
Managing Energy and Server Resources in Hosting Centers

Jeffrey S. Chase, Darrell C. Anderson, Prachi N. Thakar, Amin M. Vahdat�

Department of Computer Science
Duke University

fchase, anderson, prachi, vahdat g@cs.duke.edu

Ronald P. Doyley

Application Integration and Middleware
IBM Research Triangle Park

rdoyle@us.ibm.com

ABSTRACT
Internet hosting centers serve multiple service sites from a common
hardware base. This paper presents the design and implementation
of an architecture for resource management in a hosting center op-
erating system, with an emphasis onenergyas a driving resource
management issue for large server clusters. The goals are to provi-
sion server resources for co-hosted services in a way that automati-
cally adapts to offered load, improve the energy efficiency of server
clusters by dynamically resizing the active server set, and respond
to power supply disruptions or thermal events by degrading service
in accordance with negotiated Service Level Agreements (SLAs).

Our system is based on an economic approach to managing shared
server resources, in which services “bid” for resources as a func-
tion of delivered performance. The system continuously moni-
tors load and plans resource allotments by estimating the value of
their effects on service performance. A greedy resource allocation
algorithm adjusts resource prices to balance supply and demand,
allocating resources to their most efficient use. A reconfigurable
server switching infrastructure directs request traffic to the servers
assigned to each service. Experimental results from a prototype
confirm that the system adapts to offered load and resource avail-
ability, and can reduce server energy usage by 29% or more for a
typical Web workload.

1. INTRODUCTION
The Internet buildout is driving a shift toward server-based com-
puting. Internet-based services host content and applications in
data centers for networked access from diverse client devices. Ser-
vice providers are adding new data center capacity for Web host-
ing, application services, outsourced storage, electronic markets,

�This work is supported by the U.S. National Science Foundation
through grants CCR-00-82912 and EIA-9972879. Anderson is sup-
ported by a U.S. Department of Education GAANN fellowship.
Vahdat is supported by NSF CAREER award CCR-9984328.
yR. Doyle is also a PhD student in the Computer Science depart-
ment at Duke University.

and other network services. Many of these services are co-hosted
in shared data centers managed by third-party hosting providers.
Managed hosting in shared centers offers economies of scale and a
potential for dynamic capacity provisioning to respond to request
traffic, quality-of-service specifications, and network conditions.
The services lease resources from the hosting provider on a “pay as
you go” basis; the provider multiplexes the shared resources (e.g.,
servers, storage, and network bandwidth) to insulate its customers
from demand surges and capital costs for excess capacity.

Hosting centers face familiar operating system challenges common
to any shared computing resource. The center’s operating system
must provide a uniform and secure execution environment, isolate
services from unintended consequences of resource sharing, share
resources fairly in a way that reflects priority, and degrade grace-
fully in the event of failures or unexpected demand surges. Several
research projects address these challenges for networks of servers;
Section 7 surveys related research.

This paper investigates thepolicies for allocating resources in a
hosting center, with a principal focus on energy management. We
present the design and implementation of a flexible resource man-
agement architecture—called Muse—that controls server alloca-
tion and routing of requests to selected servers through a recon-
figurable switching infrastructure. Muse is based on an economic
model in which customers “bid” for resources as a function of ser-
vice volume and quality. We show that this approach enablesadap-
tive resource provisioningin accordance with flexible Service Level
Agreements (SLAs) specifying dynamic tradeoffs of service qual-
ity and cost. In addition, Muse promotes energy efficiency of Inter-
net server clusters by balancing the cost of resources (e.g., energy)
against the benefit realized by employing them. We show how this
energy-conscious provisioningallows the center to automatically
adjust on-power capacity to scale with load, yielding a significant
energy savings for typical Internet service workloads.

This paper is organized as follows. Section 2 outlines the motiva-
tion for adaptive resource provisioning and the importance of en-
ergy in resource management for large server clusters. Section 3
gives an overview of the Muse architecture. Section 4 presents
the economic resource allocation scheme in detail, including the
bidding model, load estimation techniques, and a greedy resource
allocation algorithm that we call Maximize Service Revenue and
Profit (MSRP) to set resource prices and match resource supply
and demand. Section 5 outlines the Muse prototype, and Section 6
presents experimental results. Section 7 sets our approach in con-
text with related work.



performance
measures

reconfigurable
switches

configuration
commands

request
traffic

Executive

storage
tier

server pool

Figure 1: Adaptive resource provisioning in Muse.

2. MOTIVATION
Hosting utilities provision server resources for their customers—
co-hosted server applications orservices—according to their re-
source demands at their expected loads. Since outsourced host-
ing is a competitive business, hosting centers must manage their
resources efficiently. Rather than overprovisioning for the worst-
case load, efficient admission control and capacity planning poli-
cies may be designed to limit rather than eliminate the risk of failing
to meet demand [8, 2]. An efficient resource management scheme
would automatically allocate to each service the minimal server
resources needed for acceptable service quality, leaving surplus re-
sources free to deploy elsewhere. Provisioning choices must adapt
to changes in load as they occur, and respond gracefully to unantic-
ipated demand surges or resource failures. For these reasons man-
aging server resources automatically is a difficult challenge.

This paper describes a system for adaptive resource management
that incorporates power and energy as primary resources of a host-
ing center. A data center is effectively a large distributed computer
comprising an “ecosystem” of heterogeneous components includ-
ing edge servers, application servers, databases, and storage, as-
sembled in a building with an infrastructure to distribute power,
communications, and cooling. Viewed from the outside, the center
is a “black box” with common external connections to the Inter-
net and the electrical grid; it generates responses to a stream of
requests from the network, while consuming power and producing
waste heat. Energy management is critical in this context for sev-
eral inter-related reasons:

� Data centers are vulnerable to overloading of the thermal
system due to cooling failures, external conditions, or high
service load. Muse can respond to these threats by auto-
matically scaling back power demand (and therefore waste
heat), rather than shutting down or risking damage to expen-
sive components. Similarly, power supply disruptions may
force the service to reduce power draw, e.g., to run longer
on limited backup power. We refer to this asbrowndown—a
new partial failure mode specific to “data center computers”.
The effect of browndown is to create a resource shortage,
forcing the center to degrade service quality.

� Power supply (including backup power) and thermal systems
are a significant share of capital outlay for a hosting cen-
ter. Capacity planning for the worst case increases this cost.

Muse enables the center to size for expected loads and scale
back power (browndown) when exceptional conditions ex-
ceed energy or thermal limits. This is analogous todynamic
thermal managementfor individual servers [13].

� The Internet service infrastructure is a major energy con-
sumer, and its energy demands are growing rapidly. One
projection is that US data centers will consume 22 TWh of
electricity in 2003 for servers, storage, switches, power con-
ditioning, and cooling [29]. This energy would cost $2B an-
nually at a common price of $100 per MWh; price peaks of
$500 per MWh have been common on the California spot
market. Energy will make up a growing share of operating
costs as administration for these centers is increasingly au-
tomated [5, 12]. Moreover, generating this electricity would
release about 12M tons of newCO2 annually. Some areas
are zoning against data centers to protect their local power
systems [29]. Improving energy efficiency for data centers
will yield important social and environmental benefits, in ad-
dition to reducing costs.

� Fine-grained balancing of service quality and resource usage—
including power—gives businesses control over quality and
price tradeoffs in negotiating SLAs. For example, energy
suppliers offer cheaper power to customers who can reduce
consumption on demand. We show how SLAs for a host-
ing utility may directly specify similar tradeoffs of price and
quality. For example, customers might pay a lower hosting
rate to allow for degraded service during power disruptions.

This paper responds to these needs with a resource management
architecture that adaptively provisions resources in a hosting center
to (1) avoid inefficient use of energy and server resources, (2) pro-
vide a capability to adaptively scale back power demand, and (3)
respond to unexpected resource constraints in a way that minimizes
the impact of service disruption.

3. OVERVIEW OF MUSE
Muse is an operating system for a hosting center. The components
of the hosting center are highly specialized, governed by their own
internal operating systems and interacting at high levels of abstrac-
tion. The role of the center’s operating system is to establish and
coordinate these interactions, supplementing the operating systems
of the individual components.

Figure 1 depicts the four elements of the Muse architecture:

� Generic server appliances.Pools of shared servers act to-
gether to serve the request load of each co-hosted service.
Server resources are generic and interchangeable.

� Reconfigurable network switching fabric.Switches dynam-
ically redirect incoming request traffic to eligible servers.
Each hosted service appears to external clients as a single
virtual server, whose power grows and shrinks with request
load and available resources.

� Load monitoring and estimation modules.Server operating
systems and switches continuously monitor load; the system
combines periodic load summaries to detect load shifts and
to estimate aggregate service performance.



0

24

48

72

96

120

144

0 24 48 72 96 120 144 168

Time (hours)

T
hr

ou
gh

pu
t(

re
qu

es
ts

/s
)

Figure 2: Request rate for thewww.ibm.comsite over February
5-11, 2001.

0

440

880

1320

1760

2200

0 200 400 600 800 1000 1200 1400

Time (hours)

T
hr

ou
gh

pu
t(

re
qu

es
ts

/s
)

Figure 3: Request rate for the World Cup site for May-June
1998.

� The executive.The “brain” of the hosting center OS is a pol-
icy service that dynamically reallocates server resources and
reconfigures the network to respond to variations in observed
load, resource availability, and service value.

This section gives an overview of each of these components, and
outlines how the combination can improve the energy efficiency
of server clusters as a natural outgrowth of adaptive resource provi-
sioning. Various aspects of Muse are related to many other systems;
we leave a full treatment of related work to Section 7.

3.1 Services and Servers
Each co-hosted service consists of a body of data and software,
such as a Web application. As in other cluster-based services,
a given request could be handled by any of several servers run-
ning the software, improving scalability and fault-tolerance [7, 36].
Servers may be grouped into pools with different software configu-
rations, but they may be reconfigured and redeployed from one pool
to another. To enable this reconfiguration, servers are stateless, e.g.,
they are backed by shared network storage. The switches balance
request traffic across the servers so it is acceptable for servers to
have different processing speeds.

Muse allocates to each service a suitable share of the server re-
sources that it needs to serve its load, relying on support for re-
source principals such asresource containers[10, 9] in the server
operating systems to ensure performance isolation on shared servers.

3.2 Redirecting Switches
Large Web sites utilize commercial redirectingserver switchesto
spread request traffic across servers using a variety of policies.
Our system uses reconfigurable server switches as a mechanism to
support the resource assignments planned by the executive. Muse
switches maintain anactive setof servers selected to serve requests
for each network-addressable service. The switches are dynami-
cally reconfigurable to change the active set for each service. Since
servers may be shared, the active sets of different services may
overlap. The switches may use load status to balance incoming
request traffic across the servers in the active set.

3.3 Adaptive Resource Provisioning
Servers and switches in a Muse hosting center monitor load con-
ditions and report load measures to the executive. The executive
gathers load information, periodically determines new resource as-
signments, and issues commands to the servers and switches to ad-
just resource allotments and active sets for each service. The exec-
utive employs an economic framework to manage resource alloca-
tion and provisioning in a way that maximizes resource efficiency
and minimizes unproductive costs. This defines a simple, flexible,
and powerful means to quantify the value tradeoffs embodied in
SLAs. Section 4 describes the resource economy in detail.

One benefit of the economic framework is that it defines a metric
for the center to determine when it is or is not worthwhile to deploy
resources to improve service quality. This enables a center to ad-
just resource allocations in a way that responds to load shifts across
multiple services. Typical Internet service loads vary by factors of
three or more through the day and through the week. For exam-
ple, Figure 2 shows request rates for thewww.ibm.comsite over a
typical week starting on a Monday and ending on a Sunday. The
trace shows a consistent pattern of load shifts by day, with a week-
day 4PM EST peak of roughly 260% of daily minimum load at
6AM EST, and a traffic drop over the weekend. A qualitatively
similar pattern appears in other Internet service traces, with daily
peak-to-trough ratios as high as 11:1 and significant seasonal vari-
ations [20]. To illustrate a more extreme seasonal load fluctuation,
Figure 3 depicts accesses to the World Cup site [6] through May
and June, 1998. In May the peak request rate is 30 requests per
second, but it surges to nearly 2000 requests per second in June.
Adaptive resource provisioning can respond to these load variations
to multiplex shared server resources.

3.4 Energy-Conscious Provisioning
This ability to dynamically adjust server allocations enables the
system to improve energy-efficiency by matching a cluster’s en-
ergy consumption to the aggregate request load and resource de-
mand. Energy-conscious provisioningconfigures switches to con-
centrate request load on a minimal active set of servers for the cur-
rent aggregate load level. Active servers always run near a con-
figured utilization threshold, while the excess servers transition to
low-power idle states to reduce the energy cost of maintaining sur-
plus capacity during periods of light load. Energy savings from
the off-power servers is compounded in the cooling system, which
consumes power to remove the energy dissipated in the servers as
waste heat. Thus energy-conscious provisioning can also reduce
fixed capacity costs for cooling, since the cooling for short periods
of peak load may extend over longer intervals.

A key observation behind this policy is that today’s servers are less



Architecture Machine Disks Operating System Level of Usage
Boot Max Idle Hibernate

PIII 866MHz SuperMicro 370-DER 1 FreeBSD 4.0 136 120 93 —
PIII 866MHz SuperMicro 370-DER 1 Windows 2000 134 120 98 5.5
PIII 450MHz ASUS P2BLS 1 FreeBSD 4.0 66 55 35 4

PIII Xeon 733MHz PowerEdge 4400 8 FreeBSD 4.0 278 270 225 —
PIII 500MHz PowerEdge 2400 3 FreeBSD 4.0 130 128 95 2.5
PIII 500MHz PowerEdge 2400 3 Windows 2000 127 120 98 2.5
PIII 500MHz PowerEdge 2400 3 Solaris 2.7 129 124 127 2.5

Table 1: Power draw in watts for various server platforms and operating systems.

0

24

48

72

96

120

0 100 200 300 400 500

Time (s)

P
ow

er
D

ra
w

(w
at

ts
)

0

200

400

600

800

1000

T
hroughput(requests/s)

Recruit at time=80

Recruit at time=160

Request throughput

Figure 4: A comparison of power draw for two experiments
serving a synthetic load swell on two servers.

energy-efficient at low CPU utilization due to fixed energy costs for
the power supply. To illustrate, Figure 4 shows request throughput
for two separate experiments serving a load swell on two servers
through a redirecting switch, and server power draw as measured
by a Brand Electronics 21-1850/CI digital power meter. The exper-
imental configuration and synthetic Web workload are similar to
other experiments reported in Section 6. Only one of the servers is
powered and active at the start of each experiment. In the first ex-
periment, the second server powers on att = 80, creating a power
spike as it boots, and joins the active set att = 130. In the second
experiment, the second server powers on later at timet = 160 and
joins the active set att = 210. Note that fromt = 130 to t = 160

the second configuration serves the same request load as the first,
but the first configuration draws over 80 watts while the second
draws about 50, an energy savings of 37%. Section 4.1 discusses
the effects on latency and throughput.

The effect is qualitatively similar on other server/OS combinations.
Table 1 gives the power draw for a selection of systems, all of which
pull over 60% of their peak power when idle, even when the OS
halts the CPU between interrupts in the idle loop. This is because
the power supply transformers impose a fixed energy cost—even if
the system is idle—to maintain charged capacity to respond rapidly
to demand when it occurs. When these systems are active their
power draw is roughly linear with system load, ranging from the
base idle draw rate up to some peak. In today’s servers the CPU
is the next most significant power consumer (e.g., up to 38 watts
for a 600 MHz Intel Pentium-III); power draw from memory and
network devices is negligible in comparison, and disks consume
from 50-250 watts per terabyte of capacity (this number is dropping
as disk densities increase) [12].

This experiment shows that the simplest and most effective way to

reduce energy consumption in large server clusters is to turn servers
off, concentrating load on a subset of the servers. In large clusters
this is more effective than adaptively controlling power draw in
the server CPUs, which consume only a portion of server energy.
Muse defines both a mechanism to achieve this—the reconfigurable
switching architecture—and policies for adaptively varying the ac-
tive server sets and the number of on-power servers. Recent indus-
try initiatives for advanced power management allow the executive
to initiate power transitions remotely (see Section 5.2). An increas-
ing number of servers on the market support these features.

One potential concern with this approach is that power transitions
(e.g., disk spin-down) may reduce the lifetime of disks on servers
that store data locally, although it may extend the lifetime of other
components. One solution is to keep servers stateless and leave
the network storage tier powered. A second concern is that power
transitions impose a time lag ranging from several seconds to a
minute. Neither of these issues is significant if power transitions
are damped to occur only in response to daily load shifts, such as
those illustrated in Figure 2 and Figure 3. For example, typical
modern disk drives are rated for 30,000 to 40,000 start/stop cycles.

4. THE RESOURCE ECONOMY
This section details the system’s framework for allocating resources
to competing co-hosted services (customers). The basic challenge
is to determine the resource demand of each customer at its current
request load level, and to allocate resources to their most efficient
and productive use. Resources are left idle if the marginal cost to
use them (e.g., energy) is less than the marginal value of deploying
them to improve performance at current load levels.

To simplify the discussion, we consider a single server pool with a
common unit of hosting service resource. This unit could represent
CPU time or a combined measure reflecting a share of aggregate
CPU, memory, and storage resources. Section 4.6 discusses the
problem of provisioning multiple resource classes.

Consider a hosting center with a total of�max discrete units of
hosting resource at timet. The average cost to provide one unit of
resource per unit of time is given bycost(t), which may account for
factors such as equipment wear or energy prices through time. All
resource units are assigned equivalent (average) cost at any time.
This represents thevariablecost of service; the center pays the cost
for a resource unit only when it allocates that unit to a customer.
The cost and available resource�max may change at any time (e.g.,
due to browndown).

Each customeri is associated with autility functionUi(t; �i) to
model the value of allocating�i resource units toi at timet. Since
hosting is a contracted service with economic value, there is an



0

20

40

60

80

100

0 30 60 90 120 150 180

Time (s)

C
P

U
(%

)

Allocation

Usage

0

120

240

360

480

600

0 30 60 90 120 150 180

Time (s)

T
hr

ou
gh

pu
t(

re
qu

es
ts

/s
)

0

20

40

60

80

100

Latency
(m

s)

Throughput

Latency

Figure 5: Trading off CPU allocation, throughput, and latency
for a synthetic Web workload.

economic basis for evaluating utility [35]. We consider each cus-
tomer’s utility function as reflecting its “bid” for the service vol-
ume and service quality resulting from its resource allotment at any
given time. Our intent is that utility derives directly from negoti-
ated or offered prices in a usage-based pricing system for hosting
service, and may be compared directly tocost. We use the eco-
nomic termsprice, revenue, profit, andlossto refer to utility values
and their differences from cost. However, our approach does not
depend on any specific pricing model, and the utility functions may
represent other criteria for establishing customer priority (see Sec-
tion 4.5). Without loss of generality suppose that cost and utility
are denominated in “dollars” ($).

The executive’s goal of maximizing resource efficiency corresponds
to maximizing profit in this economic formulation. Crucially, cus-
tomer utility is defined in terms ofdelivered performance, e.g.,
as described in Section 4.1 below. The number of resource units
consumed to achieve that performance is known internally to the
system, which plans its resource assignments by estimating the
the value of the resulting performance effects as described in Sec-
tion 4.3. Section 4.4 addresses the problem of obtaining stable and
responsive load estimates from bursty measures.

4.1 Bids and Penalties
While several measures could act as a basis for utility, we select
a simple measure that naturally captures the key variables for ser-
vices with many small requests and stable average-case service de-
mand per request. Each customer’s bid for each unit of time is a
function bidi of its delivered request throughput�i, measured in
hits per minute ($=hpm). As a simple example, a customer might
bid 5 cents per thousandhpmup to 10Khpm, then 1 cent for each

additional thousandhpmup to a maximum of one dollar per minute.
If 400 requests are served during a minute, then the customer’s bid
is 2 cents for that minute.

It is left to the system to determine the resources needed to achieve
a given throughput level so that it may determine the value of de-
ploying resources for servicei. The delivered throughput is some
function of the allotment and of the active client load through time:
�i(t; �i). This function encapsulates user population changes, pop-
ularity shifts, the resource-intensity of the service, and user think
time. The throughput can be measured for the currentt and�i,
but the system must also predict the value of changes to the al-
lotment; Section 4.3 discusses techniques to approximate�i(t; �i)

from continuous performance measures. The system computes bids
by composingbidi and�i: the revenue from servicei at timet with
resource allotment�i is bidi(�i(t; �i)).

Note that bid prices based on$=hpm reflect service quality as well
as load. That is, the center may increase its profit by improving
service quality to deliver better throughput at a given load level.
Figure 5 illustrates this effect with measurements from a single
CPU-bound service running a synthetic Web workload with a fixed
client population (see Section 6). The top graph shows the CPU
allotment increasing as a step function through time, and the corre-
sponding CPU utilization. (Note that a service may temporarily
exceed its allotment on a server with idle resources.) The bot-
tom graph shows the effect on throughput and latency. Figure 5
illustrates the improved service quality (lower latency) from re-
duced queuing delays as more resources are deployed. As latency
drops, the throughput� increases. This is because the user pop-
ulation issues requests faster when response latencies are lower, a
well-known phenomenon modeled by closed or finite population
queuing systems. Better service may also reduce the number of
users who “balk” and abandon the service. However, as the latency
approaches zero, throughput improvements level off because user
think time increasingly dominates the request generation rate from
each user. At this point, increasing the allotment further yields no
added value; thus the center has an incentive to deploy surplus re-
sources to another service, or to leave them idle to reduce cost.

SLAs for hosting service may also impose specific bounds on ser-
vice quality, e.g., latency. To incorporate this factor into the utility
functions, we may include a penalty term for failure to deliver ser-
vice levels stipulated in an SLA. For example, suppose customer
i leases a virtual server with a specific resource reservation ofri
units from the hosting center at a fixed rate. This corresponds to
a flat bidi at the fixed rate, or a fixed minimum bid if thebidi
also includes a load-varying charge as described above to motivate
the center to allot�i > ri when the customer’s load demands it.
If the request load for servicei is too low to benefit from its full
reservation, then the center may overbook the resource and deliver
�i < ri to increase its profit by deploying its resources elsewhere:
this occurs when�i(t; �i) � �i(t; ri) for �i < ri at some timet.
However, since the center collectsi’s fixed minimum bid whether
or not it allots any resource toi, thebidi may not create sufficient
incentive to deliver the full reservation on demand. Thus a penalty
is needed.

Since utilization is an excellent predictor of service quality (see
Figure 5), the SLA can specify penalties in a direct and general
way by defining a maximum target utilization level�target for the
allotted resource. Suppose that�i is the portion of its allotment
�i that customeri uses during some interval, which is easily mea-



sured. If�i < ri and�i > �target then the customer is underpro-
visioned and the center pays a penalty. For example, thepenaltyi
function could increase with the degree of the shortfallri=�i, or
with the resulting queuing delays or stretch factor [47]. The cen-
ter must balance the revenue increase from overbooking against the
risk of incurring a penalty. The penalty may be a partial refund of
the reservation price, or if the penalty exceeds the bid thenUi may
take on negative values reflecting the customer’s negative utility of
reserving resources and not receiving them. Similar tradeoffs are
made for seat reservations on American Airlines [37].

4.2 MSRP Resource Allocation
We now describe how the executive allocates resources using an
incremental greedy algorithm that we call Maximize Service Rev-
enue and Profit (MSRP). Execution of MSRP is divided intoepochs.
New epochs are declared at regular time intervals, or when some
change in the state of the center triggers a reassessment of resource
allotments. Examples include load changes beyond some tolerance
threshold or changes to available resources�max due to capacity
expansion, failures, or degraded service modes (browndown).

At each epoch the algorithm determines a vector of resource allot-
ments�i for N servicesi. The objective is to maximize profit at
each timet:

profit(t) =
PN

i
(Ui(t; �i)� �i � cost(t))

The utility for each customeri at timet is given by:

Ui(t; �i) = bidi(�i(t; �i))� penaltyi(t; �i)

The solution is constrained by the center’s maximum capacity�max

at any given time:

� =
PN

i
�i � �max

This is a linearly constrained nonlinear optimization problem. To
make the problem tractable, our solution assumes that at fixedt

each utility functionUi is concave in the following sense. The
marginal utility of increasing an allotment�i by one resource unit
is given byUi(t; �i +1)�Ui(t; �i). This is the marginal value or
price offered byi for its last unit of resource at allotment�i: we
denote this aspricei(�i) at timet. This price is equivalent to the
utility gradient or partial derivative �

��i

Ui(t; �i) if Ui is viewed
as continuous over a real-valued domain. The concavity assump-
tion is that this utility gradient must be positive and monotonically
nonincreasing. This assumption is common in economic resource
allocation [19], and it is natural given our definition of utility. For
example, the marginal performance improvement from adding a
resource unit declines as�i increases to approach and exceed the
maximum resource demand for the offered load at timet. More-
over, it is rational for a customer to assign declining marginal value
to these declining incremental improvements. Note that the utility
functions are concave if the bid and penalty functions are concave.

We specify MSRP using two helper functionsgrow(i; target) and
shrink(i; target). These functions follow the estimated utility
gradients up or down, growing or shrinking the planned allotment
�i for servicei. As shrink reclaims resources from a service,
the marginal valuepricei(�i) increases; asgrow assigns more re-
sources the price decreases. These functions shift resources until
pricei(�i) � target or the resources are exhausted. The next sec-

tion discusses techniques to estimate these prices when planning
resource assignments.

MSRP maximizes revenue and profit by “selling” the available�max

resource units for the highest offered prices at or above cost. The
concavity assumption admits a simple and efficient gradient-climbing
solution. During each epoch the algorithm executes some or all of
the following phases in the following order:

1. Reclaim resources with negative return.For any servicei
with pricei(�i) � cost(t): shrink(i; cost(t)).

2. Allot more resources to profitable services.If � < �max,
then there are idle resources to deploy. Determine the high-
est bidderi with maximumpricei(�i) and the next high-
est bidderj. Greedily allot resources to the highest bid-
der i: grow(i; pricej(�j)). Repeat, adding resources until
� = �max, or the highest remaining bidder’spricei(�i) <
cost(t).

3. Reclaim overcommitted resources.If � > �max, then re-
claim the least profitable resources. This may be needed if
browndown or some other failure has reduced�max from
the previous epoch. Determine the lowest-loss servicei with
minimal pricei(�i), and the next lowest-loss servicej. Re-
claim from i: shrink(i; pricej(�j)). Iterate with the next
lowest-loss service, reclaiming resources until� = �max.

4. Adjust for highest and best use.If any servicesi andj ex-
ist such thatpricei(�i) < pricej(�j), then shift resources
from i to j until pricei(�i) � pricej(�j). This is done by
shifting resources from the lowest to the highest bidders until
equilibrium is achieved.

When the algorithm terminates, all resource holders value their last
unit of resource equivalently:pricei(�i) is equivalent for alli with
�i > 0. This price is theequilibrium pricefor resources in the cen-
ter’s economy given the available resources�max and load at epoch
t. If there is no resource constraint then the equilibrium price ap-
proachescost(t). Under constraint the equilibrium price matches
the resource demand with the available supply. Establishment of
the equilibrium price in step 4 results in a distribution of resources
defined aspareto-optimal. It can be shown that the pareto-optimal
solution is unique and maximizes global utility given our concav-
ity assumption for the utility functions. Equivalently, the nonlin-
ear optimization problem has a global maximum and no false local
maxima.

A key property of MSRP and the economic model is that it con-
serves resources during periods of low demand. Resources are not
sold at a price below cost; no resource unit is consumed unless it is
expected to yield a meaningful performance improvement.

4.3 Estimating Performance Effects
It remains to show how to estimate the request throughput�i(t; �i)
or resource utilization�i for a planned allotment�i to servicei in
epocht. These estimates are based on continuous observations of
each servicei’s current throughput�i, its aggregate request queue
lengthqi, and its utilization�i for its current allotment. Section 4.4
describes the technique we use to smooth these observations.

Our scheme uses a common target utilization level�target for each
�i. Broadly, if �i < �target then resources may be conserved by



reducing the allotment�i without affecting�i. Since utilization
is linear with throughput below saturation, we can safely reclaim
�i(�target��i) resource units with zero expected loss of revenue.
Choosing�target < 1 leaves surplus capacity for absorbing tran-
sient load bursts, and it enables the system to recognize when the
service is underprovisioned: if�i > �target, then it is likely that
increasing�i will also increase�i.

When�i > �target the magnitude of the improvement from in-
creasing�i may be estimated using a variety of techniques if the
model parameters (e.g., population size and think time) are known,
which they are not in this case. However, a simple adaptive solution
exists: optimistically assume that any new resources allotted to the
service will increase throughput linearly with its mean per-request
service demand, which is easily determined as�i�i=�i. The sys-
tem estimates a linear improvement from resource units needed
to bring utilization down to�target. The risk is that the system
may “overshoot” and allot resources beyond the knee of the�i(�i)
throughput curve, i.e., beyond what is needed to bring the service
out of saturation. If servicei is allotted more resource than it can
use productively, then�i < �target in a subsequent epoch, leading
the algorithm to compensate by reclaiming the unused resources.

Once the system has estimated how adjustments to the resource al-
lotments will affect�i, it directly applies thebidi and penaltyi
functions to determine the utility gradients. For example, consider
two resource-constrained servicesA andB. If A bids twiceB’s bid
for throughput increases, butA consumes more than twice as much
resource per request, then the system prefers to allocate scarce re-
sources toB. If there is no penalty, then the utility gradient (price)
in dollars per resource unit is the incremental bid price per hit per
second, divided by the per-request resource demand�i�i=�i.

Although our approach linearly approximates the performance ef-
fects of resource shifts in each epoch, the optimization problem is
in general nonlinear unless the utility functions are also linear. It is
interesting to note that linear utility functions correspond almost di-
rectly to a priority-based scheme, with a customer’s priority given
by the slope of its utility function scaled by its average per-request
resource demand. The relative priority of a customer declines as its
allotment approaches its full resource demand; this property allo-
cates resources fairly among customers with equivalent priority.

4.4 Feedback and Stability
The executive’s predictions depend upon noisy values, in partic-
ular the service throughput (�) and its sister value utilization (�).
Smoothing these measures to obtain an accurate picture of load
is challenging given that Internet service request loads show self-
similar bursty behavior [41]. A good load estimator must balance
stability—to avoid overreacting to transient load fluctuations—with
agility to adapt quickly to meaningful load shifts [31, 25]. In this
case, the problem is compounded because the observations consti-
tute a feedback signal. That is, these noisy inputs reflect the effects
of resource adjustments in the previous epoch as well as changing
load conditions. The system may oscillate if the epochs are too
short for the servers to stabilize after each round of adjustments,
or if the executive overreacts to noise in the feedback signal. Ab-
delzaher et. al. [1, 2] use control theory to address stability and
responsiveness in a closely related feedback-controlled Web server.

Fortunately, persistent load swells and troughs caused by shifts in
population tend to occur on the scale of hours rather than seconds,
although service popularity may increase rapidly due to advertis-

0

20

40

60

80

100

0 300 600 900 1200

Time (s)

U
til

iz
at

io
n

(%
)

Raw Data

EMWA

Flop-Flip

(α=7/8)

Figure 6: Smoothing a noisy signal with the flop-flip filter.

ing, new content, or other factors. Our current approach uses a prin-
ciple similar to theflip-flop filter devised by Kim and Noble [25]
to balance stability and agility. The flip-flop passes a sequence of
observations through two exponentially weighted moving average
(EWMA) filters with different gain�. Each filter produces an esti-
mateEt for timet by combining the observationOt with the previ-
ous estimate:Et = �Et�1+(1��)Ot. Flip-flop selects the result
of an agile (low-gain) filter whenOt falls within some tolerance of
recent observations, else it selects the output of a stable (high-gain)
filter. Flip-flop adapts quickly to load changes and it effectively
damps noisy inputs, but it does not smooth the signal sufficiently
under normal conditions for our purposes. Our solution—which
we callflop-flip—holds a stable estimateEt = Et�1 until that es-
timate falls outside some tolerance of a moving average of recent
observations, then it switches the estimate to the current value of
the moving average.

Figure 6 illustrates an instance of the flop-flip filter smoothing Web
server CPU utilization measurements under a synthetic Web load
swell (see Section 6). Even during steady load, this bursty signal
varies by as much as 40% between samples. The flop-flip filter uses
a 30-second sliding window moving average and a step threshold
of one standard deviation: it maintains a nearly flat signal through
transient load oscillations, and responds to persistent load changes
by stepping to another stable level. For comparison, we plot the
output from an EWMA filter with a heavily damped� = 7=8, the
filter used to estimate TCP round-trip time [21]. A flip-flop filter
behaves similarly to the EWMA for the “flat” portion of this signal.
The flop-flip filter is less agile than the EWMA or flip-flop; its sig-
nal is shifted slightly to the right on the graph. However, the step
effect reduces the number of unproductive reallocations in the ex-
ecutive, and yields stable, responsive behavior in our environment.

4.5 Pricing
The Muse resource economy defines a general and flexible means
to represent business priorities for a hosting service. For example,
even if service is offered at a fixed rate, the utility functions can
represent priority for valuable customers, e.g., those with longer
contract periods. At the system level, utility functions enable a re-
source management approach based on economic principles, which
offers an effective solution to the basic challenges for hosting cen-
ters set out in Section 2: conservation of unproductive resources
and efficient rationing under constraint caused by power brown-
down or load surges beyond aggregate capacity.



Our model is most natural when the utility functions directly re-
flect prices in a usage-sensitive pricing model. Pricing systems for
communication services tend toward simple fixed or tiered pricing
schemes, in part because they are simple for consumers and they
stimulate demand for resources that are abundant due to advancing
technology and deployment [28]. For example, it is common today
for customers to pay for network and content transit at a fixed rate
based on smoothed expected peak demand over each interval. Cus-
tomers prefer fixed pricing in part because charges are predictable.
However, customers are accustomed to metered pricing for services
with high variable cost, such as electrical power or financial ser-
vices for e-commerce (e.g., credit card processing, which is typi-
cally priced as a percentage of the customer’s revenue). Relative
to communication, hosting has a high variable cost of service for
server energy and storage. However, usage-sensitive pricing cre-
ates a need for verification services similar to those in place for
Internet advertising.

The utility functions offer useful flexibility independent of the pric-
ing model. For usage-sensitive pricing, bid functions may specify a
bound to cap costs independent of load; load increases beyond that
point cause a decline in service quality. The bid may grow more
rapidly at low throughputs and then level off; this reduces the like-
lihood that a low-value service starves during a period of scarcity,
and it reflects economies of scale for high-volume services. With
fixed tiered pricing, utility functions can represent refund rates for
poor-quality service, or surcharges for service beyond the contract
reservation, providing an incentive to upgrade to a higher tier.

An important limitation of our framework as defined here is that
customers do not respond to the price signals by adjusting their
bids or switching suppliers as the resource congestion level varies.
Thus, the system is “economic” but not “microeconomic”. Util-
ity functions are revealed in full to the supplier and the bids are
“sealed”, i.e., they are not known to other customers. While this
allows a computationally efficient “market”, there is no meaning-
ful competition among customers or suppliers. Our approach could
incorporate competition by allowing customers to change their bid
functions in real time; if the new utility function meets the con-
cavity assumption then the system will quickly converge on a new
utility-maximizing resource assignment.

4.6 Multiple Resources
As implemented in our prototype, Muse manages only one resource:
server CPU. We adjusted the performance estimator to control I/O
resources in a minimal way for the special case where I/O is to a
local replica of stored content, as described in 5.1. This is the only
support for controlling I/O resources in our current prototype.

Our approach could extend to manage multiple resources given
support in the server node OS for enforcing assignments of disk,
memory, and network bandwidth [44, 40, 30]. Economic problems
involving multiple complementary goods are often intractable, but
the problem is simplified in Muse because customer utility func-
tions specify value indirectly in terms of delivered performance;
the resource allotment to achieve that performance need not be vis-
ible to customers. Only adjustments to the bottleneck resource (the
resource class with the highest utilization) are likely to affect per-
formance for services with many concurrent requests. Once the
bottleneck resource is provisioned correctly, other resources may
be safely reclaimed to bring their utilization down to�target with-
out affecting estimated performance or revenue.

5. PROTOTYPE
The Muse prototype includes a user-level executive server and two
loadable kernel modules for the FreeBSD operating system, imple-
menting a host-based redirecting server switch and load monitoring
extensions for the servers. In addition, the prototype uses the Re-
source Containers kernel modules from Rice University [10, 8] as
a mechanism to allocate resources to service classes on individual
servers. The following subsections discuss key elements of the pro-
totype in more detail.

5.1 Monitoring and Estimation
A kernel module for the servers reports utilization�i, request queue
length qi, and request throughput�i for each servicei, as de-
scribed in Section 4.3. Amonitor module in the executive com-
bines, smooths, and interprets these measures before passing them
to the policy controller. The monitor consists of 800 lines of C code
compiled into the executive. The prototype measuresqi and�i in
units of TCP connections:qi is the aggregate TCP accept queue
length, and�i is measured in TCP FIN-ACKs per second. These
correspond to requests in HTTP 1.0. Precise measures for HTTP
1.1 or other service protocols using persistent connections may re-
quire extensions to application server software.

Theqi observations may be taken as a measure of service quality
or to detect variations in the balance between CPU and I/O for each
service. If a service is not reaching the target utilization level for
its resource allotment (�i < �target), but smoothed queue lengths
exceed a threshold, then the monitor assumes that the service is
I/O bound. Our prototype adapts by dropping the�target for that
service to give it a larger share of each node and avoid contention
for I/O. Once the�target is reached, the system gradually raises it
back to the default, unless more queued requests appear. Queued
requests may also result from transient load bursts or sluggish ac-
tion by the executive to increase the allotment when load is in an
uptrend. In this case, the adjustment serves to temporarily make
the executive more aggressive.

5.2 The Executive
The executive runs as a user-level server on a dedicated machine.
In addition to the load monitor code, it includes 300 lines of C code
implementing the policies described in Section 4 for a single pool
of homogeneous servers. In our experiments the executive spreads
request loads from all services evenly across the entire active server
pool. The resource container allotment for servicei is set on every
active server as a percentage of total� allotted to all services in that
epoch. In practice, it may be desirable to partition the server pool
for stronger security or fault isolation [35, 5].

The executive emits a sequence of commands to control the active
server sets, server power states, and resource allotments. A separate
actuatorprogram triggers the state changes by passing commands
to the switches and servers. For example, the actuator changes re-
source allotments by issuingrsh to remotely execute tools from the
resource container release. Decoupling the executive from the ac-
tuator allows us to test and debug the executive by running it in trial
mode or using saved load information as its input.

The actuator uses Advanced Power Management (APM) tools for
Intel-based systems to retire excess servers by remotely transition-
ing them to a low-power state. The current prototype recruits and
retires servers by rank; we have not investigated policies to se-
lect target servers to spread thermal load or evenly distribute the
start/stop cycles. The low-power state leaves the network adapter



Executive

client cluster server pool

Extreme
GigE
switch

LinkSys
100 Mb/s

switch

redirectors
(PowerEdge 1550)

SURGE or trace
load generators

Figure 7: The hosting center testbed.

powered; off-power servers are awakened with a tool that sends a
predefinedWake-On-LANpacket pattern to the Ethernet MAC ad-
dress, which initiates a boot in the BIOS. Power draw in the low-
power state is 3-5 watts on our systems, equivalent to powering off
the machine (power draw only ceases after physically unplugging
the machine). It takes about a minute to bring a recruited server on
line, but we expect that future ACPI-capable servers will support
warm low-power states to reduce this delay.

The resource allocation algorithm runs in at worstN + �N time,
where� is the number of resource units reallocated in the epoch
andN is the number of services. (This assumes that the utility
functions execute in constant time, such as a table lookup.) Thus
the executive is fast when the cluster is stable, but it is relatively ex-
pensive to adapt to significant changes in the load, resource avail-
ability (�max), or utility functions. One potential source of runtime
cost is evaluating the utility functions themselves, which are loaded
into the executive in our prototype. The algorithm evaluates these
functions to determine the highest and lowest bidders for each real-
located resource unit. The base resource unit granularity is 1% of a
server CPU; an initialization parameter allows grouping of resource
units to reduce computational cost at the expense of precision.

Future work will explore decentralizing the executive functions to
eliminate it as a bottleneck or single point of failure. The clus-
ter adapts only when the executive is functioning, but servers and
switches run autonomously if the executive fails. The executive
may be restarted at any time; it observes the cluster to obtain ade-
quately smoothed measures before taking action.

5.3 The Request Redirector
The reconfigurable load-balancing switches in the prototype are
host-based, implemented by aredirectormodule that interposes on
the kernel TCP handler. It intercepts TCP packets addressed to
registered logical service ports on the switch, and redirects them
to selected servers. The redirector uses Network Address Transla-
tion and incremental checksum computation to adjust packets from
each flow before redirecting them. All response traffic also passes
through the redirector. This behavior is typical of a commercial
“Layer-4” load-balancing switch serving virtual TCP/IP endpoints.
For our experiments we used a simple round-robin policy to select
servers from the active set.

The redirector also gathers load information (packet and connec-
tion counts) from the redirected connections, and maintains active
server sets for each registered service endpoint. The active sets are
lists of (IPaddr, TCPport)pairs, allowing sharing of an individual
server by multiple services. Active set membership is controlled

by the executive and its actuator, which connects to the redirector
through a TCP socket and issues commands using a simple protocol
to add or remove servers. This allows the executive to dynamically
reconfigure the active sets for each service, for example, to direct
request traffic away from retired (off-power) servers and toward re-
cruited (active) servers.

6. EXPERIMENTAL RESULTS
This section presents experimental results from the Muse proto-
type to show the behavior of dynamic server resource management.
These experiments consider the simple case of a symmetric cluster
with a single server pool.

6.1 Experimental Setup
Figure 7 depicts the data center testbed, which consists of a server
pool driven by traffic-generating clients through two redirecting
switches. The servers are 450 MHz Pentium-III systems (Asus
P2B/440BX). These servers run FreeBSD 4.3 and multiple instances
of Apache version 1.3.12, each in its own resource container. The
redirectors are Dell PowerEdge 1550 rackmounts with 1GHz Pen-
tium-III CPUs. These systems have dual Gigabit Ethernet NICs
connected to gigabit ports on the server’s switch, a Linksys Gi-
gaswitch, and the client’s switch, an Extreme Summit 7i. Each of
the redirectors’ NICs is connected to a separate 64-bit 66 MHz PCI
bus. The servers are connected to the Linksys switch through 100
Mb/s links. Each redirector can carry sufficient traffic to saturate
the server pool under a standard HTTP 1.0 Web workload, but la-
tencies increase significantly near redirector saturation.

Our experiments use a combination of synthetic traffic and real re-
quest traces. We use a server log trace from IBM Corporation’s
main Web server (www.ibm.com), with 43M requests received dur-
ing February 5-11, 2001. To show the impact with multiple services
under varying loads, we use a modified version of the SURGE [11]
synthetic Web service load generator. SURGE generates highly
bursty traffic characteristic of Web workloads, with heavy-tailed
object size distributions so that per-request service demand is highly
variable. These factors stress the prototype’s load estimation and
resource allocation algorithms. One advantage of synthetic traffic
is that the load generator is closed, meaning that the request arrival
rate is sensitive to the response latency in the manner discussed in
Section 4.1. Also, we can generate synthetic load “waves” with any
amplitude and period by modulating the number of generators.

The experiments presented are designed to illustrate various aspects
of the system’s behavior in simple scenarios. This version of re-
source containers controls only the CPU resource, thus our exper-
iments vary only the CPU allotments. All servers hold a complete
replica of the Web service file set, and our workloads serve a large
majority of requests from memory so that the CPU is the critical
resource. Section 4.6 discusses the problem of multiple resources.
All experiments use 10-second epochs, fixedcost = 1, and one-
second measurement intervals.

6.2 Allocation Under Constraint
The first two experiments demonstrate competitive allocation of
server resources in a cluster that is inadequately provisioned for
unexpected load swells. These experiments offer synthetic request
traffic to two services (s0ands1) with linear utility as a function of
throughput. Both services have equivalent file sets, so they have the
same average per-request service demand. They receive different
load signals, generated by a set of eight machines running SURGE



0

500

1000

1500

0 500 1000 1500

Time (s)

T
hr

ou
gh

pu
t(

re
qu

es
ts

/s
)

0

1

2

3

A
llotm

ent(servers)

λ0
λ1
µ0
µ1

Figure 8: Competitive bidding with two services, favoring s1.

0

500

1000

1500

0 500 1000 1500

Time (s)

T
hr

ou
gh

pu
t(

re
qu

es
ts

/s
)

0

1

2

3

A
llotm

ent(servers)
λ0
λ1
µ0
µ1

Figure 9: Competitive bidding with two services, favoring s0.

load generators. Services0 receives a fixed load, while services1
experiences rapid load variations with two major swells over a 25-
minute period peaking at double the load fors0. The experiment
is constrained to three servers, and the load is comfortably handled
by two servers during the troughs fors1. These experiments use
�target = 0:8.

Figure 8 and Figure 9 demonstrate competitive resource rationing
under this scenario. Each figure plots total service throughput (�)
on oney axis and total resource allotment (�) on the other. The
figures report allotments in units of complete servers; the allocation
grain is 1% of a server (�max = 300).

In Figure 8, the oscillatings1bids higher thans0 for each unit of
its throughput. When thes1 load swells, the executive responds to
a resource shortage by reducing the allotment fors0, pushing its
throughput down. Initially each service receives enough resources
to handle its load, until the oscillating load swells near time index
300. At that point,s0 is depressed until the swell reverses and the
executive reclaims unused resources froms1.

The second experiment in Figure 9 is identical to the first, except
that the utility functions are reversed so that the fixeds0bids higher
thans1. The behavior is similar when there are sufficient resources
to handle the load. During thes1swells the executive preserves the
allocation for the higher-biddings0, doling out most of the remain-
ing resources tos1.

0

500

1000

1500

0 170 340 510 680 850

Time (s)

T
hr

ou
gh

pu
t(

re
qu

es
ts

/s
)

0

1

2

3

A
llotm

ent(servers)

λ0
λ1
µ0
µ1
servers

Figure 10: Competitive bidding during browndown.

6.3 Browndown
The next experiment, reduces�max for an active cluster hosting
competing services, emulating a server failure or browndown. We
use loads for servicess0 ands1similar to the experiments above,
but favoring the fixeds0. Initially both services are idle with the
minimum allotment and there are three servers available. As load
builds, each service allotment increases until time 120 when the
maximum cluster size shrinks to two servers (�max = 200).

Figure 10 illustrates the behavior. Muse responds to the loss by
shifting load to the remaining servers and degrading service fors1.
However, shortly after the failure, att = 170, the request load
for s1exceedss0. Althoughs0bids higherper request, the execu-
tive shifts resources away froms0because the same resources will
satisfy more hits for the badly saturateds1, earning higher overall
utility.

The third server is restored att = 540. Muse allocates additional
resources to both services untils1offered load drops and the system
reclaims its excess allocation. The subsequent swell starting att =
680 is similar to Figure 9, favorings0as the swell peaks.

6.4 Varying Load and Power
The next experiments evaluate the energy savings from energy-
conscious provisioning for a typical Web workload. Figure 11
shows throughput, energy consumption, and request latency for the
full week of the IBM trace, played at 16x speedup using open trace
replay software [18] that is faithful to the logged request arrival
times. These 10-hour experiments used five servers and one redi-
rector. A Brand Electronics 21-1850/CI digital power meter logs
average aggregate server power draw once per second. In the base-
line experiment (left), power levels vary within a narrow range of
190-240 watts proportionally to request load. The total energy con-
sumption for the run was 2.38 KWh.

The second experiment (right) shows a similar run with energy-
conscious provisioning enabled and�target = 0:5. Total energy
consumption for this run was 1.69 KWh, a savings of 29%. The
right-hand graph reflects the executive’s more conservative poli-
cies for retiring machines during periods of declining load, yielding
somewhat higher energy consumption than necessary. The average
load for this trace is 1010hits per secondwith a peak load of 2043
hps. Thus the idealized energy savings for the full week is bounded
above by 50%; the Muse prototype yields a significant share of this
savings, even with the trace sped up by 16x. Response latencies
are slightly higher under light load, reflecting the resizing of server
sets to maintain server utilization at�target.



0

500

1000

1500

2000

2500

0 155 310 465 620

Time (minutes)

T
hr

ou
gh

pu
t(

re
qu

es
ts

/s
)

0

70

140

210

280

350

P
ow

er
D

raw
(w

atts),
Latency

(m
s

x50)

Throughput

Power

Latency

0

500

1000

1500

2000

2500

0 155 310 465 620

Time (minutes)

T
hr

ou
gh

pu
t(

re
qu

es
ts

/s
)

0

70

140

210

280

350
P

ow
er

D
raw

(w
atts),

Latency
(m

s
x50)

Throughput

Power

Latency

Figure 11: Throughput, power, and latency for the IBM trace at 16x with (right) and without (left) energy-conscious provisioning.

0

20

40

60

80

100

0 4 8 12 16

Max Servers

S
av

in
gs

(%
) World Cup (two month)

World Cup (month 2)

World Cup (week 8)

IBM (week)

Figure 12: Potential energy savings for the IBM and World Cup
traces with increasing server requirements.

While the absolute energy savings of 690 watt-hours is modest for
the IBM trace experiment in Figure 11, a similar relative savings
can be expected for more intensive workloads over longer periods.
The overall savings from energy-conscious server management is
increased by overprovisioning and seasonal load fluctuations. Also,
the potential relative savings increases in larger clusters, because
dynamic resizing of the cluster may occur on a finer relative gran-
ularity to more closely approximate the load curve.

To illustrate, Figure 12 compares the potential energy savings for
the IBM and World Cup load curves as a function of cluster size.
This determines the savings available for a service with identical
relative load fluctuations but a higher peak resource requirement
due to more resource-intensive requests, larger client populations
and higher request rates, or a lower�target. These results were ob-
tained by passing the per-second request rates in the trace through
the flop-flip filter, then computing the number of active servers re-
quired to serve the trace load at ten-minute intervals, under the as-
sumption of stable average per-request resource demand and the
peak resource demand given on thex-axis. They-axis gives the
corresponding approximate energy savings relative to static pro-
visioning. The projections assume power draw linear with load
between theidle andmaxmeasures for the SuperMicro 370-DER
servers given in Table 1.

Server energy savings approaches 38% for the IBM trace and up to
78% for the full World Cup trace, realizing higher savings as the
cluster size increases. In essence, the given load is discretized ac-
cording to the number of servers. With larger clusters, the “round-

ing error” for excess capacity declines. Figure 12 shows that man-
aging energy at the granularity of complete servers is sufficient for
clusters of a few dozen nodes or more.

These results approximate the potential overall savings in energy-
related operating costs from this technique. Most energy consumed
for data center machine rooms goes to servers and cooling [29].
The results presented here do not reflect the energy savings from
reduced cooling load; while ventilation and power conditioning
impose modest fixed costs, energy consumption in chillers is pro-
portional to thermal loading from active servers. Savings may be
partially offset by off-peak maintenance activities or geographical
load-shifting from time zones in peak load toward areas with light
load. Although more data is needed, the results justify an expected
potential overall energy savings of 25% or more for Web data cen-
ters.

7. RELATED WORK
Cluster-based network services. Many systems have used server
clusters and redirecting front-ends or switches to virtualize net-
work services (e.g., [32, 36, 7, 4]) for scalability, availability, or
both. Muse uses reconfigurable redirecting switches as a mecha-
nism to support adaptive resource provisioning in network server
pools; related projects considering this approach are DDSD [47]
and Oceano [5]. The switch features needed are similar to the sup-
port for virtual LANs, request load balancing, and server failover
found on commercial switches for server traffic management, which
are now widely used in large Internet server sites.

Service hosting. Our focus on hosting services targets environ-
ments in which physical servers are shared among competing server
applications. Many projects have addressed the related problem
of providing a configurable and secure execution environment for
application components on generic servers. WebOS [42] framed
the problem and proposed solutions for a wide-area hosting utility;
Oceano [5] is one project addressing this challenge for hosting cen-
ters. One solution gaining commercial acceptance is to encapsulate
service components in separate virtual machines (e.g., VMware).
Our approach to server provisioning is applicable to each of these
contexts. Although this paper focuses on a single data center, a
similar approach could manage resources for a wide-area hosting
network or content services network.

Resource principals. Muse associates each service with a resource
principal recognized by the operating system, and allocates resources
to these principals to apply provisioning choices securely and with-



out burdening server applications. Decoupling resource principals
from the kernel’s process and thread abstractions improves general-
ity: examples in the literature include resource groups in Opal [14],
activities in Rialto [24], Software Performance Units [44], schedul-
ing domains in Nemesis [30], and the resource containers [10] im-
plemented for FreeBSD by Mohit Aron [8] and used in our proto-
type. Aron has shown how to extend resource principals tocluster
reservesspanning nodes [9, 8].

Scheduling for performance isolation. To ensure performance
isolation, resource allotments to resource principals are enforced
by kernel-based schedulers for each node’s physical resources. For
example, CPU time allotments may be expressed and enforced us-
ing reservations (e.g., as in Rialto [24]) or a proportional share
discipline such as the lottery scheduling [46] used for FreeBSD
resource containers. Several groups have shown how to imple-
ment performance-isolating schedulers for other resources includ-
ing memory, network bandwidth, and storage access [44, 40, 30].
Recent work addresses performance isolation for co-hosted virtual
services built above shared database servers or other supporting
tiers [34].

Software feedback. Our work uses these resource control mech-
anisms to adaptively allocate system resources to competing con-
sumers whose resource demands are not knowna priori. This ap-
proach is related to feedback scheduling, which is used to dynam-
ically characterize the resources needed to maintain specified rates
of application progress [38]. Previous work on feedback schedul-
ing has focused primarily on CPU scheduling for continuous media
and other real-rate applications, while we use feedback to adap-
tively provision resources for hosted network services whose re-
source demands vary dynamically with request load. Aron [8] uses
kernel-based feedback schedulers to meet latency and throughput
goals for network services running on a shared server. Abdelzaher
et. al. [1, 2] are also investigating this approach and have addressed
the control-theoretical aspects. IBM mainframe systems use feed-
back to optimize resource usage to meet a range of progress and
quality goals for mixed workloads on clusters [3]; their approach
could also apply to network services, as in Oceano [5]. In Muse,
the feedback and adaptation policies are decoupled from the node
operating systems and applied across the entire server pool, us-
ing reconfigurable switches to enable dynamic assignment of active
server sets for each service.

Admission control and QoS. A substantial body of related work
addresses predictable or guaranteed quality-of-service (QoS) bounds
for scheduling shared resources — primarily CPUs and networks
— among consumers with varying demands. Continuously mon-
itoring of load levels is related to measurement-based admission
control, which has been used to maintain predictive service levels
for network flows [22], clients of a Web server [27], and services on
a shared server [8]. The approach for co-hosted Web services in [2]
relies ona priori characterizations of peak demands for each ser-
vice, together with feedback-based degraded content fidelity when
a server is overloaded. Muse currently addresses QoS bounds only
indirectly through utility functions that place a premium on higher
throughput and impose a penalty when a customer is starved. Even
with admission control, transient resource constraints may occur as
a result of failures or power “browndown” events.

Economic resource allocation. Use of continuous utility func-
tions as a basis for planning resource allocation under constraint
is ubiquitous in markets and auctions. Reference [16] and [19]

survey earlier computer science research on market-based resource
allocation. Recent systems have experimented with market-based
models for wide-area database systems (Mariposa [39]), distributed
computation (e.g., Spawn [45]) and energy management for mobile
systems [30]. Muse extends these ideas to enable continuous, fine-
grained service quality control for co-hosted network services. Ser-
vice resource demands vary with time and user population, while
computational workloads in principle have unbounded resource de-
mand rates until an answer is produced. The last few years have
seen an explosion of interest in market-based allocation of network
bandwidth during the Internet’s transition to a commercial service;
reference [28] is a collection of perspectives. The economics of
service hosting are related but distinct, as discussed in Section 4.5.

Energy management. A key distinction from previous work is that
our approach is directed not just at scheduling shared resources ef-
fectively, but also at reducing on-power server capacity to match
demand, as a natural outgrowth of a comprehensive resource man-
agement architecture for hosting utilities. Energy-conscious switch-
ing was recently proposed independently [12, 33] and appears to
be new in the literature. It adjusts on-power capacity at the coarse
granularity of entire servers, as a complementary but simpler and
more effective alternative to fine-grained techniques (e.g., frequency
scaling or variable voltage scaling on new CPU architectures such
as Transmeta Crusoe), which reduce CPU power demand under
light load but do not address energy losses in the power supply.
Our approach also enables the system to support flexible tradeoffs
of service quality for power under constraint (e.g., cooling failure)
in a manner similar to dynamic thermal management [13] within
an individual server.

Previous research on power management focuses on mobile sys-
tems, which are battery-constrained. We apply similar concepts and
goals to Internet server clusters; in this context, energy-conscious
policies are motivated by cost, energy efficiency, and the need to
manage power supply disruptions or thermal events. The focus on
servers adds a new dimension topower-aware resource manage-
ment[43], which views power as a first-class resource to be man-
aged by the operating system [15, 26]. One aspect we have not
investigated in the server context is the role of application-specific
adaptation to resource constraints [31, 17, 30, 2]. If it is necessary
to degrade service quality, our approach merely increases response
time by reducing resource allotments without participation from
server applications.

Load estimation. Fundamental to server resource management
is the load estimation problem: how much resource is needed to
meet service quality goals for the current load level? This is related
to the problem of characterizing network flows. Most approaches
used exponential moving averages of point samples or average re-
source utilization over some sample period [23, 27, 2, 9, 8]. In [2],
resource demands are derived from request counts and bytes trans-
ferred, using a model of a static Web server. Kim and Noble have
compared several statistical methods for estimating available band-
width on a noisy link [25]; their study laid the groundwork for the
“flop-flip” filter in Muse.

8. CONCLUSION
This paper describes the design and implementation of Muse, a re-
source management architecture for hosting centers. Muse defines
policies foradaptive resource provisioningin hosting centers us-
ing an economic approach. A principal objective is to incorpo-
rate energy management into a comprehensive resource manage-



ment framework for data centers. This enables a center to im-
prove energy efficiency under fluctuating load, dynamically match
load and power consumption, and respond gracefully to transient
resource shortages caused by exceptional load surges or “brown-
down” events that disrupt the power supply or thermal systems.

The Muse resource economy is based on executable utility func-
tions that quantify the value of performance for each co-hosted ser-
vice. The system plans resource assignments to maximize “profit”
by balancing the cost of each resource unit against the estimated
marginal utility or “revenue” that accrues from allocating that re-
source unit to a service. To predict the effects of planned resource
adjustments, the system estimates resource demands based on con-
tinuous performance observations. This enables the center to use
available resources efficiently, set resource “prices” to balance sup-
ply and demand, and minimize the impact of shortages. It also
provides a foundation for a market-based approach to competitive
third-party application hosting in the wide area.

This paper makes the following contributions:

� It shows how to use reconfigurable network-level request redi-
rection to route incoming request traffic toward dynamically
provisioned server sets. This also enablesenergy-conscious
provisioning, which concentrates request load on a subset of
servers. Muse leverages server power management to control
the center’s overall power level by automatically transition-
ing the power states of idle servers.

� It illustrates a simple adaptive policy to dynamically allot
sufficient resources for each service to serve its current load
at some selected quality level, reducing the need for static
overprovisioning. This enables a center to balance short-term
load shifts that may be out-of-phase across multiple services,
and respond automatically to long-term popularity shifts.

� It shows how an economic framework for server resource al-
location allows informed tradeoffs of service quality during
shortages. The utility functions capture the key performance
criteria embodied in Service Level Agreements (SLAs), en-
abling direct expression of a continuum of SLAs balancing
service quality and cost. The price-setting algorithm deter-
mines efficient resource assignments by “selling” the avail-
able resources at a profit to the highest bidders. The system
may choose not to sell idle capacity when it is economically
preferable to step down that capacity to reduce costs.

� It describes a Muse prototype for experimentation in data
center testbeds. Experimental results from the prototype demon-
strate its potential to adapt service provisioning to respond to
dynamically varying resource availability and cost in a server
cluster. The prototype can reduce server energy consumption
by 29%-78% for representative Web workloads.

Further research is needed to expand the generality of our approach.
Examples of desirable capabilities for a complete resource manage-
ment system are: a decentralized market executive, partitioning of
the server set, integration with externally controlled cooling sys-
tems, rapid response to load shifting across centers, market com-
petition among customers and suppliers, automatic handling of di-
verse software configurations in multiple server pools, performance
and utility measures for a wider range of server applications, and
coordinated management of other resources including storage.

Acknowledgements
We thank our shepherd Mike Jones, Terence Kelly, Rolf Neuge-
bauer, Geoff Voelker, and the anonymous reviewers for their com-
ments on earlier drafts. The paper also benefited from discussions
with Ricardo Bianini, Ed Bugnion, Dave Farber, Rich Friedrich,
Kevin Jeffay, Brian Noble, Ron Parr, Chandrakant Patel, Timo-
thy Roscoe, Mike Spreitzer, Kishor Trivedi, Jeff Vitter, and John
Wilkes. We also thank Alister Lewis-Bowen and Andrew Frank-
Loron for their help in obtaining the 2001 IBM server logs, Mootaz
Elnozahy for providing preprints of related papers on server energy
at IBM, Andrew Gallatin and David Becker for helping out with
experiments, and Mohit Aron for sharing his code for Resource
Containers in FreeBSD.

9. REFERENCES
[1] Tarek F. Abdelzaher and Chenyang Lu. Modeling and Performance

Control of Internet Servers. In39th IEEE Conference on Decision
and Control, December 2000.

[2] Tarek F. Abdelzaher, Kang G. Shin, and Nina Bhatti. Performance
Guarantees for Web Server End-Systems: A Control-Theoretical
Approach.IEEE Transactions on Parallel and Distributed Systems,
June 2001.

[3] Jeffrey Aman, Catherine K. Eilert, David Emmes, Peter Yocom, and
Donna Dillenberger. Adaptive Algorithms for Managing a
Distributed Data Processing Workload.IBM Systems Journal, 36(2),
1997.

[4] Darrell C. Anderson, Jeffrey S. Chase, and Amin M. Vahdat.
Interposed Request Routing for Scalable Network Storage. In
Proceedings of the Fourth Symposium on Operating System Design
and Implementation (OSDI), October 2000.

[5] Karen Appleby, Sameh Fakhouri, Liana Fong, Germ´an Goldszmidt,
Michael Kalantar, Srirama Krishnakumar, Donald Pazel, John
Pershing, and Benny Rochwerger. Oceano - SLA Based Management
of a Computing Utility. InProceedings of the 7th IFIP/IEEE
International Symposium on Integrated Network Management, May
2001.

[6] Martin Arlitt and Tai Jin. Workload Characterization of the 1998
World Cup Web Site. Technical Report HPL-1999-35R1, HP
Laboratories, September 1999. The trace is available from the
Internet Traffic Archive at ita.ee.lbl.gov.

[7] Armando Fox and Steven D. Gribble and Yatin Chawathe and Eric A.
Brewer and Paul Gauthier. Cluster-based scalable network services.
In Proceedings of the Sixteenth ACM Symposium on Operating
System Principles (SOSP), pages 78–91, October 1997.

[8] Mohit Aron. Differentiated and Predictable Quality of Service in
Web Server Systems. PhD thesis, Department of Computer Science,
Rice University, October 2000.

[9] Mohit Aron, Peter Druschel, and Willy Zwaenepoel. Cluster
Reserves: A Mechanism for Resource Management in Cluster-based
Network Servers. InProceedings of the Joint International
Conference on Measurement and Modeling of Computer Systems
(ACM SIGMETRICS 2000), pages 90–101, June 2000.

[10] Gaurav Banga, Peter Druschel, and Jeffrey C. Mogul. Resource
Containers: A New Facility for Resource Management in Server
Systems. InProceedings of the Third Symposium on Operating
Systems Design and Implementation (OSDI), February 1999.

[11] Paul Barford and Mark E. Crovella. Generating Representative Web
Workloads for Network and Server Performance Evaluation. In
Proceedings of the ACM Conference on Measurement and Modeling
of Computer Systems (SIGMETRICS ’98), pages 151–160, June
1998.

[12] Pat Bohrer, Elmootazbellah N. Elnozahy, Tom Keller, Michael
Kistler, Charles Lefurgy, and Ray Rajamony. The Case for Power
Management in Web Servers. InPower-Aware Computing (Robert
Graybill and Rami Melhem, editors). Kluwer/Plenum series in
Computer Science, to appear, January 2002.



[13] David Brooks and Margaret Martonosi. Dynamic Thermal
Management for High-Performance Microprocessors. InProceedings
of the Seventh International Symposium on High-Performance
Computer Architecture (HPCA-7), January 2001.

[14] Jeffrey S. Chase, Henry M. Levy, Michael J. Feeley, and Edward D.
Lazowska. Sharing and Protection in a Single Address Space
Operating System.ACM Transactions on Computer Systems, 12(4),
November 1994.

[15] Fred Douglis, P. Krishnan, and Brian Bershad. Adaptive Disk
Spin-down Policies for Mobile Computers. In2nd USENIX
Symposium on Mobile and Location-Independent Computing, April
1995. Monterey CA.

[16] Donald F. Ferguson, Christos Nikolaou, Jakka Sairamesh, and
Yechiam Yemini. Economic Models for Allocating Resources in
Computer Systems. InMarket-Based Control: A Paradigm for
Distributed Resource Allocation (Scott H. Clearwater, editor). World
Scientific, 1996.

[17] Jason Flinn and Mahadev Satyanarayanan. Energy-aware Adaptation
for Mobile Applications. InProceedings of the Seventeenth
Symposium on Operating Systems Principles (SOSP), pages 48–63,
December 1999.

[18] Syam Gadde. The Proxycizer Web Proxy Tool Suite.
http://www.cs.duke.edu/ari/Proxycizer/ .

[19] Toshihide Ibaraki and Naoki Katoh, editors.Resource Allocation
Problems: Algorithmic Approaches. MIT Press, Cambridge, MA,
1988.

[20] Arun Iyengar, Jim Challenger, Daniel Dias, and Paul Dantzig.
High-performance Web Site Design Techniques.IEEE Internet
Computing, 4(2):17–26, March 2000.

[21] Van Jacobson. Congestion Avoidance and Control.ACM Computer
Communication Review: Proceedings of the SIGCOMM Symposium,
18(4):314–329, August 1988.

[22] Sugih Jamin, Peter B. Danzig, Scott J. Shenker, and Lixia Zhang. A
Measurement-based Admission Control Algorithm for Integrated
Services Packet Networks.IEEE/ACM Transactions on Networking,
5(1):56–70, February 1997.

[23] Sugih Jamin, Scott J. Shenker, and Peter B. Danzig. Comparison of
Measurement-based Admission Control Algorithms for
Controlled-Load Service. InProceedings of IEEE Infocom 1997,
April 1997.

[24] Michael B. Jones, Daniela Rosu, and Marcel-Catalin Rosu. CPU
Reservations and Time Constraints: Efficient, Predictable Scheduling
of Independent Activities. InProceedings of the 16th ACM
Symposium on Operating Systems Principles, pages 198–211,
October 1997.

[25] Minkyong Kim and Brian Noble. Mobile Network Estimation. In
Proceedings of the Seventh Annual Conference on Mobile Computing
and Networking, July 2001.

[26] Alvin R. Lebeck, Xiaobo Fan, Heng Zeng, and Carla S. Ellis.
Power-Aware Page Allocation. InProceedings of the Ninth
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS IX), 2000.

[27] Kelvin Li and Sugih Jamin. A Measurement-Based
Admission-Controlled Web Server. InProceedings of IEEE Infocom
2000, March 2000.

[28] Lee W. McKnight and Joseph P. Bailey, editors.Internet Economics.
MIT Press, Cambridge, MA, 1997.

[29] Jennifer D. Mitchell-Jackson. Energy Needs in an Internet Economy:
A Closer Look at Data Centers. Master’s thesis, Energy and
Resources Group, University of California at Berkeley, July 2001.

[30] Rolf Neugebauer and Derek McAuley. Energy is Just Another
Resource: Energy Accounting and Energy Pricing in the Nemesis
OS. InProceedings of the Eighth IEEE Workshop on Hot Topics in
Operating Systems HotOS-VIII, pages 59–64, May 2001.

[31] Brian D. Noble, M. Satyanarayanan, Dushyanth Narayanan,
James Eric Tilton, Jason Flinn, and Kevin R. Walker. Agile
Application-Aware Adaptation for Mobility. InProceedings of the
Sixteenth ACM Symposium on Operating Systems Principles (SOSP),
pages 276–287, Saint Malo, France, October 1997.

[32] Vivek S. Pai, Mohit Aron, Gaurav Banga, Michael Svendsen, Peter
Druschel, Willy Zwaenopoel, and Erich Nahum. Locality-Aware
Request Distribution in Cluster-based Network Servers. In
Proceedings of the Eighth International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS VIII), October 1998.

[33] Eduardo Pinheiro, Ricardo Bianchini, Enrique V. Carrera, and Taliver
Heath. Load Balancing and Unbalancing for Power and Performance
in Cluster-Based Systems. Technical Report DCS-TR-440,
Department of Computer Science, Rutgers University, May 2001.

[34] John Reumann, Ashish Mehra, Kang G. Shin, and Dilip Kandlur.
Virtual Services: A New Abstraction for Server Consolidation. In
Proceedings of the USENIX 2000 Technical Conference, June 2000.

[35] Timothy Roscoe and Prashant Shenoy. New Resource Control Issues
in Shared Clusters. InProceedings of the Eight International
Workshop on Interactive Distributed Multimedia Systems (IDMS’01),
September 2001.

[36] Yasushi Saito, Brian N. Bershad, and Henry M. Levy. Manageability,
Availability and Performance in Porcupine: A Highly Scalable
Cluster-Based Mail Service. InProceedings of the 17th ACM
Symposium on Operating Systems Principles (SOSP), pages 1–15,
Kiawah Island, December 1999.

[37] Barry C. Smith, John F. Leimkuhler, and Ross M. Darrow. Yield
Management at American Airlines.Interfaces, 22(1), January 1992.

[38] David C. Steere, Ashvin Goel, Joshua Gruenberg, Dylan McNamee,
Calton Pu, and Jonathan Walpole. A Feedback-driven Proportion
Allocator for Real-Rate Scheduling. InProceedings of the Third
Symposium on Operating Systems Design and Implementation
(OSDI), pages 145–158, February 1999.

[39] Michael Stonebraker, Paul M. Aoki, Witold Litwin, Avi Pfeffer,
Adam Sah, Jeff Sidell, Carl Staelin, and Andrew Yu. Mariposa: A
Wide-Area Distributed Database System.VLDB Journal: Very Large
Data Bases, 5(1):48–63, 1996.

[40] David G. Sullivan and Margo I. Seltzer. Isolation with Flexibility: A
Resource Management Framework for Central Servers. In
Proceedings of the 2000 USENIX Annual Technical Conference,
pages 337–350, June 2000.

[41] Kevin Thompson, Gregory J. Miller, and Rick Wilder. Wide-Area
Internet Traffic Patterns and Characteristics. InIEEE Network,
November 1997.

[42] Amin Vahdat, Thomas Anderson, Michael Dahlin, Eshwar Belani,
David Culler, Paul Eastham, and Chad Yoshikawa. WebOS:
Operating System Services for Wide-Area Applications. In
Proceedings of the Seventh IEEE Symposium on High Performance
Distributed Computing (HPDC), Chicago, Illinois, July 1998.

[43] Amin Vahdat, Alvin R. Lebeck, and Carla S. Ellis. Every Joule is
Precious: The Case for Revisiting Operating System Design for
Energy Efficiency. InProceedings of the 9th ACM SIGOPS
European Workshop, September 2000.

[44] Ben Verghese, Anoop Gupta, and Mendel Rosenblum. Performance
Isolation: Sharing and Isolation in Shared Memory Multiprocessors.
In Proceedings of the 8th International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS), October 1998.

[45] Carl A. Waldspurger, Tad Hogg, Bernardo A. Huberman, Jeffrey O.
Kephart, and W. Scott Stornetta. Spawn: A Distributed
Computational Economy.IEEE Transactions on Software
Engineering, 18(2):103–117, February 1992.

[46] Carl A. Waldspurger and William E. Weihl. Lottery Scheduling:
Flexible Proportional-Share Resource Management. InProceedings
of the First Symposium on Operating Systems Design and
Implementation (OSDI), pages 1–11, November 1994.

[47] Huican Zhu, Hong Tang, and Tao Yang. Demand-driven Service
Differentiation in Cluster-Based Network Servers. InProceedings of
IEEE Infocom 2001, April 2001.


