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Abstract

Although clusters offer inexpensive computing power,
they are difficult and expensive to manage, particularly
for user communities with diverse software needs. This
paper presents Cluster-on-Demand (COD), a cluster op-
erating system framework for mixed-use clusters. COD
interposes on standard network management services —
DHCP, NIS, and DNS — to partition a cluster into dy-
namic virtual clusters (vclusters) with independent in-
stalled software, name spaces, access controls, and net-
work storage volumes. COD allocates nodes to vclusters
on-the-fly, reconfiguring them as needed with PXE net-
work boots. A key element of COD is a protocol to resize
vclusters dynamically in cooperation with pluggable mid-
dleware components such as batch schedulers. The COD
framework is a key building block for automated manage-
ment of computing utilities and grids.

1 Introduction

Clustering inexpensive computers is an effective way to
obtain reliable, scalable computing power for network
services and compute-intensive applications. Since clus-
ters have a high initial cost of ownership, including space,
power conditioning, and cooling equipment, leasing or
sharing access to a common cluster is an attractive solu-
tion when demands vary over time. Shared clusters enable
more effective use of resources by multiplexing, and they
offer economies of scale in administration as personnel
costs grow even as hardware costs decline.

There has been a great deal of research and progress
in managing clusters since the early days of the NOW
project [5]. The most successful systems today main-
tain a homogeneous software environment for a specific
class of applications. These systems — including Be-
owulf [1], load-leveling batch schedulers [2, 3], Millen-
nium [10], Rocks [21], and other elements of the NPACI
�
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grid toolset — target batch computations written for com-
mon OS or middleware APIs. These are powerful tools,
but one size does not fit all: users of a shared cluster
should be free to select the software environments that
best support their needs, which may involve multiple op-
erating systems, multiple batch classes, Web applications,
and multiple Grid points-of-presence, each serving a dif-
ferent segment of the user community. Tools to manage
mixed-use clusters are still lacking.

This paper describes the architecture and implementation
of Cluster-on-Demand (COD), a system to enable rapid,
automated, on-the-fly partitioning of a physical cluster
into multiple independent virtual clusters. A virtual clus-
ter (vcluster) is a subset of cluster nodes configured for a
common purpose, with associated user accounts and stor-
age resources, a user-specified software environment, and
a private IP address block and DNS naming domain. COD
vclusters are dynamic; their node allotments may change
according to demand or resource availability.

COD was inspired by Oceano [7], an IBM Labs project
to automate a Web server farm. Like Oceano, COD lever-
ages remote-boot technology to reconfigure cluster nodes
using database-driven network installs from a set of user-
specified configuration templates, under the direction of a
policy-based resource manager. Emulab [26] uses a sim-
ilar approach to configure groups of nodes for network
emulation experiments on a shared testbed. Section 2.2
sets COD in context with these and other related systems.

The primary contribution of COD is to extend these tech-
niques to a general framework for a cluster operating sys-
tem. Like a conventional OS, COD allocates resources
to its users, isolates user environments from one an-
other, mediates interactions with the external environ-
ment, and manages shared resources dynamically as de-
mands change. Rather than allocating slivers of each
node’s memory and CPU to user processes, COD allo-
cates complete machines to vclusters shared by a group
of users. Users assume full control of their machines
down to the bare metal: COD installs user-specified soft-
ware in each vcluster, analogously to a conventional OS
instantiating a user program in a process. Most impor-
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tantly, COD enables flexible, decentralized, dynamic re-
source management across vclusters; vclusters manage
their own resources internally, and interact with COD to
obtain or release resources as needed. Our design lever-
ages widely used open-source components to support di-
verse hardware platforms and to evolve rapidly with new
technology.

2 Overview

Figure 1 illustrates the COD framework. A site adminis-
trator issues credentials authorizing access to a Web ser-
vice interface for the COD site. Using this interface, ex-
ternal users may define user groups, delegate access rights
to the members of a group, request vclusters on behalf
of a group, and define hardware requirements and soft-
ware configuration templates for those vclusters. COD
interposes on the Dynamic Host Configuration Protocol
(DHCP) to take control of cluster nodes through Intel’s
Preboot eXecution Environment (PXE) [13], and install
the user-specified software under the control of a minimal
trampoline OS. Once a node is active in a vcluster, DHCP
and other standard network management services — the
Network Information Service (NIS) and Domain Name
Service (DNS) — coordinate to assign node hostnames
and IP addresses, update the visibility of network storage,
and set user access rights. These services tie into a unify-
ing back-end database of node states and configurations.

COD enables fluid assignment of resources according to
site policies and resource demands within the vclusters.
While some vclusters may maintain a static reservation
for a fixed purpose, others may benefit from dynamic re-
sizing. For example, a vcluster hosting a pool of network
servers or a grid scheduler will face varying demand over
time. COD resizes dynamic clusters in cooperation with
a middleware component associated with each vcluster.
In recent years, a wide range of cluster managers have
emerged for specific application environments (see Sec-
tion 2.2). Each of these systems supports reconfiguration
for changing cluster size [15] to allow for node failures
and incremental growth. A key premise of COD is that
each of these systems may run as a local manager – a
Virtual Cluster Manager or VCM — for a virtual cluster,
negotiating vcluster size with the global COD manager.
This hierarchical division of resource management func-
tions between the global COD manager and the VCMs
is a cornerstone of the COD architecture. Section 5.3 de-
scribes the resource management framework in detail, and
Section 6 illustrates with an example of an extended SGE
batch scheduler.

COD maintains surplus nodes in a common energy-
managed reserve pool and deploys them to vclusters as
needed. A resource manager updates the database to as-

sign nodes to vclusters according to defined policy rules
and vcluster resource demands. It manages the reserve
pool to improve energy efficiency under light load (see
Section 3.4).

The shared reserve pool offers each vcluster backup ca-
pacity to handle node failures or load swings. During
periods of light load, a high-demand vcluster may ob-
tain more nodes than a privately owned cluster would al-
low. Transitioning a node between vclusters may require
a software reinstall whose cost is measured in minutes
(see Section 3.3). This “context switch” cost is accept-
able in a large, shared cluster, when subsets of nodes are
reserved for specific purposes over periods of hours, days,
or longer.

2.1 Design Goals and Choices

Five key goals drive the COD design.

Hardware-independence. COD is designed to work with
any computer that supports Linux and remote-boots us-
ing PXE/DHCP. When a node first powers up in a COD
cluster, COD loads the trampoline, which is a minimal,
generic, memory-based OS that boots quickly on a wide
range of servers. The trampoline is built with components
from standard Linux distributions, including Red Hat’s
kudzu hardware-probing program and driver modules for
all Linux-supported devices. Once booted, the trampoline
scans the hardware and transmits a record of the node’s
physical configuration for later use by the COD resource
manager.

OS-independence. Although the trampoline leverages
the comprehensive platform support from Linux, COD it-
self is OS-agnostic. For full generality, COD configura-
tions may specify operating system images as raw bitfile
partition images, or specify an alternate installer program
to interpret OS-specific image formats. COD users may
select from predefined partition images, request the sys-
tem to clone images from a manually installed node, or
use arbitrary OS-specific tools to prepare images and up-
load them to the configuration database through the image
upload server. To support heterogeneous clusters, config-
uration templates may include rules to select among mul-
tiple images by matching on hardware attributes.

User control. A vcluster owner has the same degree of
control over its virtual cluster as it would over a physical
cluster dedicated for its own use. Owners may obtain su-
peruser access on their nodes, control the user accounts
enabled for login privileges, or replace any element of
the software environment — including the operating sys-
tem — for the nodes assigned to them.

Automated management. Once configurations are de-
fined, site administration overhead (other than hardware
maintenance) is independent of the number of hosts and
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Figure 1: Cluster-on-Demand (COD) partitions a physical cluster into multiple virtual clusters (vclusters). Vcluster owners specify
the operating systems and software for their vclusters through a Web interface. The vclusters in this example run a batch scheduler
and a Web server cluster, which can resize dynamically to respond to dynamic load changes.

the number of users. Everyday administrative tasks such
as user account management devolve to vcluster owners
through a PHP/SQL Web interface. COD fully automates
the steps to track multiple configurations, track the allo-
cation status of cluster nodes, change a node’s role or re-
assign it to a different vcluster, and/or upgrade a node to
a new predefined software configuration. To add a PXE-
enabled server to a COD cluster, simply plug it into the
network and power it up.

Isolation and safety. COD must prevent users from mo-
nopolizing resources or interfering with other users or
the system itself. A key benefit of the vcluster con-
cept is that node access is controlled on a vcluster ba-
sis. Moreover, COD maintains a consistent environment
across each vcluster. Nodes joining a vcluster always in-
stall a clean configuration of verifiable integrity; this helps
protect against corruption by previous users and leakage
of sensitive data between vclusters. This “wipe it clean”
philosophy derives from Rocks [21]. Finally, IP-enabled
managed power components allow COD to seize control
of any node by interrupting its power supply, forcing it
to restart and boot onto the trampoline. VLANs enable a
cluster manager to isolate each vcluster on a virtual pri-
vate Ethernet segment (although the COD prototype does
not yet configure VLANs). These existing mechanisms
are sufficient for basic isolation, but mixed-use clusters
will also benefit from secure BIOS functions and config-
urable QoS shares for VLANs and network storage.

2.2 Related Work

Manageability is increasingly recognized as an impor-
tant challenge for computer systems design and research.
The industry has responded with key initiatives for auto-
mated management, including PXE remote-boot technol-
ogy [13], the ACPI [11] and Wake-on-LAN [12] standards
for server power management, device interface standards
that promote interoperability, and components such as
network switches and IP-enabled power distributors. On
the system software side, most systems now obtain net-
work names, network addresses, user identities, and host-
specific information from network-administered services
such as NIS, DNS, LDAP, and DHCP. These are key en-
ablers for the COD approach.

Several companies are marketing products to automate
server management for enterprises and Internet hosting
providers. Prominent players in this space include Ter-
raSpring, Opsware (Loudcloud), IBM, and HP through its
Utility Data Center (UDC) product and related research.
While few details of these systems are published, they
reflect the concept of policy-based management of re-
sources and configurations in large shared server clusters.
One contribution of this paper is to describe in detail how
to address these goals in a general and flexible way by
combining widely used open-source components.

Many systems use PXE network installs to manage node
configurations. For example, the popular BpBatch tool
from bpbatch.org uses PXE boots to install, update, or
select local software on each node; the BpBatch boot im-
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Figure 2: The lifecycle of a COD node.

age is an interpreter for scripts that can examine or par-
tition the disk, fetch a software distribution and install it
locally, and/or load a new boot image from a selected lo-
cal partition. COD selects PXE actions dynamically by
querying a configuration database; this key technique of
database-driven network installs was described previously
for Oceano and Emulab. These systems share the pri-
mary goals of automated management, user control, and
safe isolation for mixed-use clusters. They also configure
VLANs to isolate virtual clusters. Both of these systems
target specific application environments: network emula-
tion for Emulab, and Web service hosting for Oceano.

COD applies the ideas in these systems to a general
framework for dynamic sharing of cluster resources
across arbitrary user-defined software environments and
applications. In particular, COD’s hierarchical approach
incorporates local resource managers within each vclus-
ter or vcluster group, with a global resource manager
to coordinate resource usage across multiple dynamic
vclusters. The COD premise is that the key features of
Oceano and Emulab — Oceano’s Web service resource
manager and Emulab’s rich support for configuring em-
ulation experiments — could apply at the vcluster level
in the COD framework. Similarly, many other applica-
tion cluster managers could be adapted to run as VCMs
within the COD framework. Examples include Beowulf,
load-leveling batch schedulers, grid managers, enterprise
application monitors [25], cluster-based network services
(e.g., [23, 17, 18, 9]), and cluster-based network stor-
age [19, 24, 6, 4].

3 Managing Nodes

Figure 2 depicts the states and transitions in the lifecycle
of a COD node. When a node first powers on, it loads
the trampoline, which takes control of the node, scans it,
and prepares it to join a virtual cluster selected by the
COD manager. Before assigning a server to a vcluster,
COD must first prime the node by applying a configura-
tion template, which typically installs one or more parti-
tion images on a local disk. When a node is assigned to
a vcluster, subsequent reboots load its user-specified soft-
ware; a node running this user software is active in its
vcluster. A node leaves its vcluster when the VCM volun-
tarily releases the node or COD forcibly reclaims it with
a power reset. In either case, the node boots back onto
the COD trampoline, which may idle the node in a warm
(inactive) or cold (off) reserve pool, or accept commands
from the COD manager to return the node to its previous
vcluster or prime it for a new configuration.

This section outlines COD’s handling of these node states
and transitions in more detail. Section 4 then discusses a
node’s environment while it is active in a vcluster.

3.1 Remote Boot

Every COD cluster node has a PXE-capable network in-
terface and a BIOS configured to boot from the network at
power-on or restart. In a typical network boot, the node’s
ethernet NIC broadcasts a DHCP request with a vendor
tag indicating that it is a PXE client; the DHCP server
responds with IP information as well as the name and lo-
cation of a bootloader image to download via TFTP.

The COD DHCP server queries the node status database
to determine which image reference to return on a PXE
boot request. If the node is active, DHCP returns a com-
mand to boot from its primed image, e.g., from the pri-
mary local partition, or from an image server for a diskless
boot. DHCP commands the node to boot the trampoline
if the node was off, or if it has returned to the trampoline
state after previous membership in a vcluster. This occurs
when a reboot into a vcluster fails (detected by a timeout
or a repeated PXE request from a node in the boot state),
when a vcluster voluntarily relinquishes a node, or when
the COD manager forcibly reclaims a node from a vclus-
ter by interrupting its power supply. These correspond
to the transitions into the trampoline state from the dark
grey states in Figure 2.

To boot the COD trampoline, the DHCP server first re-
turns a reference to a small first-stage bootloader called
PXELinux (from syslinux.org). The PXE card uses TFTP
to fetch and boot PXELinux from the specified image
server. A PXELinux script then fetches a COD-generated
configuration file, also via TFTP. The configuration file
contains boot parameters, including the name of the com-
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pressed trampoline image and the network location of
a COD configuration server (confd). PXELinux then
fetches the trampoline kernel itself, and boots it.

3.2 On the Trampoline

The role of the COD trampoline is to scan the hardware,
idle the node on warm reserve until it is needed, and
prepare the node to join a vcluster selected by the re-
source manager. The trampoline is a minimal Linux ker-
nel image built to run on any standard Intel-based server,
and incorporating a minimal ramdisk — currently sixteen
megabytes uncompressed, six megabytes compressed —
mounted as its root file system. The trampoline can probe
and recognize any attached hardware device for which
Linux drivers are available. This generality allows a COD
cluster to incorporate any standard PXE-capable server or
PC supported by standard Linux. The trampoline does
not depend on a local disk, and it does not modify local
storage unless the node enters the prime state.

After booting, the trampoline executes the kudzu program
to probe the hardware and load drivers, then initializes
its primary network interface using DHCP. A user-mode
program called ctramp then contacts the COD configura-
tion server (confd) indicated in the trampoline boot pa-
rameters, and transmits a compact XML summary of the
node’s physical configuration, including partition struc-
tures, memory capacity, and CPU speed extracted from
proc. The trampoline then disconnects and awaits further
configuration instructions from confd.

3.3 Priming

When the resource manager recruits a node for a new
vcluster, confd connects to the (ctramp) port and trans-
mits image layout information from the selected config-
uration template in the cluster database. In the prime
state, a user-mode program called cprime configures the
node according to the image layout information, option-
ally partitioning the local disk. The image layout includes
a list of URLs for compressed, checksummed configura-
tion images available from an HTTP server, and may in-
clude a separate image for each disk partition. To prime
the node, cprime fetches the images and uncompresses,
installs, and verifies them by executing a pipeline of stan-
dard programs (wget, gunzip, dd, and mdsum). To com-
plete the priming, cprime installs a master boot record
(MBR), informs confd that the node is entering the boot
state, and initiates a reboot into the newly installed OS.

In our current prototype, each vcluster node indepen-
dently fetches its images from an HTTP server. To
distribute images efficiently we plan to use pcp, which
pipelines data in parallel through a secure ´ -ary multicast
tree. Emulab’s frisbee disk loader uses a related multicast
approach to distribute images to large vclusters.

Because COD uses bit-copy partition images by default,
priming is independent of the operating system and other
node software. In particular, the configured OS may use
file system formats unknown to the Linux-based tram-
poline. However, in its simplest form, the bit-copy ap-
proach may cause the system to write unnecessary data
to the disk, e.g., to zero out blocks that contain no useful
data and will later be overwritten by the software. One
benefit of paying this cost is that it helps secure the sys-
tem against data leakage when a physical node transitions
from one vcluster to another. Writing complete bit-copy
images also allows cprime to write the data sequentially
at the disk spindle speed. However, COD configuration
templates may specify an alternative Linux executable to
replace dd as the image installer. The installer may inter-
pret the image and place it on the disk in a manner spe-
cific to the target OS or file system. For example, Emu-
lab’s frisbee uses filesystem-specific image compression
to avoid zeroing disk blocks that are uninitialized in the
image; this is similar to Partition Image (partimage.org)
and other filesystem-aware image installers.

3.4 The Reserve Pool

One goal of COD is to define common facilities to im-
prove energy efficiency for clusters when they are running
below capacity. Today’s standard low-end rackmount
servers consume on the order of 1-2 MWh per year in
electricity ($100-$200), counting cooling costs. The clus-
ter can reduce its power demand by stepping unallocated
servers down to low-power states, reactivating them with
Wake-on-LAN when they are needed. VCM middleware
for time-varying workloads such as network services can
concentrate load on a minimal set of servers, releasing
unused servers to the energy-managed reserve pool. Our
previous work has demonstrated the benefits of this tech-
nique for energy management in Web server farms [9].

Surplus nodes idle in an energy-managed reserve pool.
If a node in the trampoline state is not needed, confd
commands it to idle in the inactive state. When a suffi-
cient warm reserve exists in this state, it commands sur-
plus nodes to step down to the cold-reserve (off) state.
COD leaves previously installed software (if any) cached
for future use. If a reserve node is assigned to reactivate
the same configuration template, and the template was not
modified since the node’s last priming, then COD skips
the prime phase and enters boot to reboot the node di-
rectly into its vcluster.

4 The Virtual Cluster Environment

This section discusses the mechanisms to customize
vcluster operating environments. When a node is active
in a vcluster, it runs a user-specified operating system;
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Sections 4.1 and 4.2 discuss the means to define and ini-
tialize the OS. COD interposes on well-established net-
work management services — DHCP, NIS, and DNS —
to shape the node’s view of its context, including its IP
address and hostname, authorized user accounts and pass-
words, and access to network storage volumes, as de-
scribed in Section 4.3. The COD prototype requires that
the OS understand and use these services to configure; we
have not yet extended COD for alternative services such
as LDAP or Active Directory.

4.1 Constructing Images

Users construct partition images for COD configuration
templates using tools outside of COD. To simplify cre-
ation of new templates, the COD trampoline can extract
and save partition image bitfiles and partition maps from
a COD cluster node. Thus the usual way to configure
a virtual cluster is to instantiate a node using a standard
configuration, use arbitrary tools to modify the configura-
tion directly on the node (e.g., by logging in and installing
new software from the network), then command COD to
save the resulting configuration into a template. The Mil-
lennium rootstock tool and commercial systems such as
ImageCast (phoenix.com) use a similar approach.

Importantly, image extraction is the only way to preserve
changes to the local file system across node reallocations
in COD. Nodes are stateless: any long-term durable data
are saved on network storage volumes accessible to the
group and assigned to the vcluster.

4.2 Initializing the Node OS

COD does not specify or constrain the mechanisms to
perform node-specific configuration in an active node.
Some applications may require additional configuration
steps, which are necessarily OS-specific and application-
specific. To complete these steps, the vcluster owner or
installed software may run arbitrary programs or scripts
using standard remote execution tools such as ssh. For ex-
ample, a key component of Emulab is the TMCC program,
which configures Linux/Unix hosts for network emulation
experiments. Rocks and Linux/Beowulf compute clusters
execute Linux-specific configuration tools such as kick-
start to initialize nodes and load packages for specific
roles within the vcluster. The VCM may trigger these
steps when COD notifies it that a node has joined the
vcluster. COD vcluster owners may employ other stan-
dard tools such as Cfengine [8] to update or modify con-
figurations within a COD vcluster.

4.3 Host Configuration

COD interposes on network management services to con-
trol each node’s view of its environment according to its
vcluster membership.

µ COD assigns node IP addresses within a subnet for
each vcluster. Nodes obtain their IP and router ad-
dresses through the COD DHCP server as they boot.

µ COD assigns node domain names derived from the
vcluster’s symbolic name assigned at creation time.
Each vcluster occupies a private DNS subdomain.
Nodes obtain their hostnames through DHCP and
use DNS or NIS to map between hostnames and IP
addresses. Our prototype uses MyDNS, an open-
source SQL-enabled DNS server.

µ Conceptually, each vcluster executes within its own
NIS domain, which enables access for specific user
accounts and netgroups. Our current implementa-
tion uses a common NIS domain and an NIS server
shim that queries the configuration database to filter
lookups for users and groups.

µ COD exports NFS file storage volumes as groups
and vclusters are defined. The node configuration
template may include an NFS mount map supplied
through NIS. The mount map contains a list of NFS
file volumes authorized by the site administrator for
access by the vcluster’s group. The map directs the
node to attach these volumes at specified points in
the node’s file name space. When a vcluster is cre-
ated, COD issues export commands to file servers to
export the selected file volumes to a netgroup con-
taining the vcluster’s complete DNS name space.

5 Dynamic Virtual Clusters

The COD resource manager assigns nodes to sat-
isfy resource requests from users. All alloca-
tion requests are lists of 4-tuples of the form¶�·�¸�¹�º�»'¼a½�¾�¿D¼a½�ÀNÁ�¹�Â�¼a½�¿^¸*Ã�º ´ ¼�¿2Â5¼}¼}¾�ÄaÅ.º�¼a½�»�Æ : allocate¸�Ã�º ´ ¼ nodes to

·�¸�¹�º�»'¼a½�¾
, selecting from nodes match-

ing the specified
Â�¼}¼}¾�ÄaÅ.º�¼a½�»

, and apply the specified
configuration

¼a½�ÀÇÁ�¹�Â�¼a½
. COD satisfies or rejects each

request as an atomic unit. Note that different nodes in the
same vcluster may use different templates, to allow for
specialized roles within the vcluster. As a simple basis
for allocating resources under constraint, all requests
inherit a priority level assigned to the owning group by
the site administrator.

A request to create a vcluster takes a similar form. If COD
accepts a vcluster create request, it establishes a lease
expiration time on the vcluster according to the request-
ing group’s default lease time or a requested lease time,
whichever is lower. Vclusters may return nodes to COD
voluntarily or in response a resource reclamation request
from the COD manager. COD reclaims resources from a
vcluster only the vcluster’s current size exceeds its create
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size, or if the lease is no longer valid, i.e., because it has
expired or the site administrator has canceled it.

5.1 Node Selection

The nodes selected to satisfy a request tuple must match
certain attribute constraints. First, they must capable of
accepting images associated with the specified configura-
tion template. Second, they must meet or exceed the spec-
ified request attributes, e.g., to meet a minimum memory
or storage requirement. The desired goal state for the re-
source manager is to satisfy high-priority node requests
using low-cost nodes — preferably idle nodes — while si-
multaneously matching the maximum number of unique
nodes to highly constraining requests. For example, as-
sume we have a node with multiple network cards and a
one gigahertz processor. This node may be used to sat-
isfy a request specifying a gigahertz processor. However,
if fast processors are more common than multi-interface
nodes, the multi-interface request is more constraining
than the request for a gigahertz processor and we would
prioritize this node to fulfill a multi-interface node request
over one for a gigahertz processor request.

Our node selection approach employs a matching scheme
similar to Condor’s classads [22]. Node attributes are
specified using XML. XML is a natural choice because
it allows for a tree-like structure for node attributes. XML
standards specify methods for attribute matching and
transformations from one XML object to another based
on a set of rules. XML libraries allow COD components
to store, parse, and retrieve data easily in a standard for-
mat with cross-platform support. COD uses simple oper-
ators to determine if two attribute specifications are equal
or if one satisfies the other. The attributes of a selected
node — obtained by hardware probing each time the node
boots the trampoline — must satisfy attributes uploaded
with the template and specified in the request itself.

To simplify request matching, COD uses the equal op-
erator to group nodes into equivalence classes or node
types as they are discovered. For each request tuple, COD
matches the request and template attributes against the
type attributes to determine which types are eligible to
satisfy the request. This is a significant savings because
clusters typically have a small number of node types, al-
though they may have a large number of nodes of each
type. The site administrator may group the nodes of a
given type into blocks based on network proximity, and
assign each node type a cost to reflect their value in the
system (e.g., assigning higher cost to special node types,
such as multi-interface nodes). Currently these block and
cost assignments are manual.

The COD resource manager satisfies pending requests in
order of their vcluster priority, highest to lowest. To sat-
isfy a request tuple, it first identifies the eligible (satisfy-

ing) node types with blocks large enough to handle the re-
quest, then selects the least-cost eligible type, and finally
allocates nodes from the largest block of that type. If no
suitable blocks are available, it repeats this process with
the nodes allocated to each vcluster priority level, to find
a suitable block of nodes to reclaim from a lower-priority
vcluster. The request blocking mechanism ensures that
nodes allocated together are close to each other on the
network

5.2 Stability

The nature of resource allocation in COD leads to a large
overhead in transferring a node from one virtual cluster
to another. Reallocation overhead is measured in min-
utes. Accordingly, the resource manager must take care
to avoid thrashing if reported resource demands change
quickly relative to the reallocation time.

COD uses a sliding time window that grants a node im-
munity from reallocation after COD assigns it to a virtual
cluster. The size of this window represents the schedul-
ing inertia. A mapper with a large inertia allocates stable
virtual clusters, allowing low-priority customers to retain
new nodes regardless of short-lived spikes in resource de-
mands. A mapper with a smaller inertia responds better
to a constant stream of high-priority requests, each want-
ing nodes for a relatively short period of time. However,
too small an inertia could lead to thrashing. Ideally, the
scheduling inertia should allow stable, long-term virtual
clusters and highly dynamic, short-lived virtual clusters
to share the same hardware base.

5.3 Virtual Cluster Managers (VCMs)

Dynamic resizing requires coordination between the COD
manager and cluster middleware. A VCM controls each
vcluster that is capable of adaptive resizing. The VCM
is a network server certified to act on behalf of the vclus-
ter’s group. The VCM may run within the vcluster on its
minimal leased allotment, or outside of the vcluster. COD
does not specify the mechanism to instantiate the VCM,
e.g., as a side effect vcluster creation. A node template’s
post-boot init sequence may start a VCM, or the vcluster
creator may launch the VCM after COD notifies it (cur-
rently by e-mail to the cluster group) that the vcluster was
created. The prototype assumes the VCM runs within the
vcluster, and authenticates it by IP address.

VCMs negotiate node allocations with the global COD
resource manager. In general, we expect that each dy-
namic virtual cluster is under the control of middleware
such as a batch scheduler or other cluster manager. Note
that the middleware may itself host applications (such as
Web services or compute jobs) that are unaware that this
resizing is taking place; the middleware is responsible
for subcontracting its allotted resources to specific tasks
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Figure 3: An overview of the database schema

without further involvement from COD. The VCM me-
diates interactions between the local cluster manager and
the COD manager using COD’s Node Management Pro-
tocol (NMP), NMP allows either party to request nodes
from the other or transfer node control to the other. The
NMP uses XML as the data payload over a TCP/IP trans-
port, with HTTP-like headers.

During periods of resource contention, COD may reclaim
nodes from a low-priority vcluster. NMP reclamation re-
quests include an

Â�¼}¼}¾�ÄaÅ.º�¼a½
description for the requested

nodes, just as node requests to COD. If the VCM holds
multiple nodes that satisfy the request attributes, it is free
to select which of these nodes to return to COD. This al-
lows COD to reallocate nodes with minimal disruption to
affected virtual clusters.

5.4 Coordination

The COD resource manager and servers communicate and
synchronize through the configuration database, which
stores all information about users, physical nodes, and vir-
tual clusters. Our prototype uses MySQL.

Figure 3 shows a simplified view of the key database ta-
bles and their relationships. The primary keys are in bold-
type, and the arrows represent foreign keys in other tables
indexed by that primary key. Tables in white boxes are
persistent tables, while transitional tables—tables used to
coordinate components—are in shaded boxes.

Consider a typical Web form request to create a vcluster
with a single configuration template. The Web interface
validates the user through the Group Permissions
table, inserts a new virtual cluster into the Vir-
tual Clusters table with pending status, and adds
a request for nodes into the Node Requests table. The
next time it executes, the resource manager attempts to fill

the request from the resources in the Nodes table, using
the policy described above. If the allocation succeeds, it
assigns nodes to the vcluster in the Nodes table, and up-
dates the vcluster’s status in Virtual Clusters. The
DHCP daemon and confd examine this state to instanti-
ate the trampoline on the node and direct it to apply the
assigned configuration template.

When the configuration template is applied to a node, the
resource manager updates the node’s permissions in the
Node Permissions table and inserts the node’s In-
stall Images information in the pending state. Af-
ter the image is installed, the resource manager updates
the node’s status in Install Images and Nodes. The
resource manager inserts completed reservations into the
Node Reservations table and updates the state of
each newly-reserved node in the Nodes table. The re-
source manager clears reservations when a node leaves
the vcluster.

This simple example illustrates the role of the tables in
coordinating interactions of the COD servers.

Persistent tables are divided into two categories:
environment-initialized and user-initialized. The Nodes
table is an environment-initialized table that depends on
the hardware resources. Users populate the remainder of
the persistent tables. Through the Web interface, autho-
rized users can create or modify user accounts, groups—
and, therefore, update group permissions, images, virtual
clusters, and configuration templates.

Components access the Group Permissions and
Node Permissions tables to authorize requests. We
described a few examples in the above scenario. The Web
interface must validate all create requests, and the Image
Server and Web interface use the permissions tables to
validate changes to configuration templates.

6 Example VCM: SGE Batch Pool

To experiment with dynamic virtual clusters, we im-
plemented a COD VCM extension for Sun GridEngine
(SGE), which is widely used to run compute-intensive
batch jobs on large clusters. In a typical SGE cluster, a
single master host runs a scheduler (sge schedd) that dis-
patches submitted batch jobs across an active set of ex-
ecution hosts. The VCM extension allows SGE to run
within a COD vcluster that grows and shrinks with de-
mand and resource availability. To simplify the experi-
ments, we configured SGE to schedule at most one job
on each active execution host. Users submit jobs by ex-
ecuting the SGE qsub command on any host in an SGE
vcluster.

We implemented the COD-enabled SGE VCM with about
600 lines of C code that runs as a server daemon process
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on the master host. The VCM interacts with the COD
manager through a network connection, and executes se-
quences of SGE administrative commands to query the
active set status and change its membership. To maintain a
uniform environment across the active set, as required by
SGE, the vcluster configuration template defines a com-
mon space of user identities and a shared network file vol-
ume mounted through NFS. The NFS volume includes the
SGE distribution and master status files (the SGE ROOT
directory) and all program and data files for the user jobs.

The SGE VCM uses simple policies to size the active set.
The VCM executes a resize function every

½2Á�Ã�¸*È
seconds

to check the status of the batch pool, using the SGE qstat
command to obtain a list of queues and the jobs sched-
uled to them. If there are queued jobs that have not yet
started, the VCM requests a new execution node for every´ queued jobs. The resize also records any nodes that are
idle and timestamps them. If there are no queued jobs, the
VCM returns each idle node to the COD manager after it
has been idle for

ÀÉÂ�Ê�Ä�Ë�¹�½
seconds, down to a minimum

idle reserve of Ì nodes.

The SGE VCM resizes the active set as follows. To
add an execution host, the VCM executes the SGE qconf
command with a standard template to activate the node
by its DNS name and establish a job queue for it. Be-
fore enabling the queue, the VCM remote-executes the
SGE daemon processes (sge commd and sge execd) on
the node. To remove a node, the VCM executes SGE com-
mands (qconf and qmod) to disable the node’s job queue,
reschedule any jobs on the queue, destroy the queue, and
deactivate the node.

The COD manager may unilaterally reclaim nodes from
the batch pool to meet demands from higher-priority
vclusters. In this case, the VCM negotiates with the COD
manager to select each victim node. First the VCM uses
qstat to search for idle nodes. If all nodes are busy, the
VCM selects the busy node with the job that started most
recently. SGE currently has no checkpoint facility, so this
policy limits the amount of wasted computation when the
VCM is forced to restart a job.

The VCM allows SGE batch pools to benefit from COD’s
support for energy management and controlled cluster re-
source sharing. COD isolates other cluster users from in-
terference by batch jobs, and ensures a consistent environ-
ment across the batch pool. Our current VCM policies are
stable and effective when each batch pool serves a single
priority class of single-node compute-bound jobs that run
for longer than the reconfiguration times. We are explor-
ing more sophisticated resource management policies to
handle more complex cases within this framework. What
is important is that this example illustrates the feasibility
of dynamic cluster resizing and the power and generality

of the COD framework.

A low-priority batch vcluster is similar to the Condor
resource-scavenging model [20]; that is, COD allocates
only idle nodes to the batch pool. The COD approach en-
sures a consistent environment across the batch pool, at
the price of a higher node allocation cost to reinstall. The
COD model also protects users with fixed leases against
interference from the batch pool. Finally, COD allows
more flexible priority schemes for allocating nodes to the
batch pool and other vclusters.

6.1 Other VCMs

We are currently considering how to extend the SGE
VCM to run with the Avaki Grid manager, which coor-
dinates batch job scheduling across multiple batch pools
(including SGE pools). These pools may reside at mul-
tiple sites across a wide-area network, with local auton-
omy over resource management. In the Grid, local site
managers pass information about their available resources
to a global grid manager, which makes informed global
scheduling decisions about where to route jobs [16]. In
the COD framework, the local VCM must notify the grid
manager of changes in vcluster size, and may also pass
global requests for additional resources through to the lo-
cal COD manager. Our intent is that this approach will
allow for multiple Grid points-of-presence (e.g., Globus,
Avaki) to run as separate vclusters within a shared COD
physical cluster, trading resources across the grids accord-
ing to site-specific policies.

We have previously demonstrated a system to dynami-
cally resize clustered Web server allocations to adapt to
load changes [9]. While this system ran as a standalone
cluster manager, it is natural to run it as a COD VCM.

7 Experimental Results

The COD prototype is approximately thirty thousand lines
of code, consisting of a DHCP server, the configuration
daemon (confd), the resource mapper, the VCM network
negotiation interface, and a MySQL implementation of
the database API. Other services, such as NIS and NFS,
obtain configuration files from scripts that pull state out
of the database. The pieces of the COD framework func-
tion as described in this paper. One simplification is that
our test configurations include only two node types, with
one block per node type. We have observed successful dy-
namic node reassignments under VCM control, but do not
have graphs of complete coordinated experiments with
dynamic allocation at this time. This section describes our
initial results with the COD prototype, including perfor-
mance measurements and observations on node priming.
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Figure 4: Cumulative image server bandwidth as a function of time during node priming with the Debian Linux 3.0
configuration template, showing the behavior of parallel node installations.

Image Size (MB) Size (gz) Time (s)
Duke Linux 2,048 105 122
Duke BSD 2,048 137 129

Debian Linux 1,951 422 127

Table 1: Elapsed priming time for various images (sec)

7.1 Experimental Setups

In our first experiment, all our management services ran
on a single node; these include the DHCP server, confd,
the resource mapper, a TFTP server, and an apache web
server. All hosts in the experiment were single processor
IBM e-Server xSeries 330 machines, each with a 1 GHz
Pentium III processor and an 18 gigabyte IBM Ultra Wide
SCSI drive. The network was switched 100 Mbps Ether-
net, with Intel EtherExpress Pro NICs in all nodes. All
COD servers ran under Debian Linux version 3.0.

The first experiment measures the time it takes to prime a
node with a configuration template. Table 1 shows the re-
sults of using COD to install three different images. The
first image is a snapshot of a standard Linux installation
configured for the Duke Computer Science cluster. This
image includes standard clustering software such as mon-
itoring tools, a batch queue, and software development li-
braries. The filesystem is second extended (ext2). The
second image is a FreeBSD installation configured for
the Duke Computer Science cluster with similar software.
The filesystem is an extended primary partition containing
four UFS logical volumes. The final image is an out-of-

the-box installation of Debian Linux 3.0 [14]. The filesys-
tem is ext2 and contains a full suite of development tools
and utilities. Images are stored in compressed format on
the server; they are decompressed client-side before they
are written to disk. Write speed to disk for all images is
approximately 16 MB/sec, approaching the limits of the
SCSI drives.

The testbed for our second experiment is a ten-node
testbed consisting of IBM x330 and x335 e-Server nodes.
The x335 nodes have a 2 GHz Pentium IV processor, a
40 gigabyte IDE drive, and two Broadcom 5703 gigabit
NICs. The network was switched 100 Mbps Ethernet.
Two x330 nodes hosted the management services, with
an eight-node cluster of x335s.

Figure 4 shows total installation progress for parallel
node priming measured in megabytes downloaded from
the image server. Eight nodes easily install in parallel in
under six minutes. As the images install, the management
services update state to reflect the new vcluster member
of the nodes. This allows users to access new nodes
immediately following priming without the need for
post-install configuration.

Figure 5 examines the installation progress as a func-
tion of combined server throughput to all nodes. The
bursty nature of install traffic is due to image compres-
sion. Large portions of empty disk compress well, result-
ing in small network utilization, but decompress client-
side into large blocks. The network traffic stalls as the
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Figure 5: Bandwidth variations through time during the install, showing compression effects for a bit-image install.

node writes these blocks to disk, while performing a cryp-
tographic checksum in parallel. This further reinforces
the fact that wipe-it-clean bit-image installation times are
bound by the write speed of the client disks.

8 Conclusion

Cluster-on-Demand shows how PXE remote-boot tech-
nology can serve as the basis for a cluster operating sys-
tem framework, enabling flexible, automated, dynamic
sharing of a cluster by independent groups of users. COD
can combine with virtual machine technology to enable
vclusters to share individual physical servers at a fine
grain.

Our work with COD addresses key challenges that op-
press cluster users today: staffing costs for cluster admin-
istrators, loss of productivity due to configuration errors
and delays, brittle software environments that do not meet
the full range of user demands (“should we run Linux
or Windows on our cluster”?), and the difficulty of ca-
pacity planning and resource scheduling in the presence
of bursty and unpredictable demand. COD is designed
to give cluster users powerful “push-button” control over
their software environments, enable cluster managers to
specify policies controlling the amount of resource allo-
cated to each group, and improve productivity and return
on investment for cluster infrastructure.

Flexible site management using the COD model will
also take a key step toward dynamic, adaptive, automatic
provisioning of network services from pools of shared
server resources dispersed through the Internet and “out-
sourced” or leased by third parties. Utility computing

envisions services and applications that float freely in a
global pool of raw servers and storage, which are auto-
matically provisioned and distributed (or sold) according
to demand, much as electricity is today. COD nodes act
as generic “caches” for software environments and appli-
cations; COD configures nodes automatically to instanti-
ate them where resources are available and demand exists.
Our approach has the potential to use resources effectively
and scale incrementally by plugging in more resources,
while holding human administrative burdens constant.

Availability

We intend to release COD as open source when it is ready.
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