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Abstract

This paper investigates the question of scheduling
tasks according to a user-centric value metric—called
yield or utility. User value is an attractive basis for allo-
cating shared computing resources, and is fundamental to
economic approaches to resource management in linked
clusters or grids. Even so, commonly used batch sched-
ulers do not yet support value-based scheduling, and there
has been little study of its use in a market-based grid set-
ting. In part this is because scheduling to maximize time-
varying value is a difficult problem where even simple for-
mulations are intractable.

We present improved heuristics for value-based task
scheduling using a simple but rich formulation of value,
in which a task’s yield decays linearly with its waiting
time. We also show the role of value-based scheduling
heuristics in a framework for market-based bidding and
admission control, in which clients negotiate for task ser-
vices from multiple grid sites. Our approach follows an
investment metaphor: the heuristics balance the risk of
future costs against the potential for gains in accepting
and scheduling tasks. In particular, we show the impor-
tance of opportunity cost, and the impact of risk due to
uncertainty in the future job mix.

1 Introduction

The uses of grid computing continue to expand from
the core goal of harnessing the power of distributed
resources for large-scale computation. Grids are in-
creasingly shared among large numbers of different user
groups. Linking clusters together in grids can improve re-
source efficiency; consolidating small private clusters into
cluster utilities can reduce management cost and bring
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more compute power to each user on demand. Although
users benefit from resource sharing, these benefits come
at the price of yielding some local control over the re-
sources. It is therefore essential for grids to arbitrate re-
source usage across competing demands in a way that bal-
ances the collective need for effective global use of the
resources with each user’s need for fairness, predictable
performance, and control over the relative priority of their
jobs. Economic or market-based approaches are attractive
for this purpose.

Today’s batch systems address this need with a com-
bination of approaches including user priority, weighted
proportional sharing, and service level agreements that
set upper and lower bounds on the resources available
to each user or group [17,21]. These scheduling mecha-
nisms have largely been translated, with few adaptations,
for use on the grid. Market-based approaches refine this
capability by enabling users to expose the relative urgency
or cost of their tasks, subject to constraints on their re-
source usage. In value-based [3, 8] or user-centric [10]
scheduling, users assign value (also called yield or utility)
to their jobs, and the system schedules to maximize ag-
gregate value rather than to meet deadline constraints or
a system-wide performance objective such as throughput
or mean response time. In economic terms, value cor-
responds to currency: users “bid” for resources and pay
for them according to their user value; the system sells
resources to the highest bidder in order to maximize its
profit. This approach is a foundation for market-based re-
source management in federated environments.

This paper focuses on market-based scheduling in grid
service sites based on user bids that specify value across
a range of service quality levels. Representations of task
value create a means to dynamically adjust relative job
priority according to the workflow of the organization,
e.g., giving jobs higher priority when other activities de-
pend on their completion. For example, the results of a
five-hour batch job that is submitted six hours before a
deadline are worthless in seven hours. The scheduler must
balance the length of a task with both its present value and



its opportunity cost; in short, it must balance the risk of
deferring a task with the reward of scheduling it.

This paper extends the treatment of task scheduling
for linearly decaying value functions in the Millennium
economic cluster manager at Berkeley [9, 10]. From that
starting point, we show how a task service site can sched-
ule a stream of arriving tasks to account for important risk
and reward factors. Next, we show how to use value-
based scheduling in a framework for market-based bid-
ding and admission control, in which clients negotiate
for task services from multiple grid sites. We present
a risk/reward heuristic that extends classical scheduling
heuristics to a computational economy.

This paper is organized as follows. Section 2 gives an
overview of the premises and goals of our work. Sec-
tion 3 discusses the formulation of value functions, and
Section 4 summarizes the resulting scheduling problem
and our evaluation methodology. Section 5 develops a
configurable scheduling heuristic to balance risk and re-
ward, and Section 6 applies the heuristic to task accep-
tance and contract negotiation. Section 7 discusses related
work, and Section 8 concludes.

2  Overview

We consider a service market in which each site sells
the service of executing tasks, rather than raw resources.
In a service market, clients and servers negotiate contracts
that incorporate some measure of service quality and as-
surance as well as price. For example, clients may pay
more for better service, and servers may incur a penalty
if they fail to honor the commitments for service qual-
ity negotiated in their contracts. This paper considers the
mechanisms to assign value to the service, and the poli-
cies to negotiate service prices and service quality levels.
We focus on the simplest type of service: a batch task
service. Our approach is based on three key premises:

e Tasks are batch jobs that consume resources but de-
liver no value until they complete.

e A job submission specifies a resource request (ser-
vice demand) to run the job, and correctly specifies
the job’s duration if its resource request is met.

e Each task is associated with a user-specified value
Sfunction (utility function) that gives the task’s value
to the user as a function of its completion time. Sec-
tion 3 discusses these value functions, which are
used to specify bids and service contracts.

Figure 1 illustrates the context for our work. Each
server site selects buyers for resources based on client
bids for submitted tasks, which are given as value func-
tions. If the server agrees to accept a client’s bid, it pro-
poses an expected completion time and price derived from
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Figure 1. A client or broker negotiating with three
task service sites to determine where to run a task.

the value function. The client then selects a server to run
the task by choosing among the set of grid sites that re-
sponded to its bid. Since the bid specifies value across a
range of service quality levels (completion times), the ne-
gotiation protocol between the buyer and the seller may
consist of just this one pair of exchanges. A broker could
coordinate this negotiation process, as in Mariposa [20].

Once the customer and the site agree on the expected
completion time and value, a contractis formed. If the site
delays the task beyond the negotiated completion time,
then the value function associated with the contract de-
termines the reduced price or penalty. As a result, server
sites must consider the risks inherent in each contract and
scheduling choice.

Our work focuses on the policy choices made by grid
sites to maximize their gains in a computational economy.
The contribution of this work is a framework and heuristic
for task bidding, negotiation, acceptance, and scheduling
at a grid site. We show how each site can use the value
measures to balance risk and reward in bidding for tasks
and scheduling tasks accepted into its task mix. Other
aspects of market dynamics—such as pricing systems, in-
centive mechanism design, and client bidding strategies—
are beyond the scope of this paper. In particular:

e We propose a means to negotiate and formulate con-
tracts, but we do not specify mechanisms for pay-
ment or contract enforcement. In particular, we as-
sume that buyers have an external supply of currency
in arbitrary units, but we do not define how the cur-
rency is replenished or recycled through the econ-
omy. We envision that each user or group is as-
signed a budget to spend on computing service over
each time interval, as in previous economic resource



managers (e.g., [4,19,20,22,24]). Currency may be
distributed and delegated in a decentralized or hier-
archical fashion to meet global goals [22,23].

e We focus on the policies to determine the winning
bids and to schedule server resources, but we do not
specify pricing mechanisms. In practice, it may be
useful to charge prices below the bid price to provide
incentives for buyers to bid truthfully. For example,
single-commodity Vickrey auctions charge the win-
ner a price derived from the second-highest bid for
this purpose, and are used in Spawn [22] and others.

e Our bidding and negotiation protocol uses sealed
bids, and we do not include mechanisms to advertise
price signals to buyers in order to balance supply and
demand. Given sufficient market volume, it may be
sufficient to publish summaries of recent contracts as
a basis for competitive bidding.

Although we focus on a service market, our approach
shows how a task service provider can use risk and reward
measures to quantify its gains from the underlying com-
putational resources that host the task service. We suggest
that a service provider may use these measures as the ba-
sis for a bidding strategy for raw resources in a computa-
tional resource market (e.g., [4,5, 13,22,24]). Thus, our
approach is complementary to previous work in market-
based grids that sell resources as opposed to application
service (see Section 7).

3 Value Functions

Each server site makes admission control and schedul-
ing decisions based on the task value functions. These
functions give an explicit mapping of service quality to
value, exposing information that allows each site to prior-
itize tasks more effectively. Value-based scheduling is an
alternative to scheduling for deadline constraints, which
give the system little guidance on how to proceed if there
is no feasible schedule that meets the constraints, e.g., due
to unexpected demand surges or resource failures.

A value function specifies the value of the service to
the user for a range of service quality levels—in this case,
expected task completion times. The key drawback of the
user-centric approach is that it places a burden on users to
value their requests accurately and precisely. The more
precisely users can specify the value of their jobs, the
more effectively the system can schedule their tasks.

The formulation of value functions must be simple,
rich, and tractable. We adopt a generalization of the lin-
ear decay value functions used in Millennium [9, 10], as
illustrated in Figure 2. Each task ¢ earns a maximum value
value; if it completes at its minimum run time runtime;;
if the job is delayed, then the value decays linearly at some
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Figure 2. An example value function. The job earns
a maximum value if it executes immediately and
completes within its minimum run time. The value
decays linearly with queuing delay. The value may
decay to a negative number, indicating a penalty.
The penalty may or may not be bounded.

constant decay rate decay; (or d; for short). Thus if task
1 is delayed for delay; time units in some schedule, then
its value or yield is given by:

yield; = value; — (delay; * decay;) (1)

These value functions create a rich space of policy
choices by capturing the importance of a task (its maxi-
mum value) and its urgency (decay) as separate measures.
Jobs are more urgent if expensive resources (such as peo-
ple) are waiting for them to complete, or if they must be
finished before real-world deadlines. The framework can
generalize to value functions that decay at variable rates,
but these complicate the problem significantly.

Our framework for a market-based grid allows for a
penalty if a task is delayed beyond the point at which
its value goes to zero. Penalties provide a disincentive
for a site to accept too much work or violate its con-
tractual obligations by discarding an accepted task if cir-
cumstances prevent the site from completing the task in a
timely fashion. The value function may specify a bound
on the penalty. If a task ¢’s penalty is bounded, then
expire; is its expiration time—the time when ¢’s value
function stops decaying. Value functions are bounded at
zero in Millennium; the system incurs no cost even if it
discards an expired task and never completes it.



4 Value-based Scheduling

A scheduler is driven by a sequence of task arrival
times (release times) [arriveg, ..., arrive;] and task com-
pletion/departures. It maintains a queue of tasks await-
ing dispatch, and selects from them according to some
scheduling heuristic. Once the system starts a task, it
runs to completion unless preemption is enabled and a
higher-priority task arrives to preempt it. RPT; rep-
resents task ¢’s expected Remaining Processing Time—
initially its runtime;.

Two common scheduling algorithms are First Come
First Served (FCFS), which orders tasks by arrival;, and
Shortest Remaining Processing Time (SRPT), which or-
ders by RPT;. These baseline algorithms do not consider
user-centric measures of value. We consider the value-
based scheduling problem under the following simplify-
ing assumptions:

e The processors or nodes within each grid site are in-
terchangeable. If preemption is enabled, then a sus-
pended task may be resumed on any other processor.
Context switch times are negligible.

e The system never schedules a job with less than its
full resource request, e.g., jobs are always gang-
scheduled using common backfilling algorithms
with the requested number of processors. For sim-
plicity we assume that the resource request is a single
processor or node.

e The predicted run times runtime; are accurate.
There is no interference among running tasks, e.g.,
due to contention on the network, memory, or stor-
age. We do not consider I/O costs [2] or exceedance
penalties for underestimated runtimes at this stage in
our research.

A candidate schedule determines the expected next
start time start; and completion time for each task ¢. The
completion time is given as start; + RPT; assuming the
task is not preempted. Thus the expected value yield; for
task; in a candidate schedule is given by Equation 1 and
the delay for the expected completion time:

delay; = start; + RPT; — (arrival; + runtime;) (2)

Scheduling based on linearly decaying value func-
tions is related to well-known scheduling problems. Total
Weighted Tardiness (TWT) seeks to minimize ), d;T;
where d; is the weight (or decay) and T;; is the tardiness
of job ¢. A job i is tardy if it finishes after a specified
deadline. We focus on the variant in which each job’s
deadline is equal to its minimum run time, so that any
delay incurs some cost. If penalties are unbounded, then

this problem reduces to Total Weighted Completion Time
(TWCT), which seeks to minimize ), d;C; where d; is a
job’s weight (equivalent to decay) and Cj; is its completion
time in the schedule [1].

The off-line instances of TWT and TWCT are both
NP-hard. This paper considers on-line heuristics and their
use by server sites for value-based scheduling [3,8] in a
computational economy. A key difference in this context
is that each task has a value as well as a weight. Tardiness
problems ignore value on the premise that the scheduler is
constrained to execute every arriving task; in this case the
values are not significant, and the only goal is to minimize
loss of value as given by the weights. For example, the
best known heuristic for TWCT is Shortest Weighted Pro-
cessing Time (SWPT). SWPT prioritizes tasks according
to the task’s d; /RPTj, and is optimal for TWCT if all
tasks arrive at the same time.

However, with admission control (as in a grid econ-
omy) or bounded penalties (as in Millennium), server sites
have the option to reject or abandon any given job. In
these cases the scheduler must also consider reward or
the value to be earned by executing the job. For exam-
ple, the Millennium FirstPrice heuristic prioritizes tasks
greedily according to the expected yield per unit of re-
source per unit of processing time (yield;/RPT;). We
refer this value as unit gain or utility since it is a measure
of yield per unit of resource per unit of time. The Millen-
nium study refers to it as the task’s price in the schedule,
although the actual price charged in an economy may be
lower.

Note that it is also important to consider risk, weight,
or decay. For example, if a task is preempted and delayed
further, its yield declines according to decay;, and hence
its unit gain or price drops. Importantly, the system earns
the lower unit gain even on the resources already invested
in the task. Thus running a task is a risky investment:
if the task is delayed at some later time then the gain is
lower than expected. Our approach follows this invest-
ment metaphor: the heuristics discount future gains and
consider opportunity cost to obtain a configurable balance
of risk and reward.

4.1 Experimental Methodology

To explore the effectiveness of the scheduling heuris-
tics, we built a simulator for a bidding and task service
economy with linear value functions. The simulator in-
cludes a scheduling module that could run directly in a
grid-based batch engine.

In our experiments we use synthetic traces consisting
of a mix of single-processor compute jobs. The traces
are representative of real batch workloads as character-
ized in previous trace studies [12, 16, 18]. These studies
show that exponentially distributed inter-arrival times are



common in batch workloads. While job durations are not
always exponential, recent research indicates that dura-
tions rarely affect the relative ranking of scheduling al-
gorithms [16]. Most experiments use exponentially dis-
tributed inter-arrival times and job durations, though in
some cases we use normal distributions to reproduce and
compare to results from the Millennium study.

Previous studies give no guidance on how users value
their jobs, since no traces from deployed user-centric
batch scheduling systems are available. This is unfor-
tunate because the distribution of maximum values and
penalties has a significant impact on the results. We chose
the same bimodal distributions for value as the Millen-
nium study. The value assignments are normally dis-
tributed within high and low classes: unless otherwise
specified, 20% of jobs have a high value; /runtime; and
80% have a low value;/runtime;. The ratio of the means
for high-value and low-value job classes is the value skew
ratio. The Millennium study did not investigate the be-
havior of job mixes with varying decay rates, but we chose
to adopt a similar bimodal distribution for the decay rates.
The decay rates are assigned in a similar fashion parame-
terized by a decay skew ratio.

We limit our investigation to relative performance and
basic insights about scheduling using value and decay.
Many interacting characteristics of the job mixes play key
roles in determining the results. For example, the mag-
nitude of all results is dependent on the load factor, i.e.,
the total requested work over any interval, divided by total
capacity. Higher load factors increase the importance of
effective scheduling. Most experiments hold load factors
constant and close to saturation (load factor one), forcing
the system to delay or reject some tasks but allowing it
to complete and earn value on a majority of tasks. Other
trace properties that affect results include the distributions
of value, decay, job duration, and inter-arrival times.

5 Risk/Reward Heuristics

This section develops a parameterized heuristic called
FirstReward for value scheduling with linear value func-
tions. We first consider the problem of scheduling a se-
quence of arriving tasks to maximize value. Section 6
shows how to use the heuristic as a basis for negotiation
and admission control (task rejection).

For experiments in this section, the scheduler receives
a trace of 5000 jobs representative of the workload char-
acteristics, and the experiment runs until the system has
completed all jobs. These experiments are conservative
in that the trace parameters are stable through the exper-
iment and the scheduler must run all tasks, rather than
using its heuristics to select tasks from the mix.
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Figure 3. Yield improvement for Present Value (PV)
relative to FirstPrice for variants of a task mix used
in the Millennium study, with load factor 1. At dis-
count rate 0 PV is equivalent to FirstPrice. Yield
improves for modest increases in the discount rate
along the z-axis. The improvement is larger for
workloads with a higher variance in task value.

5.1 Discounting Future Gains

We first extend the notion of yield and unit gain to ac-
count for the risk of gains deferred to the future. For ex-
ample, given two tasks with the same unit gain and ur-
gency, it may be preferable to run the shorter task first,
since it carries a lower risk of preemption by a newly ar-
riving task before the investment pays off. Even without
preemption, the shorter task carries a lower risk of delay-
ing a valuable or urgent task that arrives later. In either
case, a risk-averse scheduler might even choose to run a
lower-yield task if it can realize its gains quickly.

Our approach is based on the notion of present value
in finance. The present value of a task ¢ is defined as:

PV; = yield; /(1 + (discount_rate x RPT;)) 3)

This formula is standard for the present value of an in-
vestment instrument with face value yield; that matures in
time RPT;: an asset with value PV earning simple inter-
est at discount_rate matures to yield a payoff yield; after
a period RPT;. The discount_rate is a tunable param-
eter: higher discount rates cause the system to discount
future gains more aggressively, making the system more
risk-averse. We introduce a heuristic called Present Value
or PV that selects jobs in order of discounted unit gain
PV;/RPT;.

Figure 3 shows the yield improvement of PV relative
to FirstPrice for a standard task mix from the Millennium
study, with varying value skew ratio. The inter-arrival



times and job durations are normally distributed, with 16
jobs submitted in a batch on each arrival. The decay rates
are the same across all tasks in each mix, and penalties
are bounded at zero. Preemption is enabled.

As we increase the discount rate, Figure 3 shows that
the PV heuristic improves yield modestly even for these
stable workloads. Discounting future gains is more im-
portant with higher value skew ratios, which imply a
higher risk that higher-value jobs arrive after resources are
committed to a long job but before the job completes.

5.2 Opportunity Cost

Next, we extend the reward heuristic to consider losses
from the opportunity cost to select a given task ¢ instead
another queued task j, causing j’s yield to decay. If task
j is more urgent than 4, i.e., its value decays more rapidly,
then it may be better to prefer task j even if it has a lower
unit gain. A task’s opportunity cost depends only on the
urgency of competing tasks. If the scheduler must even-
tually complete all tasks, then it should consider only cost
and ignore gains completely: it will obtain the full yield
for each task, minus the cost for any delay it incurs in the
schedule. More generally, the system can safely defer a
less urgent task with a low decay rate d, even if it has a
high value or a high unit gain. This is the essence of the
well-known SWPT heuristic discussed in Section 4.

The opportunity cost loss; to start a candidate task 4
at some point in the schedule is given by the aggregate
decline in yield of all competing tasks over time RPT;,
starting from that point:

n
cost; = Z d; x MIN(RPT;, expire;) 4
j=05ii

If penalties are bounded and tasks expire, then it takes
O(n) time to compute the cost for any task in a set of n
tasks, and the scheduler can find the least-cost task in at
most O(n?) time. If penalties are unbounded, then we can

simplify the formula to compute a per-unit cost:

n n
COSti/RPTZ’ = Z dj = Zd] — dz (5)
J=05i7i j=0

Since the first term is a constant for all tasks in the mix,
each scheduling step becomes O(n) at worst, and it can
take O(logn) time if the current schedule is represented
as a heap. Scheduling to minimize this per-unit cost is

equivalent to SWPT.

5.3 Balancing Gains and Opportunity Cost

It is risky to defer gains from a high-value task on the
basis of opportunity cost alone. FirstReward uses a re-
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Figure 4. Improvement of FirstReward over First-
Price as the a parameter varies, for job mixes with
bounded penalties and varying decay skew ratios.
It is more important to consider cost (low a) than
gains in this case, and the importance of cost in-
creases with the variability of the decay rates. The
hybrid heuristic works best overall, and is most ef-
fective around o = 0.3.

ward metric that combines each task’s expected gain with
its opportunity cost per unit of resource per unit of time,
weighted by a tunable parameter o

reward; = ((a)PV; — (1 — a)cost;) | RPT; (6)

The o parameter controls the degree to which the
system considers expected gains. With ¢ = 1 and
discount_rate = 0, the heuristic reduces to PV. With
a = (it reduces to a variant of SWPT. The general form
considers discounted future gains and opportunity cost to
varying degrees to balance risk and reward, given appro-
priate settings for discount_rate and .

Figure 4 shows the effect of varying «a for three traces
with bounded penalties and different decay skew ratios.
We hold the value skew ratio constant at 2; the discount
rate is 1%. Although the best a depends on the proper-
ties of the task mix, other experiments have shown that
generally the ideal is & < 0.5. Interestingly, SWPT
(e = 0) is a good approximation to minimize cost even
with bounded penalties. However, gain is also a good pre-
dictor of cost when penalties are bounded: with high «
the heuristic biases against low-value jobs, which have
the least value to lose. Since decay rates are not corre-
lated with value, the low-value jobs tend to reach their
bounds and expire faster; once a task has expired it may
be deferred to the end of the schedule with no further cost.

In contrast, Figure 5 shows that there is little benefit
to considering gain when the penalties are unbounded. In
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Figure 5. This experiment is identical to Figure 4,
but the penalties are unbounded. In this case, where
the system must accept and complete all jobs, it is
never useful to consider gains, only cost. Note that
the magnitude of the improvement relative to First-
Price is much larger with unbounded penalties.

these cases, the relative advantage of a cost-based heuris-
tic can be an order of magnitude or more depending on
the urgency and decay skew in the task mix. Again, in
these experiments the scheduler is constrained to execute
all submitted tasks. The next section considers use of
these heuristics for server bidding and admission control,
where it is always important to balance risk and reward.

6 Negotiation and Admission Control

We propose a market-based task service in which
clients submit task bids to server sites or brokers, spec-
ifying each task i’s expected run time and its value func-
tion as a tuple (runtime;, value;, decay;, bound;). Each
site may choose to accept or reject any submitted task. If
it accepts the task, it negotiates to establish a price and
expected completion time.

Each site maintains a pool of tasks it is contracted to
run, and a candidate schedule for its n pending tasks. It
executes the following procedure for each proposed task:

e Integrate the task into the current candidate sched-
ule according to the heuristic (e.g., FirstReward), as
described in Section 5.

e Determine the expected yield for the task if it is ac-
cepted, by evaluating its value function for its ex-
pected completion time in the candidate schedule.

e Apply an acceptance heuristic to determine if it is
worthwhile to accept the task into the current task
mix, as described below.

o If the task is worthwhile, then accept the client’s bid
and issue a server bid to the client. The server bid
represents the expected completion time for the task
in the candidate schedule, and the expected price to
run the task. Our site policies act as if the price is
derived directly from the original value function, i.e.,
client bid value and price are equivalent, although
a pricing strategy may propose a different price as
discussed in Section 2.

e If the contract is accepted by the client, then incor-
porate the task into the schedule and execute it. It is
possible that later arrivals will delay its completion
time, in which case the site receives a lower price or
pays a penalty as described in Section 3.
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Figure 6. Admission control allows sites to select
tasks with high reward and low risk in the current
candidate schedule. The graph gives the yield per
unit of time for task streams with increasing loads
along the x-axis, and different values of a in the
FirstReward heuristic.

The acceptance heuristic should consider both the po-
tential reward and the degree to which the task would con-
strain acceptance of future tasks into the mix. For exam-
ple, urgent tasks incur more risk because they increase
the opportunity cost to run any new high-yield tasks that
arrive later, and so decrease their reward. We propose a
simple acceptance heuristic based on the slack for a sub-
mitted task +—the amount of additional delay (beyond its
place in the candidate schedule) that the task can incur
before its reward falls below some yield threshold. With-
out loss of generality, we take the yield threshold equal
to zero, i.e., the point at which the task loses the system
money, either by incurring a penalty or by delaying other
accepted tasks. The slack is computed from the current
point in the candidate schedule:



PV, — cost;
slack; = — Vi T cosh (7
decay;
The cost of running the task is an estimate of the im-
pact on those tasks j that are behind ¢ in the candidate
schedule, i.e., those tasks that will be delayed more than

expected by accepting this new task i:

cost; = Z decay; * runtime; ®)
J

The acceptance policy rejects tasks whose slack falls
below some slack threshold. Under higher load, with
more tasks queued, new tasks will tend to be placed fur-
ther back in the schedule, and will also tend to have more
tasks behind them. Thus high load tends to both reduce
the potential yield and increase the cost of each new task,
both of which reduce its slack. The slack also captures
the risk of accepting the task, as determined by its decay
rate and its position in the schedule. Accepting a low-
slack task constrains the site’s flexibility to accept other
higher-value tasks in the future, since the gains for those
tasks would be partially offset by the additional oppor-
tunity cost to run them, i.e., the yield loss and potential
penalty for the low-slack task. This opportunity cost may
force the site to reject other profitable tasks later because
the cost of delaying an urgent task is too high.

Figure 6 shows the effect of admission control on the
value earned per unit time. Each point is for a repre-
sentative trace of 5000 submitted jobs with exponentially
distributed task durations and inter-arrival times, and un-
bounded penalties. The value skew ratio is 3, and the de-
cay skew ratio is 5. The jobs arrive over shorter time inter-
vals as load factor increases along the z-axis. The system
runs until the scheduler completes all accepted jobs; we
then obtain the average yield per unit time over the active
interval. The lines on the graph show the effect of dif-
ferent settings for a, which controls the degree to which
FirstReward considers gains (high a) vs. cost (low ).
The discount rate is 1%, and the slack threshold is 180.

We can see from Figure 6 that admission control is crit-
ical to maintain the yield rate under heavy load. Without
admission control, the system is forced to accept too many
tasks, and delays and penalties eat away at gains. With ad-
mission control we see that increasing load factor initially
increases the yield per unit time, since the scheduler has
more tasks to choose from and is free to reject the tasks
that are least worthwhile—relative to its current mix—
without penalty. Note that the admission control heuristic
considers both gains and decay rate in its computation of
slack time. Even so, in this unbounded penalty case it is
still more important to order submitted tasks in the can-
didate schedule to minimize their costs before computing
their slack time.
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Figure 7. The admission control (slack) threshold
has a peak that balances risk and reward for a given
load factor. It is more important to set the slack
threshold correctly at higher load levels.

Our last experiment, Figure 7, shows how the slack
threshold affects value earned by a schedule. The task
mixes are similar to Figure 6, but we vary the admission
control (slack) threshold along the z-axis, for selected
load factors. Higher load offers the potential for higher
yields, since the server can “cherry pick” the task mix;
however, higher load also presents higher risk if the ad-
mission control heuristic is ineffective. The graph shows
that the ideal slack threshold changes depending on the
load factor: higher load requires a more risk-averse ad-
mission control policy that applies a higher slack thresh-
old. Setting the threshold is a balance of risk and reward;
a high threshold prevents commitments that could incur
penalties while a low threshold commits to potentially
costly tasks.

7 Related Work

Cluster batch schedulers. Common batch schedulers
such as GridEngine [21] and LSF [17] support variants
of priority FCFS scheduling. LSF, as an example, pro-
vides hierarchical grouping and proportional share mech-
anisms. These weighting and priority mechanisms may
be viewed as coarse-grained assignments of value to jobs.
User-centric scheduling enables fine-grained assignments
of value and urgency for customers bidding for task ser-
vice in a computational economy. Millenium [9, 10] ap-
plied this idea to a cluster batch scheduler, in which the
scheduler is constrained to accept all jobs from its user
community. Stoica et. al. [19] considered economic
scheduling for parallel jobs.

Job scheduling. The literature on scheduling algo-
rithms is too large to survey here. Karp first proposed



the Job Scheduling with Deadlines (JSD) problem in 1972
[14]. JSD was proved to be NP-complete in the num-
ber of jobs by reduction from the 0/1-Knapsack prob-
lem. The problem we consider has no deadlines, but im-
poses variable costs for any delay, which is amenable to
heuristic solutions. As discussed in Section 4, the prob-
lem may be viewed as an extension of Total Weighted
Completion Time [1] incorporating value as well as decay
weights. Related forms of value-based scheduling have
also appeared in real-time systems [3, 8]. We apply sim-
ple heuristics based on a financial metaphor of risk and
reward, and show how to apply them in a grid economy.

Grid scheduling. Many systems schedule tasks across
sites in a federated grid. For example, the Superscheduler
Architecture [18] selects a server site for each task based
on estimates of wait time, e.g., under FCFS schedules at
each site. Our approach enables the client or broker to
select a server site that balances wait time and value, and
reorders tasks at each site based on value and urgency. Itis
an open question how to extend our approach to consider
I/O costs and task placement for I/0, as in BAD-FS [2].

Federated computational economies.  Previous
works on computational economies for federated resource
allocation include Spawn [22], Mariposa [20], the G-
commerce framework [24], and Nimrod-G [4]. Our pro-
posal is similar in that it is based on two-phase negotia-
tions between server sites and buyers endowed with bud-
gets and knowledge of their resource demands.

Several of these works have examined dynamics of
computational markets based on various pricing and auc-
tion systems. For example, Spawn [22] was a landmark
system based on second-price Vickrey auctions, an ap-
proach that many other systems have followed. Pricing
and market dynamics are beyond the scope of this paper,
although our heuristics are compatible with other pricing
schemes. A key focus of our work is to extend these eco-
nomic approaches to incorporate penalties for violating
contractual obligations, and to develop strategies that bal-
ance risk and reward with respect to current commitments
when accepting and scheduling tasks.

Service markets and service quality. In contrast to
most of these systems, the sites in our system sell a ser-
vice rather than raw resources such as blocks of CPU
time. Service markets introduce a new dimension: the ser-
vice may be provided at a range of quality levels. Mari-
posa [20] is similar in that it uses economic bidding to
distribute queries in a database system, in which the lo-
cation of stored data is significant. Our approach follows
Mariposa in bidding for service based on user value that
decays with service delays. Contractual agreements for
service quality are essential for computing utilities and
the next-generation grid [11].

One goal of our work is to create a foundation for ser-
vice providers to buy or sell raw resources in an under-

lying resource market, based on current demand for the
service they provide. Our proposed task service may use
its internal measures of per-unit gain and risk as a basis for
its own pricing and bidding strategy in a resource market.
That is, the task service may act as a reseller of resources
acquired from a shared resource pool as envisioned in our
previous work on SHARP [13], Muse [6], and Cluster-on-
Demand [7]. Ultimately, the service provider must estab-
lish a utility function capturing the value it assigns to the
resources it might acquire, based on the improvements in
service quality and yield that would result. Resource al-
location may then be viewed as a bidding problem [5] or
an optimization problem [15].

8 Conclusion

This paper develops heuristics for task scheduling and
admission control in a market-based grid task service, and
illustrates their behavior under representative conditions.
The foundation for the market-based approach is user-
centric or value-based scheduling, which prioritizes tasks
according to a user-specified measure of value. Since
user value corresponds to what the user will pay for the
task service, scheduling to maximize user value allows a
market-based task service to maximize its yield. The ur-
gency of a task is captured by the rate at which its value
decays with increasing wait times.

Our approach is based on a financial metaphor for rea-
soning about scheduling choices in a service economy.
We propose a scheduling heuristic called FirstReward that
is parameterized to balance the risk or cost of a task with
the reward of completing it. One conclusion of our study
is that cost and risk are often more important than gains in
determining scheduling effectiveness, although heuristics
that consider gains to some degree are more effective in
some cases, particularly when penalties are bounded.

This paper is a step towards understanding the balance
of risk and reward for scheduling based on fine-grained
expressions of value. The contributions include: detailing
the different areas of scheduling risk, defining heuristics
to mitigate those risks, exploring the parameter space for
a general scheduling heuristic, and showing how value-
based schedulers can drive server bidding and admission
control in a computational economy.
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