
Sharing Networked Resources with Brokered Leases

David Irwin, Jeffrey Chase, Laura Grit, Aydan Yumerefendi, and David Becker
Duke University

{irwin,chase,grit,aydan,becker}@cs.duke.edu

Kenneth G. Yocum
University of California, San Diego

kyocum@cs.ucsd.edu

Abstract
This paper presents the design and implementation of

Shirako, a system for on-demand leasing of shared net-
worked resources. Shirako is a prototype of a service-
oriented architecture for resource providers and con-
sumers to negotiate access to resources over time, arbi-
trated by brokers. It is based on a general lease abstrac-
tion: a lease represents a contract for some quantity of a
typed resource over an interval of time. Resource types
have attributes that define their performance behavior and
degree of isolation.

Shirako decouples fundamental leasing mechanisms
from resource allocation policies and the details of man-
aging a specific resource or service. It offers an exten-
sible interface for custom resource management policies
and new resource types. We show how Shirako enables
applications to lease groups of resources across multiple
autonomous sites, adapt to the dynamics of resource com-
petition and changing load, and guide configuration and
deployment. Experiments with the prototype quantify the
costs and scalability of the leasing mechanisms, and the
impact of lease terms on fidelity and adaptation.

1 Introduction
Managing shared cyberinfrastructure resources is a funda-
mental challenge for service hosting and utility computing
environments, as well as the next generation of network
testbeds and grids. This paper investigates an approach
to networked resource sharing based on the foundational
abstraction of resource leasing.

We present the design and implementation of Shirako,
a toolkit for a brokered utility service architecture.1 Shi-
rako is based on a common, extensible resource leas-
ing abstraction that can meet the evolving needs of sev-
eral strains of systems for networked resource sharing—
whether the resources are held in common by a commu-

1This research is supported by the National Science Foundation
through ANI-0330658 and CNS-0509408, and by IBM, HP Labs, and
Network Appliance. Laura Grit is a National Physical Science Consor-
tium Fellow.

nity of shareholders, offered as a commercial hosting ser-
vice to paying customers, or contributed in a reciprocal
fashion by self-interested peers. The Shirako architecture
reflects several objectives:
• Autonomous providers. A provider is any adminis-

trative authority that controls resources; we refer to
providers as sites. Sites may contribute resources to
the system on a temporary basis, and retain ultimate
control over their resources.

• Adaptive guest applications. The clients of the leas-
ing services are hosted application environments and
managers acting on their behalf. We refer to these
as guests. Guests use programmatic lease service
interfaces to acquire resources, monitor their status,
and adapt to the dynamics of resource competition or
changing demand (e.g., flash crowds).

• Pluggable resource types. The leased infrastructure
includes edge resources such as servers and storage,
and may also include resources within the network
itself. Both the owning site and the guest supply
type-specific configuration actions for each resource;
these execute in sequence to setup or tear down re-
sources for use by the guest, guided by configuration
properties specified by both parties.

• Brokering. Sites delegate limited power to allo-
cate their resource offerings—possibly on a tempo-
rary basis—by registering their offerings with one
or more brokers. Brokers export a service interface
for guests to acquire resources of multiple types and
from multiple providers.

• Extensible allocation policies. The dynamic assign-
ment of resources to guests emerges from the inter-
action of policies in the guests, sites, and brokers.
Shirako defines interfaces for resource policy mod-
ules at each of the policy decision points.

Section 2 gives an overview of the Shirako leasing ser-
vices, and an example site manager for on-demand cluster
sites. Section 3 describes the key elements of the sys-
tem design: generic property sets to describe resources
and guide their configuration, scriptable configuration ac-

BrokerService Manager

Site A
Authority

Site B
Authority

physical
servers

virtual
machines

(small)
… storage

shares
virtual

machines
(large)

…
site inventory site inventory

guest application
(e.g., task queue, Web service)

leased resources (slice)

large
(site B)

virtual machines
small

(site A) Leasing Core

negotiate contract terms
configure host resources

instantiate guests
monitoring

event handling
lease groups

site
A
A
B
B
…

type
physical
small VM
storage
large VM
…

units
6
6
6
6

…

resource
inventory

Figure 1: An example scenario with a guest application ac-
quiring resources from two cluster sites through a broker. Each
resource provider site has a server (site authority) that controls
its resources, and registers inventories of offered resources with
the broker. A service manager negotiates with the broker and
authorities for leases on behalf of the guest. A common lease
package manages the protocol interactions and lease state for
all actors. The Shirako leasing core is resource-independent,
application-independent, and policy-neutral.

tions, support for lease extends with resource flexing, and
abstractions for grouping related leases. Section 4 sum-
marizes the implementation, and Section 5 presents ex-
perimental results from the prototype. The experiments
evaluate the overhead of the leasing mechanisms and the
use of leases to adapt to changes in demand. Section 6
sets Shirako in context with related work.

2 Overview
Shirako’s leasing architecture derives from the SHARP
framework for secure resource peering and distributed re-
source allocation [13]. The participants in the leasing pro-
tocols are long-lived software entities (actors) that inter-
act over a network to manage resources.
• Each guest has an associated service manager that

monitors application demands and resource status,
and negotiates to acquire leases for the mix of re-
sources needed to host the guest. Each service man-
ager requests and maintains leases on behalf of one
or more guests, driven by its own knowledge of ap-
plication behavior and demand.

• An authority controls resource allocation at each re-
source provider site or domain, and is responsible for
enforcing isolation among multiple guests hosted on
the resources under its control.

• Brokers (agents) maintain inventories of resources
offered by sites, and match requests with their re-

source supply. A site may maintain its own broker
to keep control of its resources, or delegate partial,
temporary control to third-party brokers that aggre-
gate resource inventories from multiple sites.

These actors may represent different trust domains and
identities, and may enter into various trust relationships
or contracts with other actors.

2.1 Cluster Sites
One goal of this paper is to show how dynamic, brokered
leasing is a foundation for resource sharing in networked
clusters. For this purpose we introduce a cluster site man-
ager to serve as a running example. The system is an im-
plementation of Cluster-On-Demand (COD [7]), rearchi-
tected as an authority-side Shirako plugin.

The COD site authority exports a service to allocate
and configure virtual clusters from a shared server cluster.
Each virtual cluster comprises a dynamic set of nodes and
associated resources assigned to some guest at the site.
COD provides basic services for booting and imaging,
naming and addressing, and binding storage volumes and
user accounts on a per-guest basis. In our experiments the
leased virtual clusters have an assurance of performance
isolation: the nodes are either physical servers or Xen [2]
virtual machines with assigned shares of node resources.

Figure 1 depicts an example of a guest service manager
leasing a distributed cluster from two COD sites. The site
authorities control their resources and configure the vir-
tual clusters, in this case by instantiating nodes running a
guest-selected image. The service manager deploys and
monitors the guest environment on the nodes. The guest
in this example may be a distributed service or applica-
tion, or a networked environment that further subdivides
the resources assigned to it, e.g., a cross-instititutional
grid or content distribution network.

The COD project began in 2001 as an outgrowth of our
work on dynamic resource provisioning in hosting cen-
ters [6]. Previous work [7] describes an earlier COD pro-
totype, which had an ad hoc leasing model with built-in
resource dependencies, a weak separation of policy and
mechanism, and no ability to delegate or extend provi-
sioning policy or to coordinate resource usage across fed-
erated sites. Our experience with COD led us to pursue a
more general lease abstraction with distributed, account-
able control in SHARP [13], which was initially proto-
typed for PlanetLab [4]. We believe that dynamic leasing
is a useful basis to coordinate resource sharing for other
systems that create distributed virtual execution environ-
ments from networked virtual machines [9, 17, 18, 19, 20,
25, 26, 28].

2.2 Resource Leases
The resources leased to a guest may span multiple sites
and may include a diversity of resource types in differing
quantities. Each SHARP resource has a type with associ-

Site Authority

Join/leave
handlers,
monitoring

Handlers for
setup and
teardown,
monitoring

Assignment
policy

Application
resource

request policy

redeem ticket for lease

lease update

export ticketsrequest ticket

ticket update
Service Manager

leasing
API

lease
event

interface

leasing
service

interface

lease
status
notify

broker service interface

Plug-in broker policies for resource
selection, provisioning, and

admission control

Broker

Figure 2: Summary of protocol interactions and extension points for the leasing system. An application-specific service manager
uses the lease API to request resources from a broker. The broker issues a ticket for a resource type, quantity, and site location that
matches the request. The service manager requests a lease from the owning site authority, which selects the resource units, configures
them (setup), and returns a lease to the service manager. The arriving lease triggers a join event for each resource unit joining the
guest; the join handler installs the new resources into the application. Plug-in modules include the broker provisioning policy, the
authority assignment policy, and the setup and join event handlers.

ated attributes that characterize the function and power of
instances or units of that type. Resource units with the
same type at a site are presumed to be interchangeable.

Each lease binds a set of resource units from a site (a
resource set) to a guest for some time interval (term). A
lease is a contract between a site and a service manager:
the site makes the resources available to the guest identity
for the duration of the lease term, and the guest assumes
responsibility for any use of the resources by its identity.
In our current implementation each lease represents some
number of units of resources of a single type.

Resource attributes define the performance and pre-
dictability that a lease holder can expect from the re-
sources. Our intent is that the resource attributes quantify
capability in an application-independent way. For exam-
ple, a lease could represent a reservation for a block of
machines with specified processor and memory attributes
(clock speed etc.), or a storage partition represented by
attributes such as capacity, spindle count, seek time, and
transfer speed. Alternatively, the resource attributes could
specify a weak assurance, such as a best-effort service
contract or probabilistically overbooked shares.

2.3 Brokers
Guests with diverse needs may wish to acquire and man-
age multiple leases in a coordinated way. In particular,
a guest may choose to aggregate resources from multiple
sites for geographic dispersion or to select preferred sup-
pliers in a competitive market.

Brokers play a key role because they can coordinate
resource allocation across sites. SHARP brokers are re-
sponsible for provisioning: they determine how much of
each resource type each guest will receive, and when, and
where. The sites control how much of their inventory is
offered for leasing, and by which brokers, and when. The
site authorities also control the assignment of specific re-

source units at the site to satisfy requests approved by the
brokers. This decoupling balances global coordination (in
the brokers) with local autonomy (in the site authorities).

Figure 2 depicts a broker’s role as an intermediary to
arbitrate resource requests. The broker approves a request
for resources by issuing a ticket that is redeemable for a
lease at some authority, subject to certain checks at the
authority. The ticket specifies the resource type and the
number of units granted, and the interval over which the
ticket is valid (the term). Sites issue tickets for their re-
sources to the brokers; the broker arbitration policy may
subdivide any valid ticket held by the broker. All SHARP
exchanges are digitally signed, and the broker endorses
the public keys of the service manager and site authority.
Previous work presents the SHARP delegation and secu-
rity model in more detail, and mechanisms for account-
able resource contracts [13].

2.4 System Goals
Shirako is a toolkit for constructing service managers,
brokers, and authorities, based on a common, extensible
leasing core. A key design principle is to factor out any
dependencies on resources, applications, or resource man-
agement policies from the core. This decoupling serves
several goals:
• The resource model should be sufficiently general

for other resources such as bandwidth-provisioned
network paths, network storage objects, or sensors.
It should be possible to allocate and configure di-
verse resources alone or in combination.

• Shirako should support development of guest appli-
cations that adapt to changing conditions. For exam-
ple, a guest may respond to load surges or resource
failures by leasing additional resources, or it may ad-
just to contention for shared resources by deferring
work or reducing service quality. Resource sharing

expands both the need and the opportunity for adap-
tation.

• Shirako should make it easy to deploy a range of ap-
proaches and policies for resource allocation in the
brokers and sites. For example, Shirako could serve
as a foundation for a future resource economy in-
volving bidding, auctions, futures reservations, and
combinatorial aggregation of resource bundles. The
software should also run in an emulation mode, to
enable realistic experiments at scales beyond the
available dedicated infrastructure.

Note that Shirako has no globally trusted core; rather,
one contribution of the architecture is a clear factoring of
powers and responsibilities across a dynamic collection of
participating actors, and across pluggable policy modules
and resource drivers within the actor implementations.

3 Design
Shirako comprises a generic leasing core with plug-in in-
terfaces for extension modules for policies and resource
types. The core manages state storage and recovery for
the actors, and mediates their protocol interactions. Each
actor may invoke primitives in the core to initiate lease-
related actions at a time of its choosing. In addition, actor
implementations supply plug-in extension modules that
are invoked from the core in response to specific events.
Most such events are associated with resources transfer-
ring in or out of a slice—a logical grouping for resources
held by a given guest.

Figure 2 summarizes the separation of the core from
the plugins. Each actor has a mapper policy module that
is invoked periodically, driven by a clock. On the service
manager, the mapper determines when and how to redeem
existing tickets, extend existing leases, or acquire new
leases to meet changing demand. On the broker and au-
thority servers, the mappers match accumulated pending
requests with resources under the server’s control. The
broker mapper deals with resource provisioning: it prior-
itizes ticket requests and selects resource types and quan-
tities to fill them. The authority mapper assigns specific
resource units from its inventory to fill lease requests that
are backed by a valid ticket from an approved broker.

Service managers and authorities register resource
driver modules defining resource-specific configuration
actions. In particular, each resource driver has a pair of
event handlers that drive configuration and membership
transitions in the guest as resource units transfer in or out
of a slice.
• The authority invokes a setup action to configure

(prime) each new resource unit assigned to a slice
by the mapper. The authority issues the lease when
all of its setup actions have completed.

• The service manager invokes a join action to notify
the guest of each new resource unit. Join actions are

driven by arriving lease updates.
• Leave and teardown actions close down resource

units at the guest and site respectively. These ac-
tions are triggered by a lease expiration or resource
failure.

3.1 Properties
Shirako actors must exchange context-specific informa-
tion to guide the policies and configuration actions. For
example, a guest expresses the resources requested for a
ticket, and it may have specific requirements for configur-
ing those resources at the site. It is difficult to maintain a
clean decoupling, because this resource-specific or guest-
specific information passes through the core.

Shirako represents all such context-specific informa-
tion in property lists attached as attributes in requests,
tickets, and leases. The property lists are sets of (key,
value) string pairs that are opaque to the core; their mean-
ing is a convention among the plugins. Property sets flow
from one actor to another and through the plugins on each
of the steps and protocol exchanges depicted in Figure 2.
• Request properties specify desired attributes and/or

value for resources requested from a broker.
• Resource properties attached to tickets give the at-

tributes of the assigned resource types.
• Configuration properties attached to redeem requests

direct how the resources are to be configured.
• Unit properties attached to each lease define addi-

tional attributes for each resource unit assigned.

3.2 Broker Requests
The Shirako prototype includes a basic broker mapper
with several important features driven by request prop-
erties. For example, a service manager may set request
properties to define a range of acceptable outcomes.
• Marking a request as elastic informs the broker

that the guest will accept fewer resource units if the
broker is unable to fill its entire request.

• Marking a request as deferrable informs the bro-
ker that the guest will accept a later start time if its
requested start time is unavailable; for example, a
service manager may request resources for an ex-
periment, then launch the experiment automatically
when the resources are available.

Request properties may also express additional con-
straints on a request. For example, the guest may mark
a set of ticket requests as members of a request group, in-
dicating that the broker must fill the requests atomically,
with the same terms. The service manager tags one of
its lease requests as the group leader, specifying a unique
groupID and a leaseCount property giving the num-
ber of requests in the group. Each request has a groupID
property identifying its request group, if any.

Resource type properties: passed from broker to service manager
machine.memory Amount of memory for nodes of this type 2GB
machine.cpu CPU identifying string for nodes of this type Intel Pentium4
machine.clockspeed CPU clock speed for nodes of this type 3.2 GHz
machine.cpus Number of CPUs for nodes of this type 2

Configuration properties: passed from service manager to authority
image.id Unique identifier for an OS kernel image selected by the guest

and approved by the site authority for booting
Debian Linux

subnet.name Subnet name for this virtual cluster cats
host.prefix Hostname prefix to use for nodes from this lease cats
host.visible Assign a public IP address to nodes from this lease? true
admin.key Public key authorized by the guest for root/admin access for

nodes from this lease
[binary encoded]

Unit properties: passed from authority to service manager
host.name Hostname assigned to this node cats01.cats.cod.duke.edu
host.privIPaddr Private IP address for this node 172.16.64.8
host.pubIPaddr Public IP address for this node (if any) 152.3.140.22
host.key Host public key to authenticate this host for SSL/SSH [binary encoded]
subnet.privNetmask Private subnet mask for this virtual cluster 255.255.255.0

Table 1: Selected properties used by Cluster-on-Demand, and sample values.

When all leases for a group have arrived, the broker
schedules them for a common start time when it can sat-
isfy the entire group request. Because request groups
are implemented within a broker—and because SHARP
brokers have allocation power—a co-scheduled request
group can encompass a variety of resource types across
multiple sites. The default broker requires that request
groups are always deferrable and never elastic,
so a simple FCFS scheduling algorithm is sufficient.

The request properties may also guide resource selec-
tion and arbitration under constraint. For example, we
use them to encode bids for economic resource manage-
ment [16]. They also enable attribute-based resource se-
lection of types to satisfy a given request. A number of
projects have investigated the matching problem, most re-
cently in SWORD [22].

3.3 Configuring Virtual Clusters
The COD plugins use the configuration and unit prop-
erties to drive virtual cluster configuration (at the site)
and application deployment (in the guest). Table 1 lists
some important properties used in COD. These property
names and legal values are conventions among the pack-
age classes for COD service managers and authorities.

To represent the wide range of actions that may be
needed, the COD resource driver event handlers are
scripted using Ant [1], an open-source OS-independent
XML scripting package. Ant scripts invoke a library of
packaged tasks to execute commands remotely and to
manage network elements and application components.
Ant is in wide use, and new plug-in tasks continue to
become available. A Shirako actor may load XML Ant
scripts dynamically from user-specified files, and actors
may exchange Ant scripts across the network and execute
them directly. When an event handler triggers, Ant substi-
tutes variables within the script with the values of named

properties associated with the node, its containing lease,
and its containing slice.

The setup and teardown event handlers execute within
the site’s trusted computing base (TCB). A COD site
authority controls physical boot services, and it is em-
powered to run commands within the control domain on
servers installed with a Xen hypervisor, to create new vir-
tual machines or change the resources assigned to a virtual
machine. The site operator must approve any authority-
side resource driver scripts, although it could configure
the actor to accept new scripts from a trusted repository
or service manager.

Several configuration properties allow a COD service
manager to guide authority-side configuration.
• OS boot image selection. The service manager

passes a string to identify an OS configuration from
among a menu of options approved by the site au-
thority as compatible with the machine type.

• IP addressing. The site assigns public IP addresses
to nodes if the visible property is set.

• Secure node access. The site and guest exchange
keys to enable secure, programmatic access to the
leased nodes using SSL/SSH. The service manager
generates a keypair and passes the public key as
a configuration property. The site’s setup handler
writes the public key and a locally generated host
private key onto the node image, and returns the host
public key as a unit property.

The join and leave handlers execute outside of the site
authority’s TCB; they operate within the isolation bound-
aries that the authority has established for the slice and
its resources. The unit properties returned for each node
include the names and keys to allow the join handler to
connect to the node to initiate post-install actions. In
our prototype, a service manager is empowered to con-
nect with root access and install arbitrary application soft-

ware. The join and leave event handlers also interact with
other application components to reconfigure the applica-
tion for membership changes. For example, the handlers
could link to standard entry points of a Group Member-
ship Service that maintains a consistent view of member-
ship across a distributed application.

Ant has a sizable library of packaged tasks to build,
configure, deploy, and launch software packages on vari-
ous operating systems and Web application servers. The
COD prototype includes service manager scripts to launch
applications directly on leased resources, launch and dy-
namically resize cluster job schedulers (SGE and PBS),
instantiate and/or automount NFS file volumes, and load
Web applications within a virtual cluster.

3.4 Extend and Flex
There is a continuum of alternatives for adaptive resource
allocation with leases. The most flexible model would
permit actors to renegotiate lease contracts at any time. At
the other extreme, a restrictive model might disallow any
changes to a contract once it is made. Shirako leases may
be extended (renewed) by mutual agreement. Peers may
negotiate limited changes to the lease at renewal time, in-
cluding flexing the number of resource units. In our pro-
totype, changes to a renewed lease take effect only at the
end of its previously agreed term.

The protocol to extend a lease involves the same pattern
of exchanges as to initiate a new lease (see Figure 2). The
service manager must obtain a new ticket from the bro-
ker; the ticket is marked as extending an existing ticket
named by a unique ID. Renewals maintain the continuity
of resource assignments when both parties agree to ex-
tend the original contract. An extend makes explicit that
the next holder of a resource is the same as the current
holder, bypassing the usual teardown/setup sequence at
term boundaries. Extends also free the holder from the
risk of a forced migration to a new resource assignment—
assuming the renew request is honored.

With support for resource flexing, a guest can obtain
these benefits even under changing demand. Without flex
extends, a guest with growing resource demands is forced
to instantiate a new lease for the residual demand, leading
to a fragmentation of resources across a larger number of
leases. Shrinking a slice would force a service manager
to vacate a lease and replace it with a smaller one, inter-
rupting continuity.

Flex extends turned out to be a significant source of
complexity. For example, resource assignment on the au-
thority must be sequenced with care to process shrinking
extends first, then growing extends, then new redeems.
One drawback of our current system is that a Shirako ser-
vice manager has no general way to name victim units to
relinquish on a shrinking extend; COD overloads config-
uration properties to cover this need.

Common lease core 2755
Actor state machines 1337
Cluster-on-Demand 3450

Policy modules (mappers) 1941
Calendar support for mappers 1179

Utility classes 1298

Table 2: Lines of Java code for Shirako/COD.

3.5 Lease Groups
Our initial experience with SHARP and Shirako convinced
us that associating leases in lease groups as an important
requirement. Section 3.2 outlines the related concept of
request groups, in which a broker co-schedules grouped
requests. Also, since the guest specifies properties on a
per-lease basis, it is useful to obtain separate leases to al-
low diversity of resources and their configuration. Config-
uration dependencies among leases may impose a partial
order on configuration actions—either within the author-
ity (setup) or within the service manager (join), or both.
For example, consider a batch task service with a master
server, worker nodes, and a file server obtained with sepa-
rate leases: the file server must initialize before the master
can setup, and the master must activate before the workers
can join the service.

The Shirako leasing core enforces a specified config-
uration sequencing for lease groups on the service man-
ager. It represents dependencies as a restricted form of
DAG: each lease has at most one redeem predecessor and
at most one join predecessor. If there is a redeem pre-
decessor and the service manager has not yet received a
lease for it, then it transitions the ticketed request into
a blocked state, and does not redeem the ticket until the
predecessor lease arrives, indicating that its setup is com-
plete. Also, if a join predecessor exists, the service man-
ager holds the lease in a blocked state and does not fire its
join until the join predecessor is active. In both cases, the
core upcalls a plugin method before transitioning out of
the blocked state; the upcall gives the plugin an opportu-
nity to manipulate properties on the lease before it fires,
or to impose more complex trigger conditions.

4 Implementation
A Shirako deployment runs as a dynamic collection of
interacting peers that work together to coordinate asyn-
chronous actions on the underlying resources. Each ac-
tor is a multithreaded server written in Java and running
within a Java Virtual Machine. Actors communicate using
an asynchronous peer-to-peer messaging model through a
replaceable stub layer. SOAP stubs allow actors running
in different JVMs to interact using Web Services proto-
cols (Apache Axis).

Our goal was to build a common toolkit for all actors
that is understandable and maintainable by one person.
Table 2 shows the number of lines of Java code (semi-

colon lines) in the major system components of our pro-
totype. In addition, there is a smaller body of code, def-
initions, and stubs to instantiate groups of Shirako ac-
tors from XML descriptors, encode and decode actor ex-
changes using SOAP messaging, and sign and validate
SHARP-compliant exchanges. Shirako also includes a few
dozen Ant scripts, averaging about 40 lines each, and
other supporting scripts. These scripts configure the vari-
ous resources and applications that we have experimented
with, including those described in Section 5. Finally, the
system includes a basic Web interface for Shirako/COD
actors; it is implemented in about 2400 lines of Velocity
scripting code that invokes Java methods directly.

The prototype makes use of several other open-source
components. It uses Java-based tools to interact with re-
sources when possible, in part because Java exception
handling is a basis for error detection, reporting, attri-
bution, and logging of configuration actions. Ant tasks
and the Ant interpreter are written in Java, so the COD
resource drivers execute configuration scripts by invok-
ing the Ant interpreter directly within the same JVM. The
event handlers often connect to nodes using key-based lo-
gins through jsch, a Java secure channel interface (SSH2).
Actors optionally use jldap to interface to external LDAP
repositories for recovery. COD employs several open-
source components for network management based on
LDAP directory servers (RFC 2307 schema standard) as
described below.

4.1 Lease State Machines
The Shirako core must accommodate long-running asyn-
chronous operations on lease objects. For example, the
brokers may delay or batch requests arbitrarily, and the
setup and join event handlers may take seconds, minutes,
or hours to configure resources or integrate them into a
guest environment. A key design choice was to struc-
ture the core as a non-blocking event-based state machine
from the outset, rather than representing the state of pend-
ing operations on the stacks of threads, e.g., blocked in
RPC calls. The lease state represents any pending action
until a completion event triggers a state transition. Each
of the three actor roles has a separate state machine.

Figure 3 illustrates typical state transitions for a re-
source lease through time. The state for a brokered lease
spans three interacting state machines, one in each of the
three principal actors involved in the lease: the service
manager that requests the resources, the broker that provi-
sions them, and the authority that owns and assigns them.
Thus the complete state space for a lease is the cross-
product of the state spaces for the actor state machines.
The state combinations total about 360, of which about
30 are legal and reachable.

The lease state machines govern all functions of the
core leasing package. State transitions in each actor are
initiated by arriving requests or lease/ticket updates, and

by events such as the passage of time or changes in re-
source status. Actions associated with each transition may
invoke a plugin, commit modified lease state and proper-
ties to an external repository, and/or generate a message
to another actor. The service manager state machine is the
most complex because the brokering architecture requires
it to maintain ticket status and lease status independently.
For example, the ActiveTicketed state means that the lease
is active and has obtained a ticket to renew, but it has not
yet redeemed the ticket to complete the lease extension.
The broker and authority state machines are independent;
in fact, the authority and broker interact only when re-
source rights are initially delegated to the broker.

The concurrency architecture promotes a clean separa-
tion of the leasing core from resource-specific code. The
resource handlers—setup/teardown, join/leave, and sta-
tus probe calls—do not hold locks on the state machines
or update lease states directly. This constraint leaves
them free to manage their own concurrency, e.g., by using
blocking threads internally. For example, the COD node
drivers start a thread to execute a designated target in an
Ant script. In general, state machine threads block only
when writing lease state to a repository after transitions,
so servers need only a small number of threads to provide
sufficient concurrency.

4.2 Time and Emulation
Some state transitions are triggered by timer events, since
leases activate and expire at specified times. For instance,
a service manager may schedule to shutdown a service on
a resource before the end of the lease. Because of the im-
portance of time in the lease management, actor clocks
should be loosely synchronized using a time service such
as NTP. While the state machines are robust to timing er-
rors, unsynchronized clocks can lead to anomalies from
the perspective of one or more actors: requests for leases
at a given start time may be rejected because they arrive
too late, or they may activate later than expected, or ex-
pire earlier than expected. One drawback of leases is that
managers may “cheat” by manipulating their clocks; ac-
countable clock synchronization is an open problem.

When control of a resource passes from one lease to an-
other, we charge setup time to the controlling lease, and
teardown time to the successor. Each holder is compen-
sated fairly for the charge because it does not pay its own
teardown costs, and teardown delays are bounded. This
design choice greatly simplifies policy: brokers may allo-
cate each resource to contiguous lease terms, with no need
to “mind the gap” and account for transfer costs. Simi-
larly, service managers are free to vacate their leases just
before expiration without concern for the authority-side
teardown time. Of course, each guest is still responsible
for completing its leave operations before the lease ex-
pires: the authority is empowered to unilaterally initiate
teardown whether the guest is ready or not.

Figure 3: Interacting lease state machines across three actors. A lease progresses through an ordered sequence of states until it is
active; the rate of progress may be limited by delays imposed in the policy modules or by latencies to configure resources. Failures
lead to retries or to error states reported back to the service manager. Once the lease is active, the service manager may initiate
transitions through a cycle of states to extend the lease. Termination involves a handshake similar to TCP connection shutdown.

Actors are externally clocked to eliminate any depen-
dency on absolute time. Time-related state transitions are
driven by a virtual clock that advances in response to ex-
ternal tick calls. This feature is useful to exercise the sys-
tem and control the timing and order of events. In particu-
lar, it enables emulation experiments in virtual time, as for
several of the experiments in Section 5. The emulations
run with null resource drivers that impose various delays
but do not actually interact with external resources. All
actors retain and cache lease state in memory, in part to
enable lightweight emulation-mode experiments without
an external repository.

4.3 Cluster Management
COD was initially designed to control physical machines
with database-driven network booting (PXE/DHCP). The
physical booting machinery is familiar from Emulab [28],
Rocks [23], and recent commercial systems. In addi-
tion to controlling the IP address bindings assigned by
PXE/DHCP, the node driver controls boot images and op-
tions by generating configuration files served via TFTP to
standard bootloaders (e.g., grub).

A COD site authority drives cluster reconfiguration in
part by writing to an external directory server. The COD
schema is a superset of the RFC 2307 standard schema
for a Network Information Service based on LDAP direc-
tories. Standard open-source services exist to administer
networks from a LDAP repository compliant with RFC

2307. The DNS server for the site is an LDAP-enabled
version of BIND9, and for physical booting we use an
LDAP-enabled DHCP server from the Internet Systems
Consortium (ISC). In addition, guest nodes have read ac-
cess to an LDAP directory describing the containing vir-
tual cluster. Guest nodes configured to run Linux use an
LDAP-enabled version of AutoFS to mount NFS file sys-
tems, and a PAM/NSS module that retrieves user logins
from LDAP.

COD should be comfortable for cluster site operators
to adopt, especially if they already use RFC 2307/LDAP
for administration. The directory server is authoritative:
if the COD site authority fails, the disposition of the clus-
ter is unaffected until it recovers. Operators may override
the COD server with tools that access the LDAP configu-
ration directory.

4.4 COD and Xen
In addition to the node drivers, COD includes classes to
manage node sets and IP and DNS name spaces at the
slice level. The authority names each instantiated node
with an ID that is unique within the slice. It derives node
hostnames from the ID and a specified prefix, and allo-
cates private IP addresses as offsets in a subnet block re-
served for the virtual cluster when the first node is as-
signed to it. Although public address space is limited,
our prototype does not yet treat it as a managed resource.
In our deployment the service managers run on a control

subnet with routes to and from the private IP subnets.
In a further test of the Shirako architecture, we ex-

tended COD to manage virtual machines using the Xen
hypervisor [2]. The extensions consist primarily of
a modified node driver plugin and extensions to the
authority-side mapper policy module to assign virtual ma-
chine images to physical machines. The new virtual node
driver controls booting by opening a secure connection to
the privileged control domain on the Xen node, and issu-
ing commands to instantiate and control Xen virtual ma-
chines. Only a few hundred lines of code know the differ-
ence between physical and virtual machines. The combi-
nation of support for both physical and virtual machines
offers useful flexibility: it is possible to assign blocks
of physical machines dynamically to boot Xen, then add
them to a resource pool to host new virtual machines.

COD install actions for node setup include some or
all of the following: writing LDAP records; generating
a bootloader configuration for a physical node, or instan-
tiating a virtual machine; staging and preparing the OS
image, running in the Xen control domain or on an OS-
dependent trampoline such as Knoppix on the physical
node; and initiating the boot. The authority writes some
configuration-specific data onto the image, including the
admin public keys and host private key, and an LDAP path
reference for the containing virtual cluster.

5 Experimental Results
We evaluate the Shirako/COD prototype under emula-
tion and in a real deployment. All experiments run on
a testbed of IBM x335 rackmount servers, each with a
single 2.8Ghz Intel Xeon processor and 1GB of memory.
Some servers run Xen’s virtual machine monitor version
3.0 to create virtual machines. All experiments run using
Sun’s Java Virtual Machine (JVM) version 1.4.2. COD
uses OpenLDAP version 2.2.23-8, ISC’s DHCP version
3.0.1rc11, and TFTP version 0.40-4.1 to drive network
boots. Service manager, broker, and site authority Web
Services use Apache Axis 1.2RC2.

Most experiments run all actors on one physical server
within a single JVM. The actors interact through local
proxy stubs that substitute local method calls for network
communication, and copy all arguments and responses.
When LDAP is used, all actors are served by a single
LDAP server on the same LAN segment. Note that these
choices are conservative in that the management overhead
concentrates on a single server. Section 5.3 gives results
using SOAP/XML messaging among the actors.

5.1 Application Performance
We first examine the latency and overhead to lease a
virtual cluster for a sample guest application, the Car-
dioWave parallel MPI heart simulator [24]. A service
manager requests two leases: one for a coordinator node
to launch the MPI job and another for a variable-sized

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500

Pr
og

re
ss

 (e
ve

nt
s)

Time (seconds)

5 virtual
5 physical
15 virtual

15 physical
15 virtual (iscsi)

nfs + sge

Figure 4: The progress of setup and join events and Car-
dioWave execution on leased virtual clusters. The slope of each
line gives the rate of progress. Xen clusters (left) activate faster
and more reliably, but run slower than leased physical nodes
(right). The step line shows an SGE batch scheduling service
instantiated and subjected to a synthetic load. The fastest boot
times are for VMs with flash-cloned iSCSI roots (far left).

block of worker nodes to run the job. It groups and se-
quences the lease joins as described in Section 3.5 so
that all workers activate before the coordinator. The join
handler launches CardioWave programmatically when the
virtual cluster is fully active.

Figure 4 charts the progress of lease activation and the
CardioWave run for virtual clusters of 5 and 15 nodes,
using both physical and Xen virtual machines, all with
512MB of available memory. The guest earns progress
points for each completed node join and each block of
completed iterations in CardioWave. Each line shows: (1)
an initial flat portion as the authority prepares a file sys-
tem image for each node and initiates boots; (2) a step up
as nodes boot and join, (3) a second flatter portion indicat-
ing some straggling nodes, and (4) a linear segment that
tracks the rate at which the application completes useful
work on the virtual cluster once it is running.

The authority prepares each node image by loading a
210MB compressed image (Debian Linux 2.4.25) from a
shared file server and writing the 534MB uncompressed
image on a local disk partition. Some node setup delays
result from contention to load the images from a shared
NFS server, demonstrating the value of smarter image dis-
tribution (e.g., [15]). The left-most line in Figure 4 also
shows the results of an experiment with iSCSI root drives
flash-cloned by the setup script from a Network Appli-
ance FAS3020 filer. Cloning iSCSI roots reduces VM
configuration time to approximately 35 seconds. Network
booting of physical nodes is slower than Xen and shows
higher variability across servers, indicating instability in
the platform, bootloader, or boot services.

Cardiowave is an I/O-intensive MPI application. It
shows better scaling on physical nodes, but its perfor-

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500

Fi
de

lity
 (%

)

Lease length (seconds)

Xen virtual machines
physical machines

Figure 5: Fidelity is the percentage of the lease term usable by
the guest application, excluding setup costs. Xen VMs are faster
to setup than physical machines, yielding better fidelity.

mance degrades beyond ten nodes. With five nodes the
Xen cluster is 14% slower than the physical cluster, and
with 15 nodes it is 37% slower. For a long CardioWave
run, the added Xen VM overhead outweighs the higher
setup cost to lease physical nodes.

A more typical usage of COD in this setting would
be to instantiate batch task services on virtual compute
clusters [7], and let them schedule Cardiowave and other
jobs without rebooting the nodes. Figure 4 includes a
line showing the time to instantiate a leased virtual cluster
comprising five Xen nodes and an NFS file server, launch
a standard Sun GridEngine (SGE) job scheduling service
on it, and subject it to a synthetic task load. This example
uses lease groups to sequence configuration as described
in Section 3.5. The service manager also stages a small
data set (about 200 MB) to the NFS server, increasing the
activation time. The steps in the line correspond to simul-
taneous completion of synthetic tasks on the workers.

Figure 5 uses the setup/join/leave/teardown costs from
the previous experiment to estimate their effect on the sys-
tem’s fidelity to its lease contracts. Fidelity is the per-
centage of the lease term that the guest application is able
to use its resources. Amortizing these costs over longer
lease terms improves fidelity. Since physical machines
take longer to setup than Xen virtual machines, they have
a lower fidelity and require longer leases to amortize their
costs.

5.2 Adaptivity to Changing Load
This section demonstrates the role of brokers to arbitrate
resources under changing workload, and coordinate re-
source allocation from multiple sites. This experiment
runs under emulation (as described in Section 4.2) with
null resource drivers, virtual time, and lease state stored
only in memory (no LDAP). In all other respects the em-
ulations are identical to a real deployment. We use two
emulated 70-node cluster sites with a shared broker. The

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 100 200 300 400 500 600 700

Nu
m

be
r o

f r
es

ou
rc

es
 re

qu
es

te
d

Hours

Website
Website with flop-flip filter

Batch cluster

Figure 6: Scaled resource demands for one-month traces from
an e-commerce website and a production batch cluster. The e-
commerce load signal is smoothed with a flop-flip filter for stable
dynamic provisioning.

broker implements a simple policy that balances the load
evenly among the sites.

We implemented an adaptive service manager that re-
quests resource leases at five-minute intervals to match a
changing load signal. We derived sample input loads from
traces of two production systems: a job trace from a pro-
duction compute cluster at Duke, and a trace of CPU load
from a major e-commerce website. We scaled the load
signals to a common basis. Figure 6 shows scaled clus-
ter resource demand—interpreted as the number of nodes
to request—over a one-month segment for both traces
(five-minute intervals). We smoothed the e-commerce de-
mand curve with a “flop-flip” filter from [6]. This filter
holds a stable estimate of demand Et=Et−1 until that es-
timate falls outside some tolerance of a moving average
(Et = βEt−1 + (1 − β)Ot) of recent observations, then
it switches the estimate to the current value of the moving
average. The smoothed demand curve shown in Figure 6
uses a 150-minute sliding window moving average, a step
threshold of one standard deviation, and a heavily damped
average β=7/8.

Figure 7 demonstrates the effect of varying lease terms
on the broker’s ability to match the e-commerce load
curve. For a lease term of one day, the leased resources
closely match the load; however, longer terms diminish
the broker’s ability to match demand. To quantify the
effectiveness and efficiency of allocation over the one-
month period, we compute the root mean squared error
(RMSE) between the load signal and the requested re-
sources. Numbers closer to zero are better: an RMSE
of zero indicates that allocation exactly matches demand.
For a lease term of 1 day, the RMSE is 22.17 and for a
lease term of 7 days, the RMSE is 50.85. Figure 7 reflects
a limitation of the pure brokered leasing model as proto-
typed: a lease holder can return unused resources to the
authority, but it cannot return the ticket to the broker to
allocate for other purposes.

 0

 20

 40

 60

 80

 100

 120

 140

 0 100 200 300 400 500 600 700

Nu
m

be
r o

f r
es

ou
rc

es
 a

cq
ui

re
d

Hours

Website
Batch cluster

(a) Lease term of 12 emulated hours.

 0

 20

 40

 60

 80

 100

 120

 140

 0 100 200 300 400 500 600 700

Nu
m

be
r o

f r
es

ou
rc

es
 a

cq
ui

re
d

Hours

Website
Batch cluster

(b) Lease term of 3 emulated days.

Figure 8: Brokering of 140 machines from two sites between a low-priority computational batch cluster and a high-priority e-
commerce website that are competing for machines. Where there is contention for machines, the high priority website receives its
demand causing the batch cluster to receive less. Short lease terms (a) are able to closely track resource demands, while long lease
terms (b) are unable to match short spikes in demand.

 0

 20

 40

 60

 80

 100

 120

 140

 0 100 200 300 400 500 600 700

Nu
m

be
r o

f r
es

ou
rc

es

Hours

1 day lease
7 day lease

Figure 7: The effect of longer lease terms on a broker’s ability
to match guest application resource demands. The website’s ser-
vice manager issues requests for machines, but as the lease term
increases, the broker is less effective at matching the demand.

To illustrate adaptive provisioning between competing
workloads, we introduce a second service manager com-
peting for resources according to the batch load signal.
The broker uses FCFS priority scheduling to arbitrate re-
source requests; the interactive e-commerce service re-
ceives a higher priority. Figure 8 shows the assigned slice
sizes for lease terms of (a) 12 emulated hours and (b) 3
emulated days. As expected, the batch cluster receives
fewer nodes during load surges in the e-commerce ser-
vice. However, with longer lease terms, load matching
becomes less accurate, and some short demand spikes are
not served. In some instances, resources assigned to one
guest are idle while the other guest saturates but cannot
obtain more. This is seen in the RMSE calculated from

N cluster size
l number of active leases
n number of machines per lease
t term of a lease in virtual clock ticks
α overhead factor (ms per virtual clock ticks)
t
′ term of a lease (ms)

r
′ average number of machine reallocations per ms

Table 3: Parameter definitions for Section 5.3

Figure 8: the website has a RMSE of (a) 12.57 and (b)
30.70 and the batch cluster has a RMSE of (a) 23.20 and
(b) 22.17. There is a trade-off in choosing the length of
lease terms: longer terms are more stable and better able
to amortize resource setup/teardown costs improving fi-
delity (from Section 5.1), but are not as agile to changing
demand as shorter leases.

5.3 Scaling of Infrastructure Services
These emulation experiments demonstrate how the lease
management and configuration services scale at satura-
tion. Table 3 lists the parameters used in our experiment:
for a given cluster size N at a single site, one service
manager injects lease requests to a broker for N nodes
(without lease extensions) evenly split across l leases (for
N/l = n nodes per lease) every lease term t (giving a
request injection rate of l/T). Every lease term t the
site must reallocate or “flip” all N nodes. We mea-
sure the total overhead including lease state maintenance,
network communication costs, actor database operations,
and event polling costs. Given parameter values we can
derive the worst-case minimum lease term, in real time,
that the system can support at saturation.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 5000 10000 15000 20000 25000 30000

O
ve

rh
ea

d
fa

ct
or

 α
 (m

s/
vir

tu
al

 c
lo

ck
 ti

ck
s)

Lease term t (virtual clock ticks)

l = 48 leases per term
l = 24 leases per term

l = 8 leases per term
l = 2 leases per term
l = 1 lease per term

Figure 9: The implementation overhead for an example Shirako
scenario for a single emulated cluster of 240 machines. As lease
term increases, the overhead factor α decreases as the actors
spend more of their time polling lease status rather than more
expensive setup/teardown operations. Overhead increases with
the number of leases (l) requested per term.

As explained in Section 4.2, each actor’s operations are
driven by a virtual clock at an arbitrary rate. The pro-
totype polls the status of pending lease operations (i.e.,
completion of join/leave and setup/teardown events) on
each tick. Thus, the rate at which we advance the virtual
clock has a direct impact on performance: a high tick rate
improves responsiveness to events such as failures and
completion of configuration actions, but generates higher
overhead due to increased polling of lease and resource
status. In this experiment we advance the virtual clock of
each actor as fast as the server can process the clock ticks,
and determine the amount of real time it takes to complete
a pre-defined number of ticks. We measure an overhead
factor α: the average lease management overhead in mil-
liseconds per clock tick. Lower numbers are better.

Local communication. In this experiment, all actors
run on a single x335 server and communicate with local
method calls and an in-memory database (no LDAP). Fig-
ure 9 graphs α as a function of lease term t in virtual clock
ticks; each line presents a different value of l keeping N
constant at 240. The graph shows that as t increases, the
average overhead per virtual clock tick decreases; this oc-
curs because actors perform the most expensive operation,
the reassignment of N nodes, only once per lease term
leaving less expensive polling operations for the remain-
der of the term. Thus, as the number of polling operations
increases, they begin to dominate α. Figure 9 also shows
that as we increase the number of leases injected per term,
α also increases. This demonstrates the increased over-
head to manage the leases.

At a clock rate of one tick per second, the overhead rep-
resents less than 1% of the latency to prime a node (i.e.,
to write a new OS image on local disk and boot it). As
an example from Figure 9, given this tick rate, for a lease
term of 1 hour (3,600 virtual clock ticks), the total over-

N (cluster size) α stdev α t′

120 0.1183 0.001611 425.89
240 0.1743 0.000954 627.58
360 0.2285 0.001639 822.78
480 0.2905 0.001258 1,045.1

Table 4: The effect of increasing the cluster size on α as the
number of active leases is held constant at one lease for all N

nodes in the cluster. As cluster size increases, the per-tick over-
head α increases, driving up the minimal lease term t

′.

RPC Type Database α stdev α t
′

r
′

Local Memory .1743 .0001 627 .3824
Local LDAP 5.556 .1302 20,003 .0120
SOAP Memory 27.902 1.008 100,446 .0024
SOAP LDAP 34.041 .2568 122,547 .0019

Table 5: Impact of overhead from SOAP messaging and LDAP
access. SOAP and LDAP costs increase overhead α (ms/virtual
clock tick), driving down the maximum node flips per millisec-
ond r

′ and driving up the minimum practical lease term t
′.

head of our implementation is t′=tα=2.016 seconds with
l=24 leases per term. The lease term t′ represents the min-
imum term we can support considering only implementa-
tion overhead. For COD, these overheads are at least an
order of magnitude less than the setup/teardown cost of
nodes with local storage. From this we conclude that the
setup/teardown cost, not overhead, is the limiting factor
for determining the minimum lease term. However, over-
head may have an effect on more fine-grained resource
allocation, such as CPU scheduling, where reassignments
occur at millisecond time scales.

Table 4 shows the effect of varying the cluster size
N on the overhead factor α. For each row of the table,
the service manager requests one lease (l=1) for N nodes
(N=n) with a lease term of 3,600 virtual clock ticks (cor-
responding to a 1 hour lease with a tick rate of 1 second).
We report the average and one standard deviation of α
across ten runs. As expected, α and t′ increase with clus-
ter size, but as before, t′ remains an order of magnitude
less than the setup/teardown costs of a node.

SOAP and LDAP. We repeat the same experiment
with the service manager running on a separate x335
server, communicating with the broker and authority us-
ing SOAP/XML. The authority and broker write their
state to a shared LDAP directory server. Table 5 shows
the impact of the higher overhead on t′ and r′, for N=240.
Using α, we calculate the maximum number of node flips
per millisecond r′=N/(Tα) at saturation. The SOAP
and LDAP overheads dominate all other lease manage-
ment costs: with N = 240 nodes, an x335 can process
380 node flips per second, but SOAP and LDAP com-
munication overheads reduce peak flip throughput to 1.9
nodes per second. Even so, neither value presents a lim-
iting factor for today’s cluster sizes (thousands of nodes).
Using SOAP and LDAP at saturation requires a mini-
mum lease term t′ of 122 seconds, which approaches the

setup/teardown latencies (Section 5.1).
From these scaling experiments, we conclude that lease

overhead is quite modest, and that costs are dominated
by per-tick resource polling, node reassignment, and net-
work communication. In this case, the dominant costs are
LDAP access and SOAP operations and the cost for Ant
to parse the XML configuration actions and log them.

6 Related Work
Variants of leases are widely used when a client holds a
resource on a server. The common purpose of a lease ab-
straction is to specify a mutually agreed time at which the
client’s right to hold the resource expires. If the client fails
or disconnects, the server can reclaim the resource when
the lease expires. The client renews the lease periodically
to retain its hold on the resource.

Lifetime management. Leases are useful for dis-
tributed garbage collection. The technique of robust
distributed reference counting with expiration times ap-
peared in Network Objects [5], and subsequent systems—
including Java RMI [29], Jini [27], and Microsoft .NET—
have adopted it with the “lease” vocabulary. Most re-
cently, Web Services WSRF [10] has defined a lease pro-
tocol as a basis for lifetime management of hosted ser-
vices.

Mutual exclusion. Leases are also useful as a basis
for distributed mutual exclusion, most notably in cache
consistency protocols [14, 21]. To modify a block or file,
a client first obtains a lease for it in an exclusive mode.
The lease confers the right to access the data without risk
of a conflict with another client as long as the lease is
valid. The key benefit of the lease mechanism itself is
availability: the server can reclaim the resource from a
failed or disconnected client after the lease expires. If
the server fails, it can avoid issuing conflicting leases by
waiting for one lease interval before granting new leases
after recovery.

Resource management. As in SHARP [13], the use
of leases in Shirako combines elements of both lifetime
management and mutual exclusion. While providers may
choose to overbook their physical resources locally, each
offered logical resource unit is held by at most one lease
at any given time. If the lease holder fails or disconnects,
the resource can be allocated to another guest. This use of
leases has three distinguishing characteristics:.
• Shirako leases apply to the resources that host the

guest, and not to the guest itself; the resource
provider does not concern itself with lifetime man-
agement of guest services or objects.

• The lease quantifies the resources allocated to the
guest; thus leases are a mechanism for service qual-
ity assurance and adaptation.

• Each lease represents an explicit promise to the lease
holder for the duration of the lease. The notion of a
lease as an enforceable contract is important in sys-

tems where the interests of the participants may di-
verge, as in peer-to-peer systems and economies.

Leases in Shirako are also similar to soft-state advance
reservations [8, 30], which have long been a topic of study
for real-time network applications. A similar model is
proposed for distributed storage in L-bone [3]. Several
works have proposed resource reservations with bounded
duration for the purpose of controlling service quality in
a grid. GARA includes support for advance reservations,
brokered co-reservations, and adaptation [11, 12].

Virtual execution environments. New virtual ma-
chine technology expands the opportunities for resource
sharing that is flexible, reliable, and secure. Several
projects have explored how to link virtual machines in vir-
tual networks [9] and/or use networked virtual machines
to host network applications, including SoftUDC [18],
In Vigo [20], Collective [25], SODA [17], and Virtual
Playgrounds [19]. Shared network testbeds (e.g., Emu-
lab/Netbed [28] and PlanetLab [4]) are another use for dy-
namic sharing of networked resources. Many of these sys-
tems can benefit from foundation services for distributed
lease management.

PlanetLab was the first system to demonstrate dynamic
instantiation of virtual machines in a wide-area testbed
deployment with a sizable user base. PlanetLab’s current
implementation and Shirako differ in their architectural
choices. PlanetLab consolidates control in one central au-
thority (PlanetLab Central or PLC), which is trusted by all
sites. Contributing sites are expected to relinquish perma-
nent control over their resources to the PLC. PlanetLab
emphasizes best-effort open access over admission con-
trol; there is no basis to negotiate resources for predictable
service quality or isolation. PlanetLab uses leases to man-
age the lifetime of its guests, rather than for resource con-
trol or adaptation.

The PlanetLab architecture permits third-party broker-
age services with the endorsement of PLC. PlanetLab
brokers manage resources at the granularity of individ-
ual nodes; currently, the PlanetLab Node Manager cannot
control resources across a site or cluster. PLC may dele-
gate control over a limited share of each node’s resources
to a local broker server running on the node. PLC con-
trols the instantiation of guest virtual machines, but each
local broker is empowered to invoke the local Node Man-
ager interface to bind its resources to guests instantiated
on its node. In principle, PLC could delegate sufficient
resources to brokers to permit them to support resource
control and dynamic adaptation coordinated by a central
broker server, as described in this paper.

One goal of our work is to advance the foundations for
networked resource sharing systems that can grow and
evolve to support a range of resources, management poli-
cies, service models, and relationships among resource
providers and consumers. Shirako defines one model for
how the PlanetLab experience can extend to a wider range

of resource types, federated resource providers, clusters,
and more powerful approaches to resource virtualization
and isolation.

7 Conclusion
This paper focuses on the design and implementation of
general, extensible abstractions for brokered leasing as a
basis for a federated, networked utility. The combination
of Shirako leasing services and the Cluster-on-Demand
cluster manager enables dynamic, programmatic, recon-
figurable leasing of cluster resources for distributed ap-
plications and services. Shirako decouples dependen-
cies on resources, applications, and resource manage-
ment policies from the leasing core to accommodate di-
versity of resource types and resource allocation policies.
While a variety of resources and lease contracts are possi-
ble, resource managers with performance isolation enable
guest applications to obtain predictable performance and
to adapt their resource holdings to changing conditions.

References
[1] Ant, September 2005. http://ant.apache.org/.
[2] P. Barham, B. Dragovic, K. Faser, S. Hand, T. Harris, A. Ho,

R. Neugebauer, I. Pratt, and A. Warfield. Xen and the art of virtual-
ization. In Proceedings of the 19th ACM Symposium on Operating
Systems Principles (SOSP), October 2003.

[3] A. Bassi, M. Beck, T. Moore, and J. S. Plank. The logistical back-
bone: Scalable infrastructure for global data grids. In Proceedings
of the 7th Asian Computing Science Conference on Advances in
Computing Science, December 2002.

[4] A. Bavier, M. Bowman, B. Chun, D. Culler, S. Karlin, S. Muir,
L. Peterson, T. Roscoe, T. Spalink, and M. Wawrzoniak. Op-
erating system support for planetary-scale network services. In
First Symposium on Networked Systems Design and Implementa-
tion (NSDI), March 2004.

[5] A. Birrell, G. Nelson, S. Owicki, and E. Wobber. Network Objects.
In Proceedings of the 14th ACM Symposium on Operating Systems
Principles, pages 217–230, December 1993.

[6] J. S. Chase, D. C. Anderson, P. N. Thakar, A. M. Vahdat, and R. P.
Doyle. Managing energy and server resources in hosting centers.
In Proceedings of the 18th ACM Symposium on Operating System
Principles (SOSP), pages 103–116, October 2001.

[7] J. S. Chase, D. E. Irwin, L. E. Grit, J. D. Moore, and S. E. Spren-
kle. Dynamic virtual clusters in a grid site manager. In Proceed-
ings of the Twelfth International Symposium on High Performance
Distributed Computing (HPDC-12), June 2003.

[8] M. Degermark, T. Kohler, S. Pink, and O. Schelen. Advance reser-
vations for predictive service in the Internet. Multimedia Systems,
5(3):177–186, 1997.

[9] R. J. Figueiredo, P. A. Dinda, and F. Fortes. A case for grid com-
puting on virtual machines. In International Conference on Dis-
tributed Computing Systems (ICDCS), May 2003.

[10] I. Foster, K. Czajkowski, D. F. Ferguson, J. Frey, S. Graham,
T. Maguire, D. Snelling, and S. Tuecke. Modeling and managing
state in distributed systems: The role of OGSI and WSRF. Pro-
ceedings of the IEEE, 93(3):604–612, March 2005.

[11] I. Foster, C. Kesselman, C. Lee, R. Lindell, K. Nahrstedt, and
A. Roy. A distributed resource management architecture that sup-
ports advance reservations and co-allocation. In Proceedings of
the International Workshop on Quality of Service, June 1999.

[12] I. Foster and A. Roy. A quality of service architecture that com-
bines resource reservation and application adaptation. In Proceed-
ings of the International Workshop on Quality of Service, June
2000.

[13] Y. Fu, J. Chase, B. Chun, S. Schwab, and A. Vahdat. SHARP: An
Architecture for Secure Resource Peering. In Proceedings of the
19th ACM Symposium on Operating System Principles, October
2003.

[14] C. Gray and D. Cheriton. Leases: An Efficient Fault-Tolerant
Mechanism for Distributed File Cache Consistency. In Proceed-
ings of the Twelfth ACM Symposium on Operating Systems Princi-
ples, December 1989.

[15] M. Hibler, L. Stoller, J. Lepreau, R. Ricci, and C. Barb. Fast, scal-
able disk imaging with Frisbee. In Proceedings of the USENIX
Annual Technical Conference, June 2003.

[16] D. Irwin, J. Chase, L. Grit, and A. Yumerefendi. Self-Recharging
Virtual Currency. In Proceedings of the Third Workshop on Eco-
nomics of Peer-to-Peer Systems (P2P-ECON), August 2005.

[17] X. Jiang and D. Xu. Soda: A service-on-demand architecture for
application service hosting utility platforms. In 12th IEEE Interna-
tional Symposium on High Performance Distributed Computing,
June 2003.

[18] M. Kallahalla, M. Uysal, R. Swaminathan, D. Lowell, M. Wray,
T. Christian, N. Edwards, C. Dalton, and F. Gittler. SoftUDC: A
software-based data center for utility computing. In Computer,
volume 37, pages 38–46. IEEE, November 2004.

[19] K. Keahey, K. Doering, and I. Foster. From sandbox to play-
ground: Dynamic virtual environments in the grid. In 5th Inter-
national Workshop in Grid Computing, November 2004.

[20] I. Krsul, A. Ganguly, J. Zhang, J. Fortes, and R. Figueiredo. VM-
Plants: Providing and managing virtual machine execution envi-
ronments for grid computing. In Supercomputing, October 2004.

[21] R. Macklem. Not quite NFS, soft cache consistency for NFS.
In USENIX Association Conference Proceedings, pages 261–278,
January 1994.

[22] D. Oppenheimer, J. Albrecht, D. Patterson, and A. Vahdat. Design
and Implementation Tradeoffs in Wide-Area Resource Discovery.
In Proceedings of Fourteenth Annual Symposium on High Perfor-
mance Distributed Computing (HPDC), July 2005.

[23] P. M. Papadopoulous, M. J. Katz, and G. Bruno. NPACI Rocks:
Tools and techniques for easily deploying manageable Linux clus-
ters. In IEEE Cluster 2001, October 2001.

[24] J. Pormann, J. Board, D. Rose, and C. Henriquez. Large-scale
modeling of cardiac electrophysiology. In Proceedings of Com-
puters in Cardiology, September 2002.

[25] C. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M. S. Lam, and
M. Rosenblum. Optimizing the migration of virtual computers. In
5th Symposium on Operating Systems Design and Implementation,
December 2002.

[26] N. Taesombut and A. Chien. Distributed Virtual Computers
(DVC): Simplifying the development of high performance grid ap-
plications. In Workshop on Grids and Advanced Networks, April
2004.

[27] J. Waldo. The Jini architecture for network-centric computing.
Communications of the ACM, 42(7):76–82, July 1999.

[28] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. New-
bold, M. Hibler, C. Barb, and A. Joglekar. An Integrated Exper-
imental Environment for Distributed Systems and Networks. In
Proceedings of the 5th Symposium on Operating Systems Design
and Implementation (OSDI), December 2002.

[29] A. Wollrath, R. Riggs, and J. Waldo. A distributed object model
for the Java system. In Proceedings of the Second USENIX Con-
ference on Object-Oriented Technologies (COOTS), June 1997.

[30] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala.
RSVP: A New Resource ReSerVation Protocol. IEEE Network,
7(5):8–18, September 1993.

