic and non-deterministic automata and for creating
a deterministic automaton from a non-deterministic one. I also use the software for
pushdown automata and Turing machines. There are several topics that are included in
the JFLAP software that I do not use. This is not because of the software, but rather
because the other topics are beyond the scope of my class.

The students routinely use JFLAP on their own as well. They are required to use JFLAP
for some of their homework, but not all. The students are told that those who use JFLAP
to develop and test their work generally make higher grades than those who do not. This
is indeed true, and the reason is simply the ease with which they can find and fix any
mistakes in the work. For this reason, students routinely use JFLAP even on assignments
that do not require it. The students really enjoy using the software, and I believe they
enjoy the class as a whole more as well. Each year at least one senior (Computer Science
senior, that is) chooses the theory class as his favorite class in the entire curriculum,

which includes classes such as Artificial Intelligence, Graphics and Video Game
Programming, and our popular Senior Seminar.

In conclusion, I highly recommend the JFLAP software. I have never had the software
crash, nor have I ever found a bug to report. The software is extremely easy to install and
use, and the improvement in the class is immeasurable. It easily makes the class more
engaged and interested. I believe that many students would never understand the material
if they couldn’t “see” it. I truly wish I had similar visualization software for all of my
classes.

Sincerely,

Shannon Pollard

Asst Professor of Computer Science
Box 2189
Elon University
Elon, NC 27244

Office of the Provost and Vice Chancellor� 105 Garfield Ave, Eau Claire, WI 54702 � (715) 836-2320

June 16, 2006

Dear Dr. Rodger:

Please accept this letter of support for your JFLAP software tool. For the past
18 years I have taught senior level computing courses on the theory of
computation, first at the United States Naval Academy, and now at the
University of Wisconsin – Eau Claire. While I now teach must less often in
computer science because of my administrative responsibilities, I continue to
teach – once per year – our Computer Science Department course entitled
“Theory of Computation” (CS450). This is my main teaching obligation these
days, and I am the only one on our campus to have ever taught this class.

Up until about three years ago, I had repeatedly bemoaned the lack of any
quality tool for simulating finite state machines, pushdown automata, and
Turing machines. I had engaged students in projects to create these tools for
me to use in my classes, and while they did do that, the tools never quite
made an impact or caught on with the students in my classes. The tools
always lacked some key functionality, were not quite “professional” enough, or
were cumbersome to use. In short, those efforts were valiant, but ineffective.

I recall hearing about JFLAP and thinking, “Oh sure, someone else tried what I
did. I’ll bet they failed, too.” Of course, I was wrong about that latter part. I
have now been using JFLAP in my course for three years and with great
success right from the start. I spend NO class time discussing the tool. I give
the students a pointer to the software on our system, and tell them they must
use it for their assigned homework. The rest is up to them. Of course, the
reason I can get away with that approach is that the interface and “usability”
of the tool is simple and convenient. One rarely needs to read the online help;
the use of the product is intuitive, the interface is clean, and the design is well
planned, in spite of the fact that it is noncommercial.

The students like JFLAP, not so much because they like to simulate the
machines to see them work (maybe they do – I can’t be sure), but because they
can design the devices, test them on sample inputs, redesign, and retest, all
very quickly. The tool enables them to work fast and accurately, correctly
mistakes and adding functionality. We use JFLAP for finite state machines,
for pushdown automata, and for Turing machines. But I have also seen
students experiment with some of the other models in JFLAP, simply out of
curiosity. That’s something that would never have occurred without the tool.

I want to make two special observations that I think really point out how
useful this tool has become. I recently taught a course on Digital System
Design (CS 278) that has a decidedly practical side involving the construction
of digital systems implemented on VLSI system prototype boards. Some of my
students in that class had previously taken my theory class and used JFLAP.
While I never even mentioned JFLAP in the Digital System Design class, I

discovered that the students were using it to create the finite state controllers
for their digital devices. They did all of their simulation and design work in
JFLAP before implementing their work on the real system boards (in Verilog).
The point here is that the students clearly recognized, without any prodding
from me, that JFLAP was a valuable tool that extended beyond the course in
“theory.” It was a practical tool that they could apply to engineering design
work in other areas. This is an instructor’s dream – to have students see the
link between theory and practice and do it without you pointing it out. The
JFLAP tool was the “vehicle” for making that connection.

Second, I have also discovered that students are now using JFLAP as a
“drawing tool” (I’ll bet you didn’t envision that in the beginning) for designing
controllers that they want to embed as figures in technical papers that we are
developing. While students unfamiliar with JFLAP fight with MS Word or MS
Visio to create such diagrams, the students who have used JFLAP are quickly
building the figures in JFLAP and then embedding those figures in our papers.

Obviously, I am a big fan of JFLAP, and so are my students. JFLAP is one of
the highest quality, freeware packages that I know of. I’m always eager to hear
about enhancements, and I intend to continue to use it in my classes. It’s
simply a great product.

Sincerely,

Andrew T. Phillips
Professor of Computer Science
Associate Vice Chancellor for Academic Affairs and Dean of Graduate Studies
University of Wisconsin – Eau Claire

Michelangelo Grigni, Associate Professor
Department of Mathematics and Computer Science
Emory University
Atlanta, GA 30322

June 29, 2006

Susan H. Rodger
Dept. of Computer Science, Box 90129
LSRC, Room D237
Duke University
Durham NC 27708-0129

Professor Rodger,

I am writing this letter in support of JFLAP in the “Needs Premier Award”
competition.

Since 1999, I have used the JFLAP tool to help teach automata theory concepts
to undergraduates (and some graduates) at Emory University. It is an excel-
lent tool for both the design and simulation of finite automata, grammars, and
Turing machines. I have observed that it helps in at several kinds of learning
situations:

1. During lectures or lab demonstrations, the “live” graphical presentation
of a working automaton speeds student comprehension of their behavior,
compared to a blackboard demonstation. This is true both during the
demonstration of a prepared automaton (a didactic, introductory situa-
tion), and also during participatory design or debugging of a novel au-
tomaton (a more interactive, advanced situation).

2. In assigned work where the students are asked to design an automaton
with some prescribed behavior, students using JFLAP (rather than just
paper), I find that they are much more likely to produce a well-formed
automaton, and furthermore they are also more likely to check its correct
behavior on test inputs.

3. In group work (either group assignments, or student presentations) I find
that having the common interactive tool greatly improves the ability of
students to present and study each others designs. It certainly goes much
better than a student blackboard presentation, especially if there is some
mistake to correct.

4. During review or office hours, students have an easier time going over
examples from lectures and homework, if those examples were done with
JFLAP (and I’ve made the relevant files available).

The one exceptional situation is testing: since my main concern is their compre-
hension, rather than their JFLAP usage skills, my students do not use JFLAP
on exams. However, I might still prepare exam figures with JFLAP; they have
no trouble with this, since the JFLAP figures are quite close to standard text-
book diagrams.

Similar remarks also apply with “grammar” or “Turing machine” in place of
“automaton”, and with non-deterministic variants of these models.

More specifically, I use JFLAP in these two Computer Science courses:

CS224: This is a our sophomore level introduction to discrete mathematics,
the relevant module concerns finite automata. In my most recent edition
of this course (Fall 2005) I used JFLAP for in-class demonstrations and
design, and made it optional for assignments. I find that most of these
students prefer JFLAP, the only issue being lab access (once they know
how to use the lab machines, JFLAP itself is quite easy to use).

CS424: This is a senior level introduction to computability and complexity
theory, the relevant module is Turing machines. In my most recent edition
of this course (Spring 2006) I used JFLAP for in-class demonstration, and
also required its use for a homework and for student presentations.

JFLAP could also be used in a compilers course just to introduce grammars
and parsing, but I do not usually teach that.

Teaching these subjects just on paper, without a design and simulation tool like
JFLAP, would be analogous to teaching programming without ever actually
running a program! We could still do a good job with the abstractions, and get
by with “by-hand simulations”, but the practical and intuitive understanding
of most students would suffer. JFLAP provides a design-and-test environment
which is familiar to students of programming. By reducing the time necessary
to work through examples, JFLAP also gives us more time to study the more
abstraction concepts.

In summary, I strongly recommend JFLAP as a teaching tool for these subjects.

Sincerely,

Michelangelo Grigni
Email: mic@mathcs.emory.edu

2

From: Robert Sloan <sloan@uic.edu>
To: Susan Rodger <rodger@cs.duke.edu>
Date: Wed, 7 Jun 2006 11:32:47 -0500

To whom it may concern:

I am writing this letter to support the nomination of Susan Rodger’s JFLAP software
for the Needs Premier Award for courseware. I began to use the deterministic and
nondeterministic finite automata portion of JFLAP for my course Computer Science 301,
Languages and Automata in the fall of 2003. I require students to use JFLAP in the
finite automata portion of the course; some students choose to use other parts of the
software (push-down automata and Turing machines) later in the course.

The finite automata portion of my course could fairly be said to be centered around
JFLAP. I use it in lecture to give examples and I assign homework problems that require
its use. Students seem to really enjoy working with JFLAP, and it has clearly led them
to a deeper understanding of nondeterminism, and of the algorithms for converting
among the various representations of regular languages.

Incidentally, the reason that I use JFLAP so heavily in the beginning of my course
and only incidentally in the end of the course is because the ideas that JFLAP promotes
happen to be central to the beginning of the particular course I teach but only incidental
to the material at the end of my course. If I were teaching a mildly different
type of course, I might well use JFLAP throughout.

I could go on at some length about how wonderful I think JFLAP is. However, it might be more
effective to say that it has helped me to win a major teaching award at my university, and to quote
from those materials. The following is from my required letter when I won recognition from the
University of Illinois at Chicago Teaching Recognition Program (a major award, carrying a $1,500
permanent salary increase, given each year to roughly 10 of our roughly 2,000 faculty members):

"One reason that my students have an excellent experience is not that I have hundreds of great
teaching ideas, but rather that I have a few great teaching ideas, and a very good eye. I am
always on the look out for good ideas of others. Many of my most successful classes have
components that have come from hither and yon.

Let me give you some examples: (1) I regularly teach automata theory, a very abstract
mathematical course. Since 2002-2003 I have used a visualization system (JFLAP) developed
at Duke University that probably took about 10-15 person months to build and polish. My
students now understand nondeterminism in a way that they never have before."

In conclusion, I strongly support the nomination of JFLAP for this
courseware award. Fell free to contact me if you need any other information.

Sincerely,

Robert H. Sloan

Professor and Director of Graduate Studies
Department of Computer Science
University of Illinois at Chicago
sloan@uic.edu
(312) 996-2369

8

As a faculty member in the Department of Computer Science at UC Davis, I regularly
teach our undergraduate course on formal languages and automata. I have published a
text on this subject, “An Introduction to Formal Languages and Automata” with Jones
and Bartlett, that is now in its fourth edition. A few years ago I was introduced to Susan
Rodger’s JFLAP and, in spite of my initial reluctance for using software in this course, I
quickly became an enthusiastic supporter. Since then I have been in frequent contact with
Professor Rodger, have made suggestions for additions to JFLAP, and have participated
in several workshops on it. In my opinion, JFLAP is a great teaching tool.

My students have benefited from JFLAP in several ways. It allows them to do their
homework more quickly and more accurately. Constructing and testing automata, such as
pushdown automata and Turing machines, is tedious and error-prone. JFLAP speeds up
this process and makes finding and modifying errors a simple matter. Also, the ability to
follow constructions step-by-step is a great aid in understanding some of the more
difficult concepts. I am particularly impressed by the way in which JFLAP illustrates the
issue of nondeterminism. Finally, JFLAP has improved my students’ attitude towards the
course. Working with JFLAP is one aspect that most of them enjoy. In the most recent
course evaluation, comments like “JFLAP is very useful”, “JFLAP is awesome”, and
“JFLAP is a truly excellent resource” , were common.

JFLAP has also helped me as an instructor. With JFLAP I am able to give exercises that
I had previously avoided, such as assigning problems that require explicit construction of
complicated pushdown automata, Turing machines, or unrestricted grammars. I can give
partial or incorrect solutions to a problem and ask that students complete or correct them,
or make them analyze complex structures, such as context-sensitive grammars.
Assignments of this kind are of course also possible without JFLAP, but they are much
more time-consuming.

We also now use JFLAP to correct homework and in-class examinations. This saves a lot
of time and increases grading accuracy considerably.

In summary, I consider JFLAP a great benefit to students and to any instructor who
teaches a course in formal languages and automata.

Peter Linz
Professor Emeritus
University of California at Davis

 June 30, 2006

Dr. Susan Rodger
Associate Professor
Duke University
Durham, NC

Dr. Rodger:

I used JFLAP for the first time during the spring semester of the 2005-2006 academic
year for CSC 369 Theory of Computation. The students had the option to use JFLAP for
some of their assignments and most chose to use JFLAP.

I introduced JFLAP after having lectured about finite automata. Most of the students did
not seem to fully grasp the concepts of these theoretical machines and my construction of
simple deterministic finite automata on the blackboard did not make much of an
improvement of their understanding. After introducing JFLAP to them and having them
learn to construct the fa’s seemed to make it clearer to them. It immediately made it
easier for the students to understand how the machines work.

I will be teaching the course again during the spring semester of 2006-2007. I intend to
introduce JFLAP much earlier in the semester with plans to cover more material with the
help of JFLAP.

 Jacquelyn E. Long
 Assistant Professor
 Computer Science Department
 Norfolk State University
 Norfolk, VA 23504

21 June 2006

2006 NEEDS Competition

Evaluation Committee

To the evaluators:

Xavier University uses Susan Rodger!s JFLAP tool in our sophomore-level CSCI 250

Languages and Automata course. We have been using it since Spring 2000. It is used as

an optional tool for the students and for classroom demonstrations. We use it most often

when discussing finite automatons, because the tool makes it easy to quickly build and get

a visual demonstration of the automaton, and also because if facilitates an easier

understanding of non-deterministic automata vs. deterministic automata. We generally

see a significant subgroup of students use the tool to produce their homework solutions,

which we believe means they are also using it as they determine the solutions. Anecdotal

evidence from the students is that those who use it appreciate the visual and easy

interactive nature of the tool. We certainly believe the tool is useful for learning and when I

teach the class I encourage students to use it as a way to explore the material.

While I have not used JFLAP for my own research, I suggested its use to a colleague, Matt

Jadud, who was looking for a tool to represent automata graphically as a part of his

dissertation research at the University of Kent. He tells me it provided precisely the

functionality he needed to express his work.

My overall impression of JFLAP is that it is an excellent tool. Since I generally teach the

CSCI 250 course only every other year or so, I have not had a chance to work with it

recently, hence my opinions now are based on an older version than is probably current

(Michael Goldweber also uses it when he teaches the course). I downloaded and started

using the tool after attending Dr. Rodger!s talk at a SIGCSE conference. To me, the real

power of the tool is that you can build and test your ideas, much the same as students are

used to building their programs. For sophomores, that hook is really nice as they wade

into material that is very different from what they consider to be typical computer science

work. When colleagues from other schools talk to me about teaching the Languages and

Automata course, I cannot always recommend an excellent textbook, but I always

recommend JFLAP as useful courseware.

I hope this letter is helpful in the evaluation process.

Sincerely,

Gary Lewandowski

Professor, Mathematics and Computer Science

June 15th, 2006

To whom it may concern,

 I am writing this letter in support of the software JFLAP receiving the Needs
Premier Award in 2006 for high-quality noncommercial courseware. I have used JFLAP
during three semester-long CS 310 Theoretical Computer Science course offerings (Fall
2002, Fall 2004, Spring 2005) at Pacific University and found it very nearly
indispensable. While I have required that JFLAP be used in each of these course
offerings, during the Fall 2005 offering we used it extensively in the course. I demoed
the software during class time, and using it was a crucial part of two of the six
assignments in the course. In particular, the students used JFLAP to do the following:

 1) Construct DFA’s, NFA’s that accepted the appropriate languages.
 2) Experiment with CFG’s and specifically LL(1) parse tables in a way that
required that they understand deeply the notions of First and Follow.
 3) Construct two different Turing Machines that would perform binary addition
and subtraction.

 Since I have been using JFLAP in CS 310, the professor of our Compilers course
(CS 480, for which the Theoretical Computer Science course is a prerequisite) has
commented to me how much more prepared the students are for his course. I have
learned that there is no substitute for the ability of my students to see a DFA, NFA, CFG,
or Turing Machine in action, and I would regard JFLAP now as such an integral part of
the course that I cannot imagine teaching the course without it. The students, also, have
found the software extremely helpful and easy to use, and we all appreciate the fact that
is runs on any platform. Additionally, I have also used JFLAP in a seminar series
whose intent was to teach non computer science faculty about the development of Turing
Machines, and found the software extremely useful for conveying these ideas to non-
specialists.

 I should also add that any questions I have had regarding the software have been
answered very quickly and in depth by either Susan Rodger or another member of the
development team. They have clearly spent very much time developing this software
with only the goal of student learning in mind, and I would very much like to seem them
recognized for their hard work.

Thanks!

Chris Lane, Assistant Professor
Department of Mathematics and Computer Science
Pacific University
Forest Grove, OR 97116

DONALD BREN SCHOOL OF IRVINE, CALIFORNIA 92697–3440
INFORMATION AND COMPUTER SCIENCES
 TELEPHONE: (949) 824-5072
DAVID G. KAY TELECOPIER: (949) 824-4056
LECTURER S.O.E. IN COMPUTER SCIENCE ELECTRONIC MAIL: kay@uci.edu
DIRECTOR OF INTRODUCTORY PROGRAMS WORLD-WIDE WEB: http://www.ics.uci.edu/~kay/

 June 14, 2006
Professor Susan Rodger
Department of Computer Science
Duke University
Durham, NC 27708-0129

Dear Professor Rodger:

I would like to express my strong support and appreciation of your tool JFLAP.

My use of JFLAP may be a little unconventional, which speaks well of its flexibility and
broad appeal. I teach second-quarter computer science, sometimes in honors sections, for
majors in computer science and informatics. Our curriculum includes most of the tradi-
tional CS 2 topics (leaving sorting, balanced trees, and some advanced data structures for
the third quarter). It also includes about three lectures (15% of the class meetings) on
automata and formal languages, not primarily from the theoretical perspective but as a tool
in programming certain kinds of tasks.

In some versions of the course, students do an early lab that requires them to tokenize the
input stream into words. When they see later how to draw an FSA for the task and covert
that trivially to code, there’s a gasp of recognition that the right tool can make a big differ-
ence. As part of their lab work, students build and test a couple of simple FSAs in JFLAP. I
find that they appreciate being able to run and test their designs. More generally, it’s valu-
able for them to have a runnable tool that provides a clean, clear, and correct operational
model to serve as a check on their understanding.

I strongly encourage you to continue your development and dissemination of JFLAP. It is a
valuable tool of the highest quality.

Sincerely yours,⁄

⁄

⁄
David G. Kay

 Department of Mathematics and computer Science
 Fayetteville State University
 1200 Murchison Road
 Fayetteville, NC 28301-4298

 June 26, 2006

Dear Susan,

I have used JFLAP for three years in my course titled Theory of Computation (CSC 332) at
Fayetteville State University. This course is typically offered during the spring semester, and the class
size is approximately ten students. CSC 332 is not required for the major, and the prerequisites for the
course are two semesters of discrete mathematics and the data structures course. My students are
required to use it for eight assignments that they must submit electronically. Each assignment consists
of one to three parts depending upon the difficulty of each part. I grade them by testing each submitted
problem against a predetermined list (usually ten) of input strings. My JFLAP assignments cover the
following topics: DFA, NFA, regular expressions, CFG, PDA, NPDA, and Turing machines (both
single tape and multi-tape machines, acceptors and transducers).

Since classroom technology allows me to use JFLAP in the classroom, I use it during most of my
classes. I have not used it for the pumping lemmas or complexity, although I did demonstrate some
busy beavers that were part of an exercise in the textbook.

The students like it, and we believe it helps understanding for two reasons. (1) Students can get
immediate feedback on their attempts to build a machine or construct a grammar. They can test what
they have constructed to see if it is correct, and modify it if necessary. (2) Seeing the states change in
the step-by-step mode is in my opinion a wonderful opportunity for students to understand how these
things work. After all, “a picture is worth a thousand words”, and JFLAP provides many pictures.

I have much praise for JFLAP. It is relatively easy to use, yet it is a powerful tool to help students
learn about computing theory. It is also easy to use in grading assignments since it can run multiple
inputs strings at once. Finally, if I were still teaching the compiler course, I would certainly use
JFLAP there to help students understand parsing

V. Dwight House
Associate Professor
Department of Mathematics and Computer Science

School of Computing

50 S. Centeral Campus Drive RM 3190 Salt Lake City, Utah 84112 (801) 581-8224 FAX (801) 581-5843

June 7, 2006

Letter in support of JFLAP, a Software Tool for Enhancing Education of Computability and
Logic, the “Engineering Mathematics” of Computations

Dear Awards Committee:

I have taught Automata Theory, Formal Methods, and Computability several times over my 20-year
career at the University of Utah, School of Computing. I consider these topics to be fundamental to
“Computation Engineering” - a term I prefer over the more traditional names such as “Computer
Science” or “Computer Engineering.” This letter is my very strong endorsement for JFLAP - a
tool that greatly assists the learning of these topics. Before I elaborate on JFLAP, I would like to
provide some context and motivation.

We, in the 21st century, are faced with the phenomenon of computation in every walk of our
lives. Jeanette Wing, Professor of Computing, and Department Head, Carnegie Mellon University,
has recently written an article entitled “Computational Thinking” in the Communications of the
ACM, March 2006. In this article, Professor Wing explains why computation is going to be a
paradigm for living in the 21st century - and not just something esoteric that computers carry out.
Everything from traffic gridlocks to scheduling meetings to biological phenomena fall under this
umbrella. Analyzing these computational phenomena, manipulating them, and properly under-
standing them requires help from multiple foundational areas of mathematics. Automata Theory
and Computability are two of the central branches involved in these studies.

Unfortunately, Automata Theory and Computability are in a state of “pedagogical anachronism.”
On one hand, these subjects were born in the mid 20th century when basic aspects of compilers
were, for the first time, being understood. However the topic has now moved well beyond its initial
role, permeating the construction and analysis of complex computing systems that might control
factories, airplanes, and microprocessors to which human lives are tied to. With the exposition of
this topic remaining “stuck” in the 1960s, with examples and motivations drawn from the world of
compiler construction, and with students expected to write long series of derivations pertaining to
deeply mathematical phenomena, the subject matter has, unfortunately, become one of the most
dreaded. This, clearly, need not be so. With the right set of software tools used to bring to life
various formal models of computers, students can “play” with these machines and develop strong
intuitions pertaining to them. It is the experience of those who have taken this approach that even
the mathematics becomes far more approachable, as a result.

Five years ago, I was seeking a tool that helps animate automata and other formal models of
computers. After trying many tools, I used JFLAP and found that (i) it was intuitive, (ii) it
offered powerful methods to explore automata (for instance, how non-deterministic automata can
go through various configurations), and (iii) it was a robust and reasonably efficient tool with a
good graphical front end. JFLAP was superior to any of the tools I used. It truly made a difference
to my class in that the students could revisit the concepts after my lecture and even come up with
their own intuitions about computation that were refreshingly reflected in their answers.

My own textbook entitled “Computation Engineering: Applied Automata Theory and Logic” has
just been released (published by Springer). I employ many tools in my book just because I cover

many more formal aspects than traditionally covered in foundational courses. However, in the
treatment of finite automata, and especially pertaining to Turing machines, I have employed JFLAP
to illustrate numerous subtle details.

In conclusion, JFLAP eminently deserves the Needs Premier Award for tools that have truly made
a difference to engineering education. It is widely used, and it opens the path towards many more
students understanding foundational subjects pertaining to Computation Engineering.

Sincerely yours,

Ganesh Gopalakrishnan
Professor

2

William Turkett
Assistant Professor
Department of Computer Science
Wake Forest University (Winston-Salem, NC)

I have used JFLAP in a course in my department – the course was titled “CSC
231 – Programming Languages”. It was used for the first time this previous spring
semester (Spring 2006), but I anticipate using it again when I re-teach the course (which
is likely to be every spring).

I used JFLAP in teaching introductory regular expressions and finite automata to

CS majors (CSC 231 is a sophomore/junior level core course in our department). There
were approximately 12 students enrolled in the course during this past spring semester.
Use was mandatory during one of the lab sessions and the students could optionally use
JFLAP on their homework related to regular expressions/finite automata (most students
did use it). The software was demonstrated to the students by myself during the first half
of the lab period before the students were given assignments using it.

I believe JFLAP was very useful in making regular expressions/finite automata

understandable. The way in which students could interactively design finite automata
and then test whether those machines accepted the right language was very useful for
understanding how regular expressions and finite automata are related. In addition, the
ability to watch each step of the process of a finite machine accepting or rejecting a word
in a language and the ability to watch a step-by-step algorithmic minimization of a finite
machine were very useful.

I believe my students liked the JFLAP software and found it quite useful. As

stated above, almost all of the students voluntarily completed their homework
assignments on regular expressions/finite automata using JFLAP. As a whole, we had a
little trouble with some minor interface issues (mainly from habits picked up using
Windows), but these were all minor issues and the benefits of using the program for
learning far outweighed such details.

In summary, I really found JFLAP to be an asset in teaching regular expressions
and finite automata in my course. I plan to use it again in future semesters, as well as
plan to extend my use of it to incorporate the relevant components when I teach
grammars and push-down-automata (as they are part of the same CSC 231 course). I
looked at a handful of similar programs at the beginning of the semester (such as “The
Regular Expression Coach”) and the extensive capabilities of JFLAP placed it well above
the other programs and motivated my choice to use JFLAP.

To whom it may concern:

I have used the JFLAP tool for the past two years in my Discrete Mathematics and
Theory of Computation classes at the College of Wooster. Dr. Denise Byrnes, our other
faculty member who also regularly teaches the Theory of Computation class, introduced
me to it. I use the tool as a required utility in homework assignments, and I also value it
for demonstration purposes. My primary emphasis for JFLAP involves finite automata,
pushdown automata, and Turing machines, but Dr. Byrnes also has used it in various
classes to demonstrate Lindenmeyer systems.

I have found JFLAP to be a versatile and effective teaching tool that students easily
comprehend and appreciate. Because of its simple interface, students learn to use it
effectively within a few minutes. It has substantially enhanced the effectiveness of my
teaching in the classes where it applies.

Dale A. Brown
Professor of Computer Science
The College of Wooster
Wooster, OH 44691
dabrown@wooster.edu

UNIVERSITY OF KENTUCKY
COLLEGE OF ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE
Dr. Judy Goldsmith (859) 257-4245

763E Anderson Hall FAX: (859) 323-1971

Lexington, Kentucky 40506-0046 goldsmit@cs.uky.edu

June 15th, 2006

Letter of Support: JFLAP

Dear Needs Premier Award 2006 Evaluators:

I teach automata theory and Turing machines at least once/year, often once/semester, either in
the required undergraduate discrete math/models of computation sequence (CS 375) or the mixed
undergrad/grad course, Theory of Computation (CS 575).

While I find that the students quickly grasp finite automata, they have more trouble with push-
down automata and even more with Turing machines. In particular, it is tremendously helpful for
them to actually run a Turing machine simulator. And even more so to play with the nondetermin-
istic features of the JFLAP simulations.

I have been using JFLAP since I was introduced to it in 1998. I primarily use it as a supplement
to whichever text I assign. I give at least one homework in which students are expected to actually
implement a Turing machine program and submit the JFLAP representation of the program. While
I do not demand that they use JFLAP, I provide a link to the JFLAP site, and 99% of the student
use it.

Because I downplay it, students often feel that they have discovered this wonderful, secret soft-
ware. About twice a semester, a student comes to my office hours, all excited, and shows me this
great software. “And look what it does!” he1 exclaims.

I have found that JFLAP is consistently helpful and exciting for the students. They get to verify
what they have understood, and that solidifies their control of the material. And, perhaps more
important, they get to play with the subject matter.

It is my observations that my teaching evaluations are higher on the semesters that I ask them
to use JFLAP than on the semesters I forget to assign a homework using it. In short, I find it useful
as a teacher, and the students find it enjoyable. In a course that is usually in the category of “they
wouldn’t take it if it didn’t satisfy a curriculum requirement,” enjoyment is high praise!

If you have any questions, don’t hesitate to contact me. I am available by email at goldsmit@cs.uky.edu.

Sincerely,

Dr. Judy Goldsmith
Professor, Computer Science

1For some reason, the men seem more likely to think that they discovered it. But perhaps my sample is not
statistically significant.

 6/19/06

Computer Science

200 W. KAWILI STREET

Susan Rodger
Computer Science Dept. Box 90129
Duke University
Durham NC 27708-0129

Dear Susan,

You asked some question about our use of JFLAP at the University of Hawaii at Hilo. I use JFLAP
in our CS 470 course,Theory of Computation, which is required for all graduates of our B.S. in
Computer Science degree program. The course description is

CS 470 Theory of Computing (3)
Study of various models of computation and their relation to formal languages: finite
automata, pushdown automata, Turing machines, regular, context-free, and recursively
enumerable languages. Unsolvability, NP completeness. Pre: CS 321.

The course is taught every two years. I have used JFLAP for what seems like quite a long time, at
least since 1998. In 2001 I had a small research project in which an undergraduate student
developed a list of criteria for simulation tools of models of computation and did an extensive Web
search to match available tools against these criteria. For modeling finite-state machines and
pushdown automata, as well as for an understanding of grammars and their conversion to finite-state
machines, we found that nothing could beat JFLAP. My student then went on to create a short web-
based tutorial plus a list of example problems and solutions using JFLAP.

This resource is posted on the course webpage and students are encouraged, but not required, to use
it. I do give a demo in class. Most of the students do use this resource and the JFLAP tool, and find
JFLAP to be very helpful. It is much easier to build, test, and modify a finite-state machine in
JFLAP than it is to do it by hand, especially since JFLAP has become more "user friendly" over
time. For the course this fall I have required, in addition to the course textbook, the JFLAP: An
Interactive Formal Languages and Automata Package book (Rodger and Finley).

All in all, JFLAP is a wonderful tool that I know has been a labor of love over the years for its
authors and is much appreciated by those of us who teach automata and formal language theory.

Sincerely,

Judith L. Gersting, Chair
Computer Science Department

HILO, HAWAI’I 96720-4091
808-974-7450

gersting@uhunix.uhcc.Hawaii.edu

An Equal Opportunity / Affirmative Action Institution

Department of Computer Science
2 East South Street
Galesburg, IL 61401
June 18, 2006

Susan H. Rodger, Associate Professor of the Practice
Computer Science Department
Box 90129
Duke University
Durham NC 27708-0129

Dear Professor Rodger,

I have been using JFLAP for the past two years. I’ve used it primarily in two
different courses:

CS 205 Algorithm Design and Analysis
CS 206 Theory of Computing

I use JFLAP for in-class demonstrations and I also recommend it’s use for
homework assignments in both classes. JFLAP is optional in the
Algorithms course where we use it during a section on Turing machines. It
is required for several homework assignments in the Theory course, when
we discuss finite state machines, PDAs, and (again) Turing machines.

I think JFLAP is terrific in allowing me to illustrate topics in both these
courses and I think it helps motivate students and increases their
understanding of the material. Based on course evaluations, my students
use JFLAP even when it’s optional, and they find it a very useful tool.

In addition to the two courses mentioned above, I’ve had students in my
Software Development course use JFLAP to model finite-state machines
for software projects that they were creating. It’s a terrific tool to model
things like network protocols that fall naturally into an FSM.

I’m very enthusiastic about JFLAP, it helps me in my courses and allows
my students to get a better understanding of material.

Best Regards,

John F. Dooley
Associate Professor and Chair
Department of Computer Science
jdooley@knox.edu
+1.309.341.7748

mailto:jdooley@knox.edu

July 3, 2006

This letter is in support of Susan Roger and the JFLAP course software for the NEEDS
2006 Premier Award. At Ithaca College, I have been teaching our 312-411 Formal
Languages and Automata course for seven years. Four years ago, I experimentally
introduced one lab (one week) devoted to JFLAP. Student response was highly positive.
They felt the concepts and principles of automata made much more sense when they
could “see” the automaton in action. I know it sounds incredible that students would
actually get excited about learning theoretical computer science, but today’s generation
of video-game, multi-media oriented students were enthusiastic about using JFLAP. As a
result, students were more motivated to put in the necessary “time on task” to grasp the
challenging concepts of automata, formal languages, and theoretical computer science.

My experience with using JFLAP has been so rewarding that over the last 3 years, I have
gradually modified labs and assignments for a larger and larger portion of the semester. I
now use JFLAP in the classroom to demo example of finite automata, pushdown
automata, and Turing machines. Labs are designed to allow students to experiment with
building automata that meet specifications and to determine the formal grammar for a
given language. This fall, I will be using JFLAP for the entire semester.

Without reservation, I sincerely recommend JFLAP for the NEEDS 2006 Premier
Award. This software and available instructional materials, including text, is a terrific
tool for bringing theoretical computer science to a new generation.

Best regards,

Wanda Dann
Associate Professor of Computer Science
Department of Computer Science
Ithaca College

June 15, 2006

Dr. Susan H. Rodger
Associate Professor of the Practice
Computer Science Dept.
Box 90129
Duke University
Durham, NC 27708-0129

Dear Dr. Rodger:

I have used your JFLAP software for a number of years. As the instructor in
charge of our undergraduate course in Theory of Computation, I am constantly
looking for alternative methods and tools to deliver material that many students
find difficult. I can honestly state that JFLAP is the best such tool I have found.

By using JFLAP, my students have been able to visualize many of the concepts
studied in class as well as test their solutions to assigned homework. I normally
introduce and demonstrate the software in class. Initially, I used it as an optional
tool for demonstration and practice. In recent years, however, I have assigned
problems whose solutions must be submitted as JFLAP files. The software
allows the instructor and the students to use a common platform for the
electronic submission and testing of assignments.

I have found that the software is particularly useful for the construction and
testing of automata. Its user interface allows students to create machine
elements graphically in a manner similar to that used in book examples. The
various options for tracing the operation of automata using different inputs help
students understand their function, particularly in the case of nondeterministic
automata.

In short, JFLAP has been a very important tool in my Theory of Computation
class. On behalf of my students, I sincerely appreciate your efforts in building and
maintaining the software.

Sincerely yours,

Jose L. Cordova
Jose L. Cordova, Ph.D.
Associate Professor and Chair of Computer Science
University of Louisiana at Monroe
Monroe, LA 71203

To Whom It May Concern:

Our B.Sc. degree program in Computer Science was accredited in 1999. We had to revise
our curriculum and courses to meet the requirements of CSAB. It took nearly three years
to prepare and apply for accreditation. All of our Computer Science courses are 4 credits,
3 hours of lecture and 1 hour of lab. Once in fifteen days a closed 2-hour lab session in
observed for every class.
For most Computer Science courses the laboratory component comes natural. For course
like Discrete Mathematics and Automata Theory, designing a laboratory component is
non-trivial. Our course that covers Automata Theory is CSCI 340 -- Computational
Models. We use JFLAP to implement the laboratory component of the course. We are
doing it since our program was accredited.
Keeping in mind the overall mathematical background of \under-graduate students,
teaching theoretical computer science is not easy. I have done it for several years.
Traditionally the programs in this field are written using pencil and paper. Usually, the
areas covered are Finite State Machines, Pushdown Automata, Turing Machines, Regular
Expressions, Grammars, and Parsing Techniques. Without using a programming platform
like JFLAP, the students would write their programs using pencil and paper and verify
the correctness of their endeavor using hand-simulation. Furnishing a mathematical
proof for the correctness of their programs in beyond the scope of this class.
JFLAP makes it easy. The students code their solutions in JFLAP, test, debug, and run
them. I am certain that JFLAP improves the students’ algorithmic thinking and thereby
helps them better understanding the theory.
Although I am the first who started using JFLAP in our Computational Models course,
now all of my colleagues, who teach the course, use it.
I must say that I cannot think of teaching automata theory without using JFLAP.

Sincerely,

Dr. Muhammad Chaudhary
Associate Professor of Computer Science
Millersville University
Millersville PA 17551
Phone: (717) 872 – 3724
Email: Muhammad.Chaudhary@Millersville.edu

mailto:Muhammad.Chaudhary@Millersville.edu

Louis Ziantz
Instructor of Computer Science
Department of Math and Computer Science
Dickinson College
Carlisle, PA 17013

 June 20, 2006

Dear Sir or Madam:

I am happy to write this letter in support of JFLAP’s submission to the Needs
Premier Award 2006 competition. I used JFLAP in our COSCI 314 Theoretical
Foundations of Computer Science course in the Spring of 2004. I will likely teach the
course (now called COMP 314) next spring and plan to use it again if I do.

I have used the tool primarily for in-class demonstrations of automata, either by
starting with a complete machine or building an automaton on the fly with the students’
input. In the first case, the ability to use an automaton to process a string in a step by step
fashion is a very powerful teaching tool. It can be especially helpful when introducing
nondeterminism, since it clearly highlights that the machine can transition to several
states on the same input character. When building an automaton on the fly, JFLAP
allows an automaton to be quickly edited. In addition, a number of test strings can
automatically be run through the current machine to test a proposed solution. This allows
the instructor to build an automaton with the class, ask whether all cases have been
considered, run tests to see that perhaps the machine is not complete, and then correct it,
while making the whole process smoother and quicker than doing it on a whiteboard. I
have used it in demonstrations of deterministic finite automata, nondeterministic finite
automata, deterministic push down automata, nondeterministic push down automata, and
Turing machines.

Additionally, I have given students the option to use JFLAP for certain homework
problems, particularly those involving the construction of push down automata and
Turing machines. Here the ability to run test cases greatly helped students who chose to
take this option. I would say that most of the class used JFLAP for at least a few
problems, and several began using it even for practice problems that were not submitted
for grading. The students who used it found the interface to be extremely intuitive and
liked the idea of being able to run a set of strings to test their proposed solutions.
Constructing Turing machines on paper often leads students to settle for a solution, as it
can be time consuming to trace and retrace test cases through the machine. By using
JFLAP, the students found it easier to both test and make changes to their automaton,

which made the experience less frustrating while also giving them greater confidence in
their submitted solution. The ability to give states labels allowed comments to be added
to a machine much like a computer program, which made completed exercises easier to
study from for an exam. Those students who used JFLAP to trace nondeterministic
execution on their own said it was a useful experience.

In the future, I plan to continue using JFLAP in demonstrations and will expand
its use in homework, allowing students the option of using it earlier and probably making
its use required for some problems. I will also assign some problems that involve using
JFLAP to trace through the acceptance or rejection of a string, particularly for a
nondeterministic machine.

In closing, I have found JFLAP to be a very useful pedagogical tool and would
highly recommend it for other instructors who are either introducing automata to students
or using these constructs in other courses, such as compiler design.

Sincerely,
Louis Ziantz

From: "Denise Byrnes" <dbyrnes@wooster.edu>
To: <rodger@cs.duke.edu>
Date: Thu, 15 Jun 2006 09:42:44 -0400

Denise D. Byrnes
Associate Professor
Mathematical and Computer Sciences
The College of Wooster

Course: CS253 - Theory of Computation
Last 3 years

JFLAP is required, demoed in lecture, used for homeworks, labs and in class
activities. Topics incluse FA, PDAs, TMs, REs, Grammars and L-Systems.

I love the tool and so do the students. Students give the highest praise
for the labs that use JFLAP. We find it to have an intuitive interface,
helpful in clarifying constructions just as conversion of an NFA to DFA and
especially "fun" when constructing original L-Systems.

I have asked other faculty at the college to consider using the tool and
all have included it in their course design.

Very nice tool - want to thank you for your effort in designing it and
making it available to faculty.

Sincerely,
Denise D. Byrnes
Denise D. Byrnes
Associate Professor CS
The College of Wooster

1

From: "Coomes, Judith" <CoomesJ@wpunj.edu>
To: "Susan Rodger" <rodger@cs.duke.edu>
Date: Tue, 30 May 2006 14:46:20 -0400

Hi Susan Rodger,

I have been using JFLAP when I teach our Theory of Computation course
(CS 445) for CS majors for the past three years. The first year we just
tested it out. Subsequently, we have been using it to design, test, and
simplify finite automata. I do require it at the beginning of the course
so that my students can become familiar with it. They can use it to
check their homework and/or they can use it to do their homework. I do
spend one class period at the beginning of the course working some
sample problems which we then do in JFLAP during the same class period
(if it is a double class) or the next class period (if it meets twice a
week). I demo it and then we use the rest of the period as a lab.

This course has a project requirement and the students can choose what
they want to work on (within limits). They will frequently choose topics
that they can do with JFLAP. For example, this year one group chose to
model L-systems in two and three dimensions with JFLAP. Another student
used it to model Turing machines with multiple tapes.

When I first took over the course (CS 445), the student interest in it
was dying. The course was very theoretical and abstract and it was
failing to make connections with other topics and other courses. While I
have maintained a substantial portion of theory and proof, there is now
a healthy dose of application, experimentation, and project and
presentations. JFLAP has become an integral part of the course. It has
helped to make CS 445 a vital course again.

I hope that this has answered your questions. If you prefer, I can write
this in the form of a letter and mail it to you. Please let me know. In
my opinion, JFLAP and its creators are deserving of an award for
innovation in course based software. I wish you luck in this quest.
Thank you for this opportunity to tell you how much we are enjoying
working with JFLAP.

Sincerely,
Judith A. Coomes
Associate Professor
Department of Computer Science
William Paterson University
300 Pompton Road,
Wayne, NJ 07470
973-720-3383/2649

2

From: "Alice M. Dean" <adean@skidmore.edu>
To: Susan Rodger <rodger@cs.duke.edu>
Date: Mon, 19 Jun 2006 12:32:15 -0400

To Whom It May Concern:

My name is Alice Dean, and I am a professor in the Department of
Mathematics and Computer Science at Skidmore College in Saratoga
Springs, NY. The purpose of this letter is to comment on JFLAP, a
software package which provides a graphical interface for constructing
finite automata of various types.

I have used JFLAP for quite a few years in the course MC 306 Theory of
Computation, which is a required course for the computer science major
at Skidmore. I use JFLAP quite extensively, and I require my students to
do so as well. When we study each of the main types of automata and
associated grammatical constructs (finite automata and regular
expressions, pushdown automata and context-free grammars, and Turing
machines), the students and I all use this tool to construct and work
with examples. I use it extensively during class meetings, since we have
a classroom equipped with a computer and overhead projection. I also
give homework assignments in which I require students to submit JFLAP
files containing their solutions to problems involving construction of
automata and other related operations (such as conversions from one type
of object to another, determining properties of automata through test
runs, etc.). For examinations, I use JFLAP to produce professional
looking diagrams that I paste into my exam questions.

My experience with JFLAP over the years is that students really enjoy
using it, and that they prefer using it to doing pencil and paper
constructions, since modification and testing is so easy. It has been my
experience that if students are given an assignment to construct an
automaton that accepts a specified language, they will be much more
thorough in their testing if they have JFLAP at their disposal. I
believe that it really helps them achieve a much deeper understanding of
the material than they otherwise would. Its ease of use is critical,
since I need to spend almost no time at all showing them how to use it.
The last thing I want is to have teaching the use of software overshadow
the teaching of real material of the course.

When colleagues of mine teach this course for the first time, I strongly
recommend JFLAP to them. I have found JFLAP to be an invaluable tool,
and the fact that it is free is a wonderful bonus.

If there is any other information I can supply, please feel free to
contact me.

Sincerely,

Dr. Alice M. Dean
Mathematics and Computer Science Department
Skidmore College
Saratoga Springs, NY 12866
Email: adean@skidmore.edu

3

From: "Dr. Bruce Elenbogen" <boss@umich.edu>
To: jflap@cs.duke.edu
Date: Mon, 05 Jun 2006 09:43:10 -0400

To whom it may concern

I am Dr. Bruce Elenbogen, Associate Professor of Computer and Information
Science at the University of Michigan Dearborn. I have been using JFLAP
for over 10 years and am writing concerning its benefits to teaching my
classes. We just JFLAP to teach finite autotmata, Turing machines and
grammars. Its visual interface is so easy to use that it is wonderful for
demonstrations in class. I can easily draw examples with it during class as
demos. Better yet, when a student asks a question, it is extremely easy to
create new examples or make modifications to old ones. it is these types
of "what happens if we change " questions where students truly master the
material.

However the best part of JFLAP is the simulations that allow students to
see step by step the processing of a word. It is this process where I find
most students grasp the concept of Turing machine, finite automata or
grammar.

The output of JFLAP has improved over the years but it was always of such
high quality that, I proudly posted the examples I did in class to the
class website for examples. The interface is so well designed that
students use it for homework problems even when it is not required.

In short it is a wonderful tool and just keeps getting better. It has
certainly improved my effectiveness in the classroom. I wish to thank
Susan Roger for creating this wonderful teaching aid.

Dr. Bruce S. Elenbogen
boss@umich.edu

4

From: jlucas@brockport.edu
To: Susan Rodger <rodger@cs.duke.edu>
Date: Tue, 06 Jun 2006 18:57:24 +0000 (GMT)

Dear Dr. Rodger,

I am pleased to have the opportunity to comment on my experience using
JFLAP. Currently I serve as an Associate Professor in the Computer Science
Department at the State University of New York, College at
Brockport. Brockport is a 4-year comprehensive liberal arts college
enrolling approximately 8,000 students. About 40 students graduate from
Brockport with a Bachelor’s degree in Computer Science each year.

I teach the course CSC 483 - Theory of Computation. This is a required
course in the ABET-accredited track of the Computer Science major. The
course provides a thorough treatment of the standard topics in automata
theory (finite state machines, context free languages, Turing machines,
undecidability).

I have used JFLAP in CSC 483 for the past three years. As soon as I
discovered this tool, I was completely hooked on it. I cannot now imagine
teaching this course without this tool. I use JFLAP constantly in the
classroom to develop and demonstrate example automata. It is far faster
than drawing on the board, and is far more flexible and dynamic than using
static PowerPoint slides. During class, I frequently ask the students to
describe how they would design the automata, which I then precede to draw
for all to see using the JFLAP tool. The ability to test run the sample
automata on any variety of inputs is very valuable. I especially like
JFLAP’s ability to single-step simulate the execution of a
non-deterministic automaton, illustrating all of the possible branches of
execution. The class sessions are now far more interactive, spontaneous and
fun than in past years, when I needed to use pre-planned examples.

My favorite "JFLAP moment" was when the students and I spontaneously
developed a simple Turing Machine to perform division in unary notation.
The solution requires programming a nested-loop. After developing the
Turing Machine, we naturally tested it out on some sample inputs. One
input was the "divide by zero" case. We had not considered that
possibility when we had developed this Turing Machine on-the-fly in class.
The divide-by-zero case caused the Turing machine to enter a non-trivial
infinite loop. This served as perfect motivation for the following
discussion on undecidability.

But JFLAP provides much more than a tool for defining the concept of
automata, and drawing and executing sample machines. JFLAP is invaluable
as a tool for teaching the underlying theory. JFLAP has a built-in ability
to visualize such important theorems as the equivalence of
non-deterministic finite automata and deterministic finite automata.
Students are able to carry out the steps of this general transformation
themselves, helping them to fully understand the proof. Similarly, JFLAP
has an option that shows students how any finite automaton can be minimized.

Students are required to use JFLAP extensively in their homework
assignments. JFLAP is very easy to learn, and has an intuitive interface.

5

The students are able to "hit the ground running" when doing their
projects. I require the students to send their JFLAP files to me for
testing. In the past, when students were asked to write non-trivial Turing
Machines, there was no way for me to realistically check the correctness of
their work. Now I do so routinely.

In conclusion, JFLAP has proved an extremely valuable learning tool,
and I look forward to using for many years to come.

Respectfully, Joan Lucas

Dr. Joan M. Lucas
Associate Professor
Department of Computer Science
State University of New York, College at Brockport
350 New Campus Drive
Brockport, New York 14420
585-395-2196
585-395-2304 (fax)

6

From: James Riely <jriely@cti.depaul.edu>
To: "Susan H. Rodger" <rodger@cs.duke.edu>
Date: Tue, 23 May 2006 15:31:23 -0500

To whom it may concern,

I have taught Automata Theory several times at DePaul University, both
for graduate and undergraduate students. Each time I teach the
course, I have looked for the best tools available to support the
material. The last two times I taught the class, in 2004 and 2005, I
found JFLAP to be the best tool available.

I used JFLAP in lectures, since it neatly illustrated the concepts
involved. I used it to explain the basic semantics of automata, and
to illustrate some of the algorithms used in proofs of closure
properties and equivalences.

While I did not require the use of JFLAP by students, I believe all of
my students downloaded the tool. It is an excellent resource.

Yours,
James Riely
Associate Professor
School of Computer Science, Telecommunications and Information Systems
DePaul University
Chicago, IL

7

From: Nancy C Van Ness <nancyvn@utdallas.edu>
To: Susan Rodger <rodger@cs.duke.edu>
Date: Sat, 27 May 2006 10:13:12 -0500 (CDT)

In support of JFLAP

I am a Senior Lecture II and a graduate advisor in the Computer Science Department at UT
Dallas. I have used JFLAP in CS 4384 Automata Theory (undergrad) and CS 5349 Automata
Theory (grad) for 3 semesters. It is not required but strongly recommended. I know students
use it because I am asked questions about it and asked to upload the demos from class to
Web CT. I have used all parts for the finite automatas (regular expressions, minimization
included). I do not use the changing a PDA to grammar capability as I have a slightly
different algorithm. However, students like to construct and run PDAs in class. I have
used the Turing Machine capability only sparingly but when I did use it, you could have
heard a pin drop because all eyes were on the screen watching the input string being processed.

Attendance in class is very good when I am using JFLAP as illustrations of topics presented
in lecture. I think it helps students see the underlying concepts and is very useful in
explaining non-determinism. They also go home to construct their own machines or use
the examples that are done in class. I think the over-all grades are up slightly. I do
not have anyone totally lost and floundering. It makes the class quite lively and I can
use one example that slowly changes into another to illustrate points with a wide variety
of input that took much longer to describe when everything needed to be drawn by hand.
Students seemed engaged and less bored throughout the entire class. They do not get
lost in the explanation.

Students have volunteered in my office (without any prodding on my part) that they like
and use JFLAP. I know that this is the case for a large portion of the class turn in
machines that have been created using JFLAP. I also know that those who are in the other
sections have been initiated by my students into its use.

One of the nicest uses though is when a student asks a question and we construct immediately
a machine that can illustrate many subtleties. Frequently, there is discovery and the student
essentially turns out answering his own questions. I think this very valuable in getting
students to begin the process of learning how to learn.

I find this tool so very valuable and the student support so great that I have tried to
recruit others to use it. I cannot imagine teaching these courses without it.

Regards,

Nancy Van Ness

Senior Lecturer II
Graduate Advisor
Computer Science Department
University of Texas at Dallas
PO Box 830699 MS ECS 31
Richardson, TX 75083-0688

Phone: (972) 883 - 4858
Office: ECS 4.706

9

Date: Thu, 15 Jun 2006 19:33:51 -0500 (CDT)
From: <rmverma@cs.uh.edu>
To: rodger@cs.duke.edu

This letter is in strong support of JFLAP, developed by Dr. Susan
Rodger’s group at Duke university, for the Needs Premier Award 2006
competition.

I have been using JFLAP for the last three years in my COSC 3340:
Introduction to Theory of Computation course at the University of
Houston. During this period, I have used it in my lectures for
visualization of deterministic/nondeterministic finite automata, push-down
automata/context-free grammars and turing machines, and on assigned
homework problems for the course. Beyond using it in the course, two of my
students have worked on extending JFLAP to add a random string generation
feature to JFLAP. This effort to extend JFLAP was supported in part by a
grant from the National Science Foundation.

My students and I have found JFLAP easy to use, well-designed and
well-documented. The software is highly portable and has a very
convenient and intuitive graphical interface. It has nice
graphics that enables students to visualize all kinds of automata and
interactively simulate them, getting ‘‘instantaneous’’
feedback. Feedback on JFLAP from the students has been uniformly very
positive. I believe that JFLAP is definitely helpful in teaching and
learning the rather abstract and difficult theoretical concepts in
this course. The two students who worked on extending
JFLAP were able to extend it in a timely manner and without any
significant difficulties.

Ever since I started using JFLAP and redesigned the course materials,
several students have been excited and motivated enough to pursue automata
theory projects under my supervision. This is in stark contrast to the
situation before using JFLAP and redesigning the course materials (hardly
any student pursued automata theory projects with me over a decade). I
believe that JFLAP is playing a significant and important role in this
success.

In summary, I strongly recommend JFLAP for this award. Please do not
hesitate to contact me if you need further information.

Sincerely,

Rakesh Verma
Professor
Computer Science Department
University of Houston
713-743-3348

10

 June 20, 2006

This is a letter in support of JFLAP for the Needs Premier Award 2006
competition for high-quality, noncommercial courseware designed to enhance
engineering education.

Name - Soe Than

Title or Position - Professor in Computer Science

Department - Mathematics and Computer Science

Institution - Virginia Military Institute

1. Have you used JFLAP in a course?

Yes

Course (title and number) JFLAP is used in at your school

CS 441 – Formal Languages and Automata

How long have you been using JFLAP?

I taught this CS 441 course for the first time in Spring 2006 and I used
JFLAP at that time. I will teach CS 441 in the Fall 2006 and I plan to use
JFLAP again.

How JFLAP is used
 - is it required or optional, if optional do you think students use it?
 - is it demoed in lecture?
 - assigned or optional to use for homeworks?
 - which topics do you use JFLAP with?

JFLAP is used to demonstrate how Finite Automata, Pushdown Automata, and
Turing Machines work. It is used to illustrate construction of these
machines and check whether the machines meet the desired specifications.
Students were not required to use JFLAP. But students realized the benefits
of interactive construction and verification provided by JFLAP, and used it
in doing their homework. I used JFLAP with Finite Automata, Regular
Expression, Regular Grammar, Pushdown Automata, Context Free Grammar, and
Turing Machine topics.

 Do you think JFLAP is helpful in learning material?

Yes, I think that JFLAP is helpful in learning the formal languages and
automata material. It shows how the automata work, how the automata and
grammar are related, and how to convert an automaton to corresponding
grammar. Students get clear understanding of these concepts from JFLAP.

 Opinion on how the students like it.

My students enjoyed using JFLAP and liked the help provided by JFLAP.

2. Have you used JFLAP for you research or some other use? If so please
explain.

As my research area is different from the Formal Languages and Automata
field, I haven’t used JFLAP for my research.

3. Your opinion on or praise for JFLAP.

I think JFLAP is wonderful, helpful, and useful software for me in my
teaching of CS 441 course. It is comprehensive in coverage of all topics in
the area of Formal Languages and Automata. Its interactive user interface
with helpful comments provides students enjoyable environment to learn a
highly theoretical (reads boring) subject. If a picture is worth 1000 words,
then a demonstration using JFLAP is worth 1000 pictures.

For any questions regarding to this recommendation letter, I can be reached
at thans@vmi.edu.

Sincerely,

Soe Than
Professor in Computer Science
Department of Mathematics and Computer Science
Virginia Military Institute
Phone: 540-464-7498
Fax: 540-464-7214

mailto:thans@vmi.edu

Department of Math & Computer Science

Wheaton College

Norton, MA 02766

June 20, 2006

Dear Susan,

I have not yet used JFLAP in a course, but I will use it next year when I next teach COMP

375 - Theory of Computation. We will use it in at least one lab session in addition to its use

outside of class. I also plan to use it in class to interactively built machines and instantly

see if they work properly.

In trying out JFLAP, I found that it is very easy to use and that it includes all of the

standard models. Additionally, JFLAP includes a multi-tape Turing machine and even an

L-System modeler. The latter I plan to show my COMP 365 - Computer Graphics class, as I

usually have them write an L-System renderer with OpenGL. More importantly, however, is

JFLAP in teaching students in the use of the various automata. Students often have difficulty

creating and testing automata, especially when epsilon transitions are allowed. JFLAP gives

students an easily-learned, platform independent tool to create and test machines quickly.

This is much better than the old pen-and-paper method, where one small mistake can easily

disappear among all the transitions. JFLAP also gives students a way to check their work,

not only in determining if a particular string is accepted but also in converting one type of

automata to another.

I find JFLAP very robust and easy to use. I wish I had such a tool when I first learned

about automata. I am confident that students will like and use this tool in their work.

Sincerely,

Michael B. Gousie

Associate Professor of Computer

Science

From: Ellen Walker <walkerel@hiram.edu>
To: "Susan H. Rodger" <rodger@cs.duke.edu>
Date: Tue, 30 May 2006 20:54:38 -0400

Dear Susan:

I’m writing to let you know how much I have appreciated your JFLAP
software. I use the software when I teach Compilers at Hiram College
(last taught 2001, also to be taught next spring), both in lecture
and for student exercises. I have mainly used the DFA and PDA tools
with my students. Students are encouraged, but not required, to use
the tools for their homework, so they can test their automata before
submission. Most students have chosen to use the tool, and (at least
anecdotally) they were pleased with it. Students who used JFLAP
turned in better (and easier to read) homeworks, and I plan to
require its use next spring. Also, I hope to use the new JFLAP book
as a supplement to my compiler text for the sections on lexical
component extraction and parsing.

I and my students appreciate the fact that the tool is platform-
independent, free, and easy to use. Thank you for developing this
excellent software that has improved both my teaching and my
students’ understanding of these topics.

Sincerely,
Dr Ellen Walker
Professor of Computer Science
Hiram College
PO Box 67
Hiram OH 44234

11

From: "ralph zegarelli" <zegarelli@hartford.edu>
To: "’Susan H. Rodger’" <rodger@cs.duke.edu>
Date: Tue, 23 May 2006 17:17:19 -0400

Name: Ralph Zegarelli

Institution: University of Hartford

Your Position: Computer Science Faculty

Course JFLAP is used in: CS 340 Formal Languages and Automata

When did you use JFLAP? . Last used in Fall semester 2005

How long you have been using JFLAP: I began using JFLAP in Fall 2002. I
teach CS 340 every Fall and have used JFLAP in every class.

How is JFLAP used? JFLAP is required for homework and in class problem
solving/testing

Anything you would like to say about JFLAP? This is a great tool. It gives
students the ability to code and debug solutions in the same way a compiler
is used to teach computer languages. I do assign coding problems to students
but use JFLAP for all other assignments.

12

From: "Zimmerman, Jill" <jzimmerm@goucher.edu>
To: "Susan Rodger" <rodger@cs.duke.edu>
Date: Thu, 15 Jun 2006 09:45:33 -0400

I have used JFLAP for several years in teaching CS250, Theory of
Computation, at Goucher College. I have used it both in class
demonstrations on all the various automata and in required homework
assignments. The feedback that I have received from students is
uniformly positive, and I have been told by at least one student that it
was his favorite part of the course. It definitely motivates the
learning in the course.

Jill Zimmerman, Ph.D.
Associate Professor
Mathematics and Computer Science Department
Goucher College

13

From: "Fereydoun X Kazemian;;;" <fxk@cs.rit.edu>
To: rodger@cs.duke.edu
Date: Mon, 10 Jul 2006 17:05:39 -0400 (EDT)

This letter is in support of JFLAP software. My students have been using
JFLAP for the last two academic years in "Introduction to CS Theory" course
(4003-380) that I teach. Although using JFLAP is optional, all the students
use many of its features for a number of homework assignments dealing with
different types of automata. I demonstrate how to use the basic features of
JFLAP in class. On a number of occasions during the lecture, I use JFLAP to
show examples or demonstrate concepts relating to automata theory and formal
grammars. I have found JFLAP to be an excellent educational tool for discussing
and demonstrating many aspects of those topics. Based on the feedback that I
have received from students, they find JFLAP very helpful in understanding
concepts and doing exercises relating to finite automata, regular grammars,
regular expressions, pushdown automata, context-free grammars, parsing, and
Turing machines.

Overall, I consider JFLAP to be a high-quality software designed to enhance
computer science and engineering education.

Fereydoun Kazemian
Associate Professor
Department of Computer Science
Rochester Institute of Technology

14

From: Maria Gabriel <cgabriel@Radix.Net>
To: "Susan H. Rodger" <rodger@cs.duke.edu>
Date: Wed, 24 May 2006 14:48:25 -0400 (EDT)
Subject: Re: JFLAP user: Need letter of support from you!

To Whom It May Concern:

Institution: Park University
Postion: Faculty
First Used: 2002
Use: Required in Lab assignments, used in class room demos
Comments: Very useful! We use the Finite State Machine and Grammar

Generator in our CS 380 Compiler class.

/signed/
Harry C. Harrison

15

KUNGLIGA
TEKNISKA
HÖGSKOLAN

Institutionen för Data-
och Systemvetenskap

STOCKHOLMS
UNIVERSITET

 Postadress: Besöksadress: Telefon: Telefax:

 Stockholms Universitet/KTH Isafjordsgatan 39 08-16 20 00 08-703 90 25
 Forum 100 Kista
 164 40 KISTA

9 juli 2006

To whom it may concern

I am an Associate Professor at the Department of Computer and Systems Sciences, Stockholm
University, Sweden. As a faculty at the department I am among other things responsible for a
course on “Formal Languages and the Theory of Computation” (DSV2:B/*:2B) that was last year
given for approximately 160 students as part of their undergraduate education. I write this letter to
express my appreciation of the JFLAP software package which was used by me for the first time
during last years course. JFLAP was used both during lectures, as a convenient tool to demonstrate
and provide insight into formal languages and automata theory, and also by the students when
working with the course assignments. The software has been extremely appreciated by both myself
as well as by the students and will be used also during this years course. I think it is safe to say that
the quality of the course has increased considerably compared to previous years due to the fact that
we started using JFLAP. It provides an excellent teaching framework that gives both instructors
and students a better opportunity to focus on the core of a complex subject.

Best Regards

Dr Lars Asker
Associate Professor
Department of Computer and Systems Sciences
Stockholm University/Royal Institute of Technology
Email: asker@dsv.su.se

Wetenschappen – Vakgroep Zuivere Wiskunde en Computeralgebra
Krijgslaan 281, S22, B-9000 GENT www.UGent.be

Zuivere Wiskunde en Computeralgebra

Voorzitter: Prof. Albert Hoogewijs

June 14, 2006

Letter of Appreciation on JFLAP

I have been using JFLAP (and JellRap) for about 10 years, as support for my course on Formal
Languages and Automata.
Today the course notes mainly consist of the book:

• An Introduction to Formal Languages and Automata, Third Edition Peter Linz, University of
California, Davis ISBN: 0763714224

• + extra chapters on LL(1) en SLR(1) parsing

This course is taught in the Third Year Bachelor of Informatics and
Master of Mathematical Informatics at Ghent University.
Current name of the course: Formal Languages, Finite Automata and Complexity
(Reference CBINFO03000006).

Over this period about 50 students per year took this course.

JFLAP is used to support the following topics:

 Finite automata
 Pushdown automata
 LL(1) parsing tables
 SLR(1) parsing tables
 Turing Machines

It is required for solving the problems the students get during the semester and the final examination.

JFLAP is an excellent tool and is very much appreciated by the students. It provides
facilities for integrating automata theory with corresponding grammars. Lecturing LR parsing becomes a
real pleasure for both teacher and student.

Albert Hoogewijs
tenured academic staff
head of department of Pure mathematics and computer algebra
Ghent University

albert.hoogewijs@ugent.be

To who it may concern

From: James Harland <jah@goanna.cs.rmit.edu.au>
To: "Susan H. Rodger" <rodger@cs.duke.edu>
Date: Tue, 23 May 2006 14:01:48 +1000

G’day. Hope this is what you need. All the best with the award!

Cheers,
James.

To Whom It May Concern,

Re: JFLAP software

I am an Associate Professor in Computational Logic in the School of Computer
Science and Information Technology at RMIT University in Melbourne, Australia.
I have been using JFLAP as a teaching tool in my Computing Theory course for
several years. I find it has been an invaluable asset for the teaching of this
material. There are a number of laboratory exercises that students are
strongly encouraged to complete which use this tool as a means of designing
and executing finite state machines, pushdown automata and Turing machines.
Apart from the concrete experience of seeing what a particular automaton does
on a computer screen (rather than working it out painstakingly with pen and
paper), I find the suite of algorithms implemented in JFLAP to be particularly
useful. For example, students often find it difficult to understand the
algorithm for converting a non-deterministic finite state automaton into a
deterministic one. JFLAP is very helpful here, as the students can use it to
perform this conversion on various examples, which they can make up
themselves, rather than relying on a small set of pre-worked examples from a
textbook. This instantaneous feedback on individualised examples makes an
enormous difference to the student’s conceptual understanding.

JFLAP continues to be an important part of the teaching material of this
course, and the continual improvement of the package ensures that it does not
become dated. In short, JFLAP has made it easier, for both students and
lecturers, to concentrate on what is important rather than getting lost in
details.

Yours sincerely,
James Harland

From: Lila Kari <lila@csd.uwo.ca>
To: rodger@cs.duke.edu
Date: Wed, 14 Jun 2006 16:25:49 -0400 (EDT)
Subject: JFLAP letter

To Whom it May Concern:

I am writing this letter in support of JFLAP as an educational tool. My
name is Lila Kari and I am Associate Professor and Canada Research Chair
in Biocomputing in the Department of Computer Science, University of
Western Ontario, London, Canada. JFLAP is used in CS331, Foundations of
Computer Science (required textbook John E. Hopcroft, Rajeev Motwani and
Jeffrey D. Ullman. Introduction to Automata Theory, Languages and
Computation. 2nd Edition, Addison-Wesley, 2001. ISBN#0-201-44124-1). I
used JFLAP for the first time in the 1997-1998 school year. I intend to
use it again this coming academic year, 2006-2007.

In CS331 the use of JFLAP is required and several of the assignments are
based on its use. In one of the first classes, a demo of the software is
presented. JFLAP is mainly used for the illustration of regular languages
and construction of automata as well as for the construction and
illustration of Turing machines.

I found JFLAP to be an extremely useful and motivating tool for students,
who in general have a low tolerance for theory courses. The fact that
JFLAP is interactive made the whole theory course have a more concrete
hands-on flavour. The fact that the students could actually see the steps
involved in parsing a word by their designed automata made all the notions
tought in the course more palatable and real to them. I think JFLAP was
crucial in making students understand and appreciate theoretical concepts.

Thus, I found JFLAP to be an invaluable tool in teaching theoretical
computer science. The students expressed both to me, verbally, and in
their teaching evaluations how they found that JFLAP helped them conquer
their fears and in fact enjoy theoretical computer science.

I would not consider teaching again without it.

Sincerely yours,

Lila Kari

--
Lila Kari, Associate Professor and Canada Research Chair in Biocomputing
Department of Computer Science Tel: 1-519-661 2111 ext.86894
University of Western Ontario Fax: 1-519-661 3515
London, Ontario Email: lila@csd.uwo.ca
N6A 5B7 Canada http://www.csd.uwo.ca/~lila

Universidade Católica de Brasília – UCB

Pró-Reitoria de Pós-Graduação e Pesquisa – PRGPP

Mestrado em Gestão do Conhecimento e da Tecnologia da Informação

Germana Menezes da Nóbrega – Professor Adjunto
SGAN 916 – Módulo B – Asa Norte – Brasília, DF - CEP 70.790-160
Tel.: (61) 3448 7121 Fax: (61) 3347 4797
e-mail: gmnobrega@pos.ucb.br Homepage: http://www.ucb.br/prg/professores/germana

To

Professor Susan Rodger
Computer Science Dept. Box 90129, Duke University, Durham NC 27708-0129

My name is Germana Menezes da Nóbrega, I take part as a professor both in the
undergraduating program on Computer Science of Universidade Católica de Brasília,
Brasília, Brazil, and at the Master program on Knowledge Management and Information
Technology at the same University. Since 2004 me and some colleagues have been
exploiting JFLAP with undergraduating students (on Formal Languages and Automata
Theory, Theoretical Computer Science, and Compilers) in several situations: during
lectures running demonstrations, in laboratory classes, and also recommending it for
homework. The topics we mainly use include Finite Automata, Pushdown Automata,
Turing Machines, Regular Expressions, and Grammars. I think the tool is really helpful for
students to workout the constructs underlying Theoretical Computer Science. Yet,
students seem to appreciate it a lot, so that we are exploiting JFLAP also from a research
perspective within Computer Supported Collaborative Learning. We think to be able to
assign the tool beyond the optional character it takes today in our courses.

Kind regards,
Germana Menezes da Nóbrega.

Dear Dr. Rodger,

I applaud your great software “JFLAP”. I use it in a course and find it very helpful for the
students. JFLAP helps students to understand the related topics in shorter time and also to
make sense.

Another feature of JFLAP is its user interface which makes it easy to use. Hence we
didn’t spend any class time to show any demo to the students.

I asked my students about how they found the JFLAP and the statistic result shows that
95% of them agree on the benefits of it in their learning.

The lines below describe more how we use jflap in our course:

1. Course Name : Formal languages and automata
2. JFLAP was required in some computer assignments and in some other ones it was

optional.
3. The topics that we use JFLAP for are as below:

• Finite automata
• Pushdown automata
• Turing machine
• Regular expression
• Grammar

Best regards

Mina Zolfy Lighvan
Lecturer of Information Technology Dept.
Faculty of Electrical and Computer Eng.
University of Tabriz, Tabriz, IRAN.

From: Antonio Dourado <dourado@eden.dei.uc.pt>
To: rodger@cs.duke.edu
Date: Tue, 23 May 2006 15:26:18 +0100

To whom it may concern

I am Full Professor at the Department of Informatics Engineering of the
University of Coimbra, Portugal, the third oldest University in Europe. I
am teaching Theory of Computation , a compulsory course for the 150
students of BSc in Informatics Engineeering. I have been using JFLAP for
three years in the classroom and my students have it in their computers.
The software has been very useful and important for learning automata
theory. As a teacher I benefited from it to plan exercises and to solve
them. It is a very good support for prepairing studying materials and
examinations. My students all of them mandatory use the software in
classroom and (I hope) at home for supporting their learning activities.

I think that JFLAP is the best free software for automata theory and I hope
that it will continue to be supported to become still better, since to
teach this subject without a good software is not advisable.

Coimbra, May 23th 2006.

Antonio Dourado
Full Professor

From: =?iso-8859-2?Q?Piotr_Dziurza=F1ski?= <pdziurzanski@wi.ps.pl>
To: "Susan H. Rodger" <rodger@cs.duke.edu>
Date: Tue, 23 May 2006 13:34:48 +0200
Subject: Re: JFLAP faculty: Need letter of support from you!

Dear Ms. Rodger,

As I highly value JFLAP, here is some information about my usage of your
tool. I hope you’ll find it helpful and you’ll get the award.

Regards,
Piotr Dziurzanski

Name: Piotr Dziurzanski
Institution: Szczecin University of Technology (Poland)
Position: assistant professor
Course: Theory of formal languages
No. of students (annually): 180
Used for: 4 years
JFLAP is used during lectures and students are encouraged to use it at home
in order to deeply understand the subject. For me, JFLAP is a tool that is
helpful in making more interesting lectures what is essential in such
theoretical-oriented courses as formal languages. Moreover, it is good way
for students to prepare to our table & chalk exercises, as they can check
whether thay understand the matter.

From: Stefano Crespi <stefano.crespireghizzi@polimi.it>
To: "Susan H. Rodger" <rodger@cs.duke.edu>
Date: Tue, 23 May 2006 13:10:40 +0200
Subject: Re: JFLAP user: Need letter of support from you!

To Susan H. Rodger

Dear Colleague,

it is my pleasure to report to you the use I have been making of the
package JFLAP.
At the Universit della Svizzera Italiana (Lugano, Switzerland) I have
taught for some years the introductory course on
Formal Languages to students majoring in Communication (a blend of
humanities and technology).
Students were requested to use JFLAP in supervised hand-on sessions.
Due to the elementary level of the course, we did not use parser
generation tools.
We found that the friendly interfaces of JFLAP were very helpful for
this kind of student population.
At Politecnico di Milano, Dipartimento Elettronica e Informazione,
I currently teach the graduate course on Formal Languages and Compilers
to computer science majors,
over 200 students per year.
Here the use of JFLAP is also important though less systematic, because
students are requested to attend lab sessions to practice with
classical compiler generation tools such as Flex/Bison. I tell students
to use JFLAP for checking the exercises on
finite automata, regular expressions and grammars, when preparing for
the written exam.
Personally, I resort to JFLAP to check problems and solutions.
In my opinion JFLAP is a very nice toolset, especially attractive for
undergraduate teaching and also very valuable for teaching
theoretical computer science concepts to non-computer majors.
The enduring committment of the JFLAP staff to maintenance and
development of this reach and complex toolset
is unusual and much appreciated.

Yours
Stefano Crespi Reghizzi
(Full professor of Computer Science at Politecnico di Milano
Ph.D. UCLA
Chairman of the Ph.D. programme in ICT

--
Professor Stefano Crespi Reghizzi
Dipartimento Elettronica e Informazione - Politecnico di Milano
Piazza Leonardo 32, Milano I-20133
Tel. 0039 02 2399.3518 / 3405 - Fax 0039 02 2399.3411
crespi@elet.polimi.it - http://www.elet.polimi.it/

From: Andreas Rittershofer <andreas@rittershofer.de>
To: Susan Rodger <rodger@cs.duke.edu>
Date: Thu, 22 Jun 2006 13:44:38 +0200

Hi,

my name is Andreas Rittershofer. I’m a teacher for mathematics, physics and
computer science at the Dietrich-Bonhoeffer-Gymnasium in Metzingen (Germany).

One part of the courses in computer science is about regular expressions,
grammars, finite automata, stack automata, turing machines, ...

To make a good course at school I need a tool to demonstrate all these
things and also to let the students work for themselves. At our school this
tool is JFlap since two years.

The following example shows the usage:
- First I make a short introduction, i.e.
explanation of what a turing machine is, how
it works, ...
- This is accompanied with a demonstration via
JFlap and a beamer, so that my students can see
how a turing machine works and also how JFlap
is used to simulate a turing machine.
- Now my students have to do some exercises
(a turing machine as a parity checker, a turing
machine as a binary counter, ...) with JFlap
and put their result in a Moodle-course.

The homework of my students is similar.

We begin with regular expressions and regular grammars, followed by finite
automata and stack automata and finally turing machines. In the case of
some spare time we also create some flowers und bushes with L-Systems.

JFlap is the ideal tool for my computer science courses: It offers more
than I will ever need at school and is nevertheless very easy to use, my
students are familar with its handling in only a few minutes. I cannot
image how to deal with automata without JFlap - and so do my students too.

--
E-Learning in der Schule:
http://www.dbg-metzingen.de/Menschen/Lehrer/Q-T/Rittershofer/E-Learning/

From: Jairo Rocha <jairo@uib.es>
To: "Susan H. Rodger" <rodger@cs.duke.edu>
Date: Tue, 23 May 2006 11:13:14 +0200

Dear Susan Rodger,

I take advantage in this letter to thank you for the first time on
behalf of my colleagues and students for the wonderful tool you have
created to teach automata, grammars and Turing machines.

I have used JFLAP in the past three years in my Formal Languages and
Automata theory class. It allows my students to really understand
that there are blind methods to solve certain symbolic problems so that
computers can really solve them. I just show in class how JFLAP allows
to, for instance, build completly a minimim automata from a regular
expression, that,
of course, is correct. Usually, I bring my portable with JFLAP at the
end of
each subject: automata, grammars, push down automata and Turing
machines. Since it is in Java,
they can use it and play with it easily off class.

Please keep up with your interest on teaching.

Sincerely,

Jairo Rocha, PhD
Associated Professor
Department of Mathematics and Computer Science
University of the Baleric Islands,
Palma, Spain.

From: "Kamilla Klonowska" <kamilla.klonowska@bth.se>
To: "’Susan Rodger’" <rodger@cs.duke.edu>
Date: Wed, 14 Jun 2006 15:33:16 +0200

Hello Susan,

I’m sorry for a late e-mail. I work only 20% this season and I was very
busy. You have an excellent idea! I think JFLAP should get an award because
it is VERY useful in teaching and studying.

Name: Kamilla Klonowska
Title or Position: Ph.D. student
Department: The School of Engineering
Institution: BTH (Blekinge Institute of Technology), Ronneby, Sweden

Course (title and number) JFLAP is used in at your school
I teach "automata and formal languages" course (in Swedish: "automata och
formella sprk") which has the number DVC005. It is the C-level at the
university. You can check the Swedish version on the university home page:
https://idenet.bth.se/servlet/courseoccasion?course=2879.

How long have you been using JFLAP?
I started to use JFLAP in 2002 after I used this program when I studied a
Ph.D. course "Algorithmics and Complexity" at Dalarna University in Sweden.
It was a very useful and I realize that I also can use it in my course.

How JFLAP is used
- is it required or optional, if optional do you think students use it?

It is optional. They have two options: JFLAP or a pencil.
I hardly recommend JFLAP because they can check if they fault or not.

- is it demoed in lecture?
If the students need it - yes. But very shortly.

- assigned or optional to use for homeworks?
I hardly recommend it to use as a key to the right answer.

- which topics do you use JFLAP with?
DFA, NFA, PDA, TM and grammars,

Your opinion on or praise for JFLAP.
I am in a hurry right now so the answer is very short.
I think it should get the praise. It is a VERY useful tool that helps with
teaching and understanding Automata and formal languages.

Do you think JFLAP is helpful in learning material?
YES

Opinion on how the students like it.
They liked it. They also think that it is a very useful tool.

Best regards
Kamilla Klonowska

 National Taiwan University 國 立 臺 灣 大 學

 Department of Information Management 資 訊 管 理 學 系 暨 研 究 所

Tel : +886-2-33661200 Fax : +886-2-33661199 No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan, R.O.C.

 June 7, 2006
 Prof. Susan H. Rodger

Associate Professor of the Practice
Department of Computer Science
Duke University
Durham, NC 27708-0129
U.S.A.

Dear Prof. Rodger,

With this letter I wish to express my deepest gratitude to your creating and making freely available
the JFLAP tool. I have used JFLAP for several years in my Theory of Computation course, which is an
introductory course for junior and senior undergraduate students. Both my students and I have enjoyed
and benefited from the illustrative visualization that the tool provides. Being able to see how an
automaton, particularly a nondeterministic one, runs on an input greatly helps the students understand the
subject matter. As the diagrams can be exported with a PDF printing support, the tool has also saved my
time when preparing handout material and students’ when writing up their homework.

As a foreign researcher and teacher, I greatly admire your tireless effort on developing JFLAP over
the years and the generosity of NSF in providing the financial support. JFLAP has breathed life into an
important foundational computer science course that would otherwise be dull to most students. I earnestly
hope that the effort and the support will continue.

My best wishes to the continuing success of JFLAP!

Sincerely,

Yih-Kuen Tsay
Associate Professor

電話：(02)33661200 傳真：(02)33661199 地址：台北市 10617 大安區羅斯福路四段 1 號

網址：http://www.im.ntu.edu.tw

From: Frank Neven <frank.neven@uhasselt.be>
To: rodger@cs.duke.edu
Cc: Geert Jan Bex <gjb@uhasselt.be>, Dirk Leinders
<dirk.leinders@uhasselt.be>
Date: Wed, 24 May 2006 15:32:42 +0200
Subject: JFLAP

Dear Susan,

JFLAP is a great and fun tool to use in class. We have used it in our
TCS course (although only the finite state machine part).
Thank you for developing such a tool!

I attach an interesting paper where the authors use NFAs to model
adventure graphs.
In one of our projects we have let the students transform
temporal logic formulas representing constraints on these
graphs to NFAs. It would be very appealing if such a thing
could be added to JFLAP (especially with the nice pictures).

all the best,
Frank Neven

Granada, 05/23/06

Name: Rosa Mª Rodríguez Sánchez
Institution:E.T.S.I Informatica. University of Granada. Spain
Position: Faculty

 I have been using JFLAP since four years ago. JFLAP is used as a tool for illustrating the basic of
the computation models.
 It helps to students to write the solutions for problems involving automatas, grammars and
regular expressions, etc. Also the students are able to understand the relations among the different
models.

Sincerely,
Rosa Rodriguez.

 Rockford J. Ross
 Computer Science Department
 EPS 357
 Montana State University
 Bozeman, MT 59717-3880
 June 11, 2006

 Phone: 406-994-4804

 Fax: 406-994-4376
 E-mail: ross@cs.montana.edu

 URL: www.cs.montana.edu/ross

 To Whom It May Concern:

I am writing this letter in support of Dr. Susan Rodger’s software system, JFLAP, for the Needs
Premier Award 2006 competition. JFLAP is a software system that supports the teaching and
learning of the theory of computing, the foundational subject of computer science.

First, I should introduce myself. I am Rocky Ross, Professor of Computer Science at Montana
State University. I have known Susan since she first began working on JFLAP. I have been
working in a similar area since the late 1970s and first met Susan at the SIGCSE (the Association
for Computing Machinery’s Special Interest Group in Computer Science Education)
Symposium, the world’s premiere conference for computer science education, where we were
both presenting our related educational software systems. Since that time we have maintained a
productive professional relationship. I have followed Susan’s work closely and have served as an
evaluator of her JFLAP project. I am also the editor of SIGACT News, the newsletter for the
Association for Computing Machinery’s Special Interest Group in Algorithms and Computation
Theory, which is the primary professional society of theoretical computer scientists.

As already noted, JFLAP is a software system that supports the teaching and learning of the
theory of computing. This subject is the foundation of the study of computer science, yet it is
widely viewed by computer science students as the most dreaded and/or dry course in the
curriculum due to its abstract, theoretical nature. In a nutshell, JFLAP aids the teaching and
learning of many of the abstract concepts of the subject by brining them to life. That is, students
are presented with computer-animated, visual depictions of the key abstract models of the theory,
and they are allowed (and often required) to work with the models an active-learning mode as
they progress through the material. The abstract models animated in JFLAP include
deterministic and nondeterministic finite state automata, deterministic and nondeterministic
pushdown automata, Turing machines, and grammars—the essential, key computational models
of the theory of computing. In visualizing and animating these concepts, JFLAP effectively
provides students with functionally correct mental models of these concepts with which they can
interact until the concepts are understood. No static textbook presentation can match this kind of
active learning environment.

mailto:ross@cs.montana.edu

I will not attempt to include a thorough analysis of JFLAP here. Instead I will highlight some of
its main contributions and impacts.

1. JFLAP is the only currently generally distributed software that animates the theory of
computing.

2. JFLAP is widely used and attracts more adherents each year worldwide.
3. JFLAP has garnered substantial support from the National Science Foundation for

development and dissemination.
4. JFLAP has been published in numerous venues, including regular presentations at the

annual SIGCSE Symposium, where it has consistently attracted attention.
5. Many instructors who are asked to teach the theory course, particularly at smaller

institutions, are themselves somewhat unsure of the topic and find JFLAP a very nice
tool to help illuminate relevant concepts.

6. There is a class of students who find it relatively easy to master abstract concepts and do
not really need a system such as JFLAP to help them learn. Such students nonetheless
find such animation tools engaging and are often the ones who can be utilized to extend
the software (i.e., enhance JFLAP).

7. There is a much larger class of students who find it moderately to highly difficult to
master abstract concepts. Many of these students are quite definitely helped by JFLAP.
Perhaps the most appreciated aspect of JFLAP by these students is that they receive
immediate and consistent feedback on exercises they perform within the software.

8. A general trend noticed from the use of JFLAP is that most students, regardless of their
innate talent, are more motivated and excited about learning the theory of computing
when JFLAP is incorporated into the course. This may actually be the most important
contribution of JFLAP.

9. JFLAP is a complete system that comes with a manual, not just a “one-off” toy system
that has no support.

10. JFLAP will continue to evolve and is anticipated to become an integral part of an
established textbook (by Peter Linz) on the theory of computing.

All of these points substantiate the fact that JFLAP is a uniquely valuable software system for the
teaching and learning of the theory that underlies computer science. Without doubt it meets the
criterion of being “high quality, non-commercial software designed to enhance engineering
education.” I heartily recommend it for the Needs Premiere Award.

If you have any questions, feel free to contact me.

Sincerely,

Rockford J. Ross
Professor

Appreciation Letter is Support of
Java Formal Language and Automata Package

(JFLAP)

To whom it may concern:

I am writing this letter of appreciation in support of JFLAP. I have not used JFLAP for a
teaching purpose, but instead I used it as a tool for my research. The JFLAP in my
research acted as a part of the interface to my platform and its designing section for
automata is used as a feature and the data structure of the automata used in my platform.
My system is an automated composition platform and JFLAP, more specifically automata
and NFA design section of that is used as a part of the interface of my tool.

My first encounter to JFLAP was through the search in the internet, looking for an open
source interface to automata. Finding few platforms doing so and testing them for a
while, JFLAP comparing to other systems showed a very good and clean performance. I
then went further to its documentations and papers, and found it a comprehensive and
trustable tool to work with.

The source code of JFLAP is well developed and designed. Also lots of comments and
documentations can be found within the code which helps understanding it much easier.
The clean and well developed source code of JFLAP makes it well pleasant to work with
and also give the ability to further customize and extend it according to your own needs
and future works. The data structure of JFLAP is well designed and the hierarchy of
grammars and languages is well reflected in an object oriented environment like Java. It
also provides a lot of interesting features which can be used during the development and
many famous algorithms for processing automata are well implemented in it. It covers all
the aspects in the automata and formal languages theory and you can find things which
fits to your needs within it. I am sure that with its beautiful and user friendly interface,
students can surf within the automata world and experience all the features from their
formal language courses. I wish the bests for Susan and all the students using this useful
tool, both as a research or teaching material.

Therefore, I strongly recommend and support JFLAP from my successful experience with
it. Please don’t hesitate to contact me, should you require any further reference and
information regarding my experience with JFLAP.

Best Regards,
Siamak Kolahi
Email: s_kolahi@cs.concordia.ca

Masters Student
Telecom Science Research Lab
Department of Computer Science
Concordia University
Sir George Williams Campus.
1515 St. Catherine W., EV010.139
Montreal, Quebec, Canada, H3G 2W1

Office: (514) 848-2424-7176
Home: (514) 570-3596

mailto:s_kolahi@cs.concordia.ca

Letter of support to JFlap

name: Leonardo Mariani
institution: University of Milano Bicocca
position: Researcher
use of JFlap: Leonardo Mariani used JFlap during his PhD Thesis. Leonardo Mariani developed a
technique, called BCT, for synthesizing models of component interactions from traces. One kind of
synthesized model is a finite state automaton, which represents sets of legal invocation sequences.
The implementation of BCT includes an inference engine and a visualization tool. JFlap has been
successfully integrated within the BCT implementation to reuse its functionalities for handling and
visualizing automata.
Leonardo Mariani began to use JFlap about at the beginning of the year 2004, and he is currently
using the tool.

The experience of Leonardo Mariani with JFlap has been extremely positive for three main reasons:

1) JFlap implements a complete set of API for manipulating automata
2) JFlap code is implemented in a way that is simple to inspect, understand and use, so that

people can easily design new applications that integrate with JFlap
3) The visualization tool allows to visualize models derived with any technique, in this case it

has been used to visualize models obtained from the BCT inference engine

Since of the positive experience with this high quality and helpful tool, I recommend JFlap to obtain
its software award.

Sincerely,
Leonardo Mariani

From: Diana von Bidder <diana.bidder@inf.ethz.ch>
To: Susan Rodger <rodger@cs.duke.edu>
Date: Fri, 02 Jun 2006 15:35:45 +0200
Subject: Re: Request letter in support of JFLAP?

Hi Susan

I’m interested in specification-based firewall testing. For this test
cases need to be generated from Mealy Automata. As it is easier for
people to specify automata graphically, we wanted to implement a tool
which allows graphical specification of Mealy Automata and then computes
test cases for these. It showed that JFLAP was an optimal starting point
for this. The student, Stephan Hildenbrand, completing this work for me
(Title of Thesis: Generation of Test Cases from Automata) found it very
easy to extend JFLAP to Mealy Automata, and also to add the test
generation code.

Greetings
Diana von Bidder
--
Diana von Bidder
Dipl. Informatik-Ing. ETH
Information Security Group, ETH Zurich
http://www.infsec.ethz.ch/people/dsenn

From: Deian Tabakov <dtabakov@rice.edu>
To: "Susan H. Rodger" <rodger@cs.duke.edu>
Date: Wed, 31 May 2006 08:36:19 -0500 (CDT)

Hi Susan,

Here you go:

Deian Tabakov, Ph.D. student from Rice University

I have been using JFlap to visualise automata as a part of my research. It
proved to be quite useful in our Automata Theory class (Comp 482). The
ability to draw automata quickly and in a WYSIWYG mode is a breather from
tools like fig.

Cheers,

Deian

	appendixFinal.pdf
	lettersOther.pdf
	Ross-Montana.pdf
	

