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ABSTRACT
This paper presents Sharp, a framework for secure dis-
tributed resource management in an Internet-scale comput-
ing infrastructure. The cornerstone of Sharp is a construct
to represent cryptographically protected resource claims—
promises or rights to control resources for designated time
intervals—together with secure mechanisms to subdivide and
delegate claims across a network of resource managers. These
mechanisms enable flexible resource peering: sites may trade
their resources with peering partners or contribute them to
a federation according to local policies. A separation of
claims into tickets and leases allows coordinated resource
management across the system while preserving site auton-
omy and local control over resources. Sharp also introduces
mechanisms for controlled, accountable oversubscription of
resource claims as a fundamental tool for dependable, ef-
ficient resource management. We present experimental re-
sults from a Sharp prototype for PlanetLab, and illustrate
its use with a decentralized barter economy for global Plan-
etLab resources. The results demonstrate the power and
practicality of the architecture, and the effectiveness of over-
subscription for protecting resource availability in the pres-
ence of failures.
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Figure 1: Demand for PlanetLab production nodes
leading up to the SOSP paper submission deadline
(March 24, 2003). The heavy, bursty demand made
it difficult for authors to find resources or obtain
stable results. Other resources (e.g., network band-
width) showed similar impacts.
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1. INTRODUCTION
Several research threads are converging toward federated

sharing of dispersed pools of networked computing resources
under coordinated control. Examples include Internet ser-
vice utilities (e.g., Content Services Networks), computa-
tional network overlays such as PlanetLab [36] and Netbed [48],
peer-to-peer services, and grid computing systems, which
harness federated computing resources for massive compu-
tational problems and network services [23]. All of these sys-
tems are built above rapidly maturing support for location-

independent service naming and instantiation.
These systems need effective resource management for fair

sharing of community resources, performance isolation and
predictability, and adaptivity to changing conditions. As
one motivating example, Figure 1 shows a classic “tragedy
of the commons” for PlanetLab during a period of high de-
mand. Here, a growing number of PlanetLab users simul-
taneously request “slices” of resources from arbitrarily se-



lected nodes to host distributed systems experiments. In
this system, the PlanetLab nodes schedule their requests lo-
cally, with no mechanism to discover or reserve resources,
coordinate resource usage across the system, or control re-
source usage by users or groups. Users have little basis to
predict the resources available to them at each site, creating
an incentive to request more resources than needed. Users
who obtain poor results due to overloading at one or more
sites either retry their experiments—consuming even more
resources—or give up. The scenario is similar to congestion
collapse in the Internet.

This paper proposes a new approach to flexible resource
management for wide-area networked systems such as Plan-
etLab. Consider a collection of logical sites or domains, each
running local schedulers for physical resources (e.g., proces-
sors, memory, storage, network links, sensors) under its con-
trol. A site may be as small as a single computer, or it could
be a large group of resources under common ownership, anal-
ogous to an autonomous system. While the resources within
each site may be highly dynamic, we assume that the sites
themselves are reasonably long-lived and static. The ac-
tors in the system are software programs operating on be-
half of users and organizations, which export local resources
and consume global resources. The goal of our work is to
develop fundamental abstractions and mechanisms to allo-
cate resources across the system in a coordinated way, under
the direction of pluggable policies for discovering resources,
matching requests to available resources, and assigning pri-
ority or control over resources.

A system for flexible policy-based resource management
must meet several basic goals. It must allow actors to reserve
resources across the system for predictable behavior, and it
must prevent actors from stealing resources held by others.
It must support admission control, so that users have an op-
portunity to abort or redirect resource requests that cannot
be met in full, without consuming resources unnecessarily.
It must balance global resource sharing with local auton-
omy, leaving sites ultimate control over their resources and
the flexibility to adjust use of those resources to respond to
local conditions. The system must be robust: in particular,
it must protect resource availability if a resource holder fails
or becomes unreachable. Finally, it must be secure: the ac-
tors may be mutually distrusting and are subject to attack
and subversion from third parties.

We could address many of these goals with a trusted
central resource manager that assumes ownership of all re-
sources, authenticates itself to the sites, and directs their
local schedulers remotely. Our approach establishes a more
decentralized structure in which multiple resource managers
(brokers or agents) control different, possibly overlapping
portions of the global resource pool. It is based on mech-
anisms to represent resource claims—promises or rights to
possess resources—and to subdivide and transfer or delegate
claims in a way that is cryptographically verifiable by third
parties. Secure claim delegation makes it possible to add
new agents to the system and assign them control over bun-
dles of resources spanning any number of sites. It creates
an open framework in which multiple resource management
policies may coexist to serve different application classes and
different segments of the user community, with no central
point of trust, failure or attack. More generally, it creates
a necessary foundation for resource management based on
peering, bartering, or economic exchange—a secure compu-

tational economy [45, 49]. For example site A may grant to
site B (or an agent serving site B) a claim on resources at
A in exchange for a claim to like access at B, possibly at a
different time, or other compensation.

This paper presents the design and implementation of
Sharp (Secure Highly Available Resource Peering), a new
architecture for distributed resource management, resource
control, and resource sharing across sites and trust domains.
A key goal of Sharp is to reconcile policy-based resource
management with resource availability when agents or other
actors fail, become unreachable, or abandon their claims.
Sharp is based on soft-state timed claims that expire af-
ter a specified period, so the system can recover the re-
sources if a claim holder fails, following the classical lease

model [25]. Also, agents may oversubscribe resources to im-
prove resource efficiency and availability when claims are
lost or left idle; claim holders have probabilistic assurance
that their claims will be honored. Sites can detect oversub-
scribed claims and may reject them to prevent principals or
their delegates from claiming more than their allotted share
of resources. Claim delegation is accountable to protect users
against fraudulent agents.

Sharp claims are cryptographically signed to make them
unforgeable and non-repudiable. Our architecture avoids
any assumption of a trusted certification authority, elimi-
nating global key management as a deployment obstacle.
In particular, each site is free to act as its own authority
to certify keys and to grant or validate claims on its local
resources. Each claim is authorized by a chain of signed
delegations anchored in the site authority itself [27, 50, 9].
Sharp claims are self-certifying: an agent endorses the keys
of its peering partners after validating them using any lo-
cally preferred authentication mechanism [32]. In essence,
each site is the root of a certificate mesh that parallels the
resource peering relationships, certifying transitive trust for
all principals that claim its resources.

We present experimental results from a Sharp prototype
using an XML-based resource peering protocol for Planet-
Lab Slices [36]. The results demonstrate resource manage-
ment scenarios running across PlanetLab, including use of
oversubscribed claims to control flexible tradeoffs between
resource efficiency, resource availability, and claim rejection
rates. To illustrate the power of the Sharp framework we
describe and evaluate a simple system for global resource
trading and resource discovery based on pair-wise barter
exchanges. Bartering enables transparent access to global
resources without central agreement; a site may join the fed-
eration simply by establishing a peering relationship with
any member site. This approach illustrates one way that
Sharp can remove barriers to joining federated server net-
works such as PlanetLab.

Section 2 gives an overview of the Sharp architecture.
Section 3 defines mechanisms for secure claims and resource
delegation, and presents a security analysis. Section 4 dis-
cusses the role of soft claims and oversubscription in highly
available distributed resource management. Section 5 presents
experimental results from a Sharp prototype for PlanetLab,
using a barter economy as a case study. Section 6 summa-
rizes related work, and Section 7 concludes.

2. OVERVIEW
Figure 2 illustrates the actors in the Sharp framework

and their interactions. Each actor runs on behalf of one or
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Figure 2: Resource peering across sites. Sites dele-
gate control over their resources to agents; service
managers contact agents to obtain resources to run
a service. Here, an agent grants service manager b

a slice of computing resources spanning sites A and
B, enabling b to instantiate its service at both sites.

more principals and possesses at least one asymmetric key
pair. In a typical use of Sharp to manage a shared server
network the consumers of resources are network application
services hosted in the system. Each program runs within a
slice—a partition or share of global resources assigned to it.
A service manager for each guest service is responsible for
obtaining resources, binding them to the slice, and instanti-
ating the service within the slice.

The resources at each site are controlled by a site author-

ity, which maintains hard state about resource status and
slices at the site, participates in Sharp exchanges to export
the site’s resources, and handles claims to allocate resources
at the site. A local resource scheduler is responsible for
enforcing the slice assignments within each site [6, 44, 21,
36]. For example, each PlanetLab site consists of a single
node with a virtual machine monitor that assigns slivers

of its resources to virtual machines using local scheduling
mechanisms similar to Resource Containers [6] or VMware
ESX [44], as described in Section 5; a PlanetLab slice is an
aggregation of slivers on one or more nodes. A cluster man-
ager that assigns blocks of servers could also act as a site
authority for a server farm or utility data center [5, 14].

Resource managers called Agents mediate between site au-
thorities and resource consumers. An agent is any entity
that issues Sharp resource claims to another principal. Site
authorities also act as agents when they issue claims to del-
egate control over their resources to external managers, e.g.,
to export local resources to a federation or grid according to
local peering policies.

2.1 Resource Claims: Tickets and Leases
The key construct in Sharp is a resource claim, which

allows principals to formulate and exchange unforgeable as-
sertions about control over resources. A claim record is an
XML object asserting that a specified principal (the holder)
controls some resources (a resource set) over some time in-
terval (its term). To protect the integrity of claims, each
claim record is signed with the private key of the principal
conferring ownership of the resource (the issuer). The issuer
names the holder by a public key; by signing the transfer,
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Figure 3: An exchange between a site authority,
agent, and service manager. The service manager
requests a ticket from an agent, redeems it with the
site authority for a lease on a slice of the site’s re-
sources, and instantiates a guest service in the slice.

the issuer certifies that it trusts any entity possessing the
corresponding private key to control the resources named in
the claim. Sections 3.1 and 3.2 discuss resource sets and
claims in more detail.

Service managers obtain resources at a Sharp site using
the two-phase process depicted in Figure 3. In the first
phase, the service manager obtains a resource claim in the
form of a ticket from an agent. A ticket represents a soft

claim that suggests but does not guarantee resource own-
ership. Tickets support probabilistic resource allocation as
described below. In the second phase, the service manager
presents the ticket to the appropriate site authority to re-
deem it; the authority may reject the ticket or it may honor
the request by issuing a lease for any subset of the resources
or term specified in the ticket. A lease is a hard claim over
concrete resources, and is guaranteed valid for its term un-
less a failure occurs. This distinction between tickets and
leases is crucial to Sharp because it preserves local auton-
omy and local control over resources. Agents hold soft claims
(tickets) instead of concrete reservations, and the system de-
fers the binding to concrete resources so the authority may
consider current conditions at the site in determining how
to redeem the claim. This idea is analogous to seat book-
ings on airlines: the ticket promises a seat on a flight, but
the holder must successfully redeem it for a boarding pass
before boarding the flight.

A ticket holder may delegate a portion of its resources to
another principal by issuing a ticket containing a new claim
signed with its private key, as described in Section 3. The
complete ticket comprises the sequence of claim records val-
idating each step in the ticket’s delegation chain; the final
claim record in the sequence names the ticket’s holder, re-
source set, and term. Ticket delegation is similar to a trans-
fer of access privileges in capability-based systems [31], but
tickets differ from capabilities in several key respects. For
example, they are probabilistic, they expire, they represent
abstract promises of resources rather than referencing spe-
cific objects, they contain a complete record of their delega-
tions, and they are bound to the holder’s key pair. Note that
Sharp’s domain mitigates the confinement problem tradi-



tionally associated with delegation of capabilities. For in-
stance, a leaked capability in a capability-based operating
system [2, 40] or file system may permanently compromise
sensitive information or threaten the integrity of arbitrary
programs. In Sharp, the damage from a leaked ticket is
limited to the value of the named resources for the duration
of the ticket’s term. See Section 3.5 for a more complete
discussion of this issue.

Sharp tickets are self-describing and self-certifying. The
site authority or any third party can independently vali-
date the delegation chain before granting a lease or other
resources in exchange for the ticket. Even if the receiver has
no previous trust in one or more entities in the chain or no
knowledge of their public keys, it can verify that they have
limited transitive trust to manage the resources for specified
time intervals. In particular, the site authority can verify its
own limited transitive trust in the ticket holder to control
the resources named in the ticket—without contacting the
agent that issued it. Agents may use any local mechanism
to authenticate their delegates; while they are free to obtain
certified keys from global key services (e.g., a Public Key
Infrastructure), they are not required to do so, and the ar-
chitecture avoids any assumption of global trust or global
identity. Section 2.4 discusses the security architecture in
more detail.

2.2 Probabilistic Claims
A Sharp agent may oversubscribe its resources by issuing

more tickets than it can support from the resource claims
that it holds. Oversubscribing may be a malicious act to “in-
flate” tickets, but it is also a valuable tool for dependable
decentralized resource management. Oversubscribed claims
can improve resource utilization by statistical multiplexing,
and they support replicated tickets to limit the damage from
resource loss if an agent fails or becomes unreachable. Sec-
tion 4 explores the uses of oversubscribed tickets.

Oversubscription is safe in the sense that a site author-
ity can identify and reject tickets that conflict with claims
for which it has already granted leases. Thus oversubscribed
tickets are probabilistic: the probability that a site authority
will honor an oversubscribed ticket varies with the oversub-
scription degree and the rate of ticket redemption. Oversub-
scribed tickets in Sharp are distinct from related ideas in
lottery-based resource management [46], which address sim-
ilar goals. For instance, creating additional tickets in lottery
scheduling leads to inflation, which reduces the value of each
ticket. In Sharp, oversubscription does not affect a ticket’s
face value, but it makes it more likely that an authority will
reject the ticket when the holder redeems it for a lease (see
Section 6 for a more complete comparison).

Sharp tickets have the crucial property that delegation
is accountable: given a set of tickets, it is efficient to deter-
mine if they are conflicting, and if so to identify an agent
that issued an oversubscribed ticket and that can be held
accountable for the conflict. To reject a ticket, the author-
ity marks it as invalid, signs it, and returns it to the bearer,
together with a set of previously redeemed claims identify-
ing the accountable agent and proving its guilt. The victim
may present the rejected claim set to the issuing agent for
compensation, or to a third party to prove that the agent is
responsible. This property makes it possible to employ rep-
utation services [1, 29] or other mechanisms to adjudicate
rejected claims, in order to remove any incentive for agents

Request〈requestID, resourceSet, term, [claims], [optional]〉
Request a ticket for the specified resource set and term. The
optional claim set may encode a previously rejected ticket
requiring compensation, a previously issued ticket to be ex-
tended, and/or tickets offered in trade for the requested re-
sources. Optional arguments may substantiate the request
with payment, certificates, or endorsements.

Claim〈requestID, claims〉
Redeem one or more tickets for leases or lease extensions.
The tickets are encoded in the claim set.

Grant〈requestID, claims〉
Transfer tickets or leases, e.g., in response to an earlier re-
quest requestID that solicited the grant.

Reject〈requestID, rejectRecord, claims〉
Reject a ticket presented in a Claim request requestID.
The rejectRecord is a signed notice from the authority that
rejected the claim. The claim set proves that the rejection
is justified and identifies an accountable agent.

Table 1: Outline of the Sharp interfaces for ex-
changing claim sets encoding tickets and leases.
All request handling is asynchronous. The unique
requestID identifies the requester and a response
binding.

to violate their contracts. Section 3.4 discusses accountabil-
ity further.

Agents in the Sharp framework may combine resource al-
location and resource discovery functions to varying degrees.
Agents define their own policies to index their resource hold-
ings, select resources to match each request, and exchange
tickets with other agents. Each agent controls the over-
subscription degree for the tickets that it issues against the
resource claims that it holds. Freely oversubscribed tickets
correspond to best-effort service or “hints”; this is similar to
resource discovery systems in which resource brokers main-
tain approximate information about resources and their sta-
tus, but do not control allocation (e.g., Globus GRIS [17]).
In contrast, tickets with no oversubscription approximate
hard reservations (in the absence of failure); in this case,
obtaining a resource bundle from an agent is an operation

rather than a query. The continuum between these extremes
allows soft reservations with configurable degrees of assur-
ance. Agents may also undersubscribe tickets to maintain a
configurable reserve margin against resource failures.

2.3 Agents and Resource Peering
Table 1 outlines the key elements of the Sharp interface

for discovering and exchanging resources. While the frame-
work itself is policy-neutral, accountable ticket delegation
through a network of agents creates a powerful, unified,
and extensible framework for resource management. These
agents can serve many roles for comprehensive wide-area
resource management:

• Site agents. A site authority acts as an agent to
distribute claims for site resources, e.g., to contribute
resources to a federation or grid. Each site agent con-
trols the share of local resources exposed externally by
the scope of the tickets it issues. For example, sites
may hold portions of their resources in reserve for lo-



cal use, and/or distribute claims according to arbitrary
peering policies, e.g., “A has access to 50% of B’s re-
sources on weekends”. Sites may delegate manage-
ment of their resources to other agents implementing
specialized policies.

• User agents. Agents may serve specific user commu-
nities and control access based on user identity. In a
federated system an agent for an organization might
gather tickets for global resources and distribute them
to the organization’s users. In this case, the organi-
zation configures its application service managers to
obtain resources from its agent; the agent may au-
thenticate requests and assign tickets based on user
priority or other local policies.

• Brokers. Agents may function as brokers that trade
tickets from multiple sites but do not contribute or re-
quest resources themselves. Brokers may index diverse
resources by attributes to match resources to high-level
resource requirements [22, 37, 43]. For example, it may
be useful to specify a resource set loosely by attributes,
e.g., “two servers somewhere nearby with large memo-
ries”. Brokers may propagate resource tickets and in-
dex them by their attributes as in distributed resource
discovery frameworks [3, 17, 43].

• Community banking. A broker may function as a
“bank” that accepts local tickets in exchange for tick-
ets for resources at other sites. The bank could allow
any site to join a federated resource sharing system by
contributing tickets for its local resources.

• Adaptive provisioning. Application-specific agents
and service managers may monitor guest service be-
havior and adjust resource slices and slice locations to
meet service quality goals embodied in Service Level
Agreements (SLAs) for end-to-end application perfor-
mance [5, 13, 18, 20, 22]. The mechanisms to adapt
slices by extending and renegotiating short-term claims
are outside the scope of this paper.

Since they control the distribution of tickets, agents may
implement any policy to schedule blocks of resources. For
example, consider the PlanetLab scenario described in Sec-
tion 1, in which a small community of research colleagues
share the infrastructure on a self-policing first-come first-
served basis. Agents can help users to locate suitable bun-
dles of resources that are not already in use—wherever they
exist—and obtain tickets to reserve those resources for pre-
dictable performance. When demand is bursty the agents
may perform admission control and issue tickets for off-peak
times.

In a larger user community, or one in which users are
not mutually trusting, agents might implement arbitrary
policies to control resource usage and prioritize under con-
straint. For example, agents in a resource economy could
sell tickets, e.g., for micropayments, perhaps using a bid-
ding or pricing scheme to set prices according to resource
supply and demand. In a federated peering system, agents
could distribute tickets in proportion to each site’s contri-
butions, leaving each site to control how it distributes the
tickets among its local users. A wide range of resource man-
agement policies may coexist safely in agents governing dif-
ferent, possibly overlapping portions of the global resource

A1 Principals (represented by site authorities, agents, and
service managers) are cryptographically bound to pub-
lic keys by digitally signed certificates, including but
not limited to self-certifying Sharp tickets. These cer-
tificate chains are rooted by a set of certificate author-
ities (CAs) trusted by the site authorities, including
but not limited to the site authorities themselves.

A2 There is no single root CA or fixed set of pre-
determined and globally published root CAs.

A3 Each site or agent establishes out-of-band trust rela-
tionships with one or more sites or agents, including
exchange and authentication of public keys using arbi-
trary external mechanisms, including but not limited
to shared trust in an external CA, e.g., a Public Key
Infrastructure (PKI).

A4 Each agent uses an external mechanism, including but
not limited to shared trust in an external CA, to estab-
lish sufficient trust in a service manager or peer agent
before delegating resources to it.

A5 Site authorities are implicitly authorized to control re-
sources for the sites they manage. For example, they
may obtain this authorization by executing a root-
privilege daemon on a node.

A6 Sites have some external means to prevent abuse of
legally obtained resources, e.g., by monitoring their
use and evicting abusers.

A7 Service managers have some external means to verify
that each site provides the contracted resources and
that they function correctly, e.g., by monitoring the
behavior of each guest service.

Table 2: Assumptions of the Sharp security archi-
tecture.

pool—an important goal for large-scale testbeds in which re-
source management is itself a focus of research. Controlled
oversubscription protects resource availability when agents
fail or hold tickets for more resources than their clients can
use. We leave a full exploration of policies for resource man-
agement and oversubscription to future research.

2.4 Security Architecture
Table 2 summarizes the assumptions of the Sharp secu-

rity architecture. Principals are uniquely identified by public
keys (A1), although each actor may hold many such keys.
These keys may be created and exchanged using any locally
approved mechanisms for generating and distributing keys
(A1, A2) or authenticating trading partners across trust do-
mains (A3). For example, keys within a trust domain are
certified by one or more authorities; if an agent that serves
users, service managers, and peer agents within the domain
trusts these authorities to certify their keys then the agent
may authenticate clients for identity-based access control or
priority.

Table 3 enumerates the threat model for the Sharp secu-
rity architecture. The purpose of the security mechanisms
is to authenticate and authorize access to shared resources
and enable each principal to detect when another is misbe-



T1 Unauthorized service manager attempts to use (A) lo-
cal site resources or (B) remote site resources

T2 Man-in-the-middle attacker modifies or replays Sharp

protocol messages or simultaneously delivers them to
multiple receivers.

T3 Unauthorized agent or client requests resources.

T4 Site contributes faulty resources.

T5 Attacker sends malformed requests or claims.

T6 Attacker obtains resources by (A) replaying tickets
or (B) simultaneously presenting tickets to multiple
agents or site authorities.

T7 Malicious (A) site authority or (B) agent falsely adver-
tises tickets or leases for which resources do not exist.

T8 Malicious site authority falsely rejects tickets.

T9 Attacker abuses legally obtained resources for a denial-
of-service attack by (A) requesting excess resources
and leaving them idle or (B) using computing resources
to attack a third party.

Table 3: Summary of threats and vulnerabilities.

having. The architecture does not address confidentiality
although it may be a side effect of other implementation
choices.

The mechanisms for validating tickets and protecting the
integrity of claims directly address threats T1-T6A. In these
cases, a resource request is detectably fraudulent or conflict-
ing, and the receiver may simply reject it. Threats T6B-T9
are more subtle forms of misbehavior. For example, an au-
thority may fail to deliver the resources it has committed in
its leases (T7A), or reject tickets without adequate justifica-
tion (T8). An agent may oversubscribe tickets and refuse to
compensate its victims (T7B, T6B). A service manager or
slice may allocate resources and deny them to other actors,
but fail to consume them (T9A). Ultimately, every system
defends against this kind of detectable abuse of shared re-
sources by identifying and controlling the offenders or eject-
ing them from the system entirely. For example, actors in
a resource economy may subscribe to a service that assigns
financial penalties or rates the reputations of other actors [1,
29]. The Sharp security architecture supports such social
or economic policies: the non-repudiation and accountabil-
ity properties of tickets allow an actor who discovers misbe-
havior to prove it to a third party. However, an agent in a
resource economy may choose to certify an anonymous prin-
cipal to control resources if it offers valid payment or barter;
this principal is not bound to a fixed identity subject to ex-
ternal control. We defer a discussion of this issue and the
related problems of confinement and sybil attacks [19] to the
more detailed security analysis in Section 3.5.

3. SECURE RESOURCE DELEGATION
This section presents the design of the basic Sharp mech-

anisms: how to represent and process resource claims, dele-
gate securely, ensure accountability and nonrepudiability for
all parties, and validate claims presented for redemption.

M1 (Grant) Authorization of service managers or agents
to control specific resources by delegation of signed
resource claims.

M2 (Grant) Transitive delegation of resource claims chains
of claims (tickets).

M3 (Request or Grant) Intra-domain delegation of claims
from site authorities or agents to principals within the
same domain.

M4 (Request or Grant) Cross-domain delegation of claims
from site authorities or agents to external principals.

M5 (Grant response) Local validation of a signatures in a
self-certifying ticket chain.

M6 (Reject response) Local validation of well-formed self-
describing tickets (e.g., all claims are nested and valid
for the requested interval).

M7 (Reject response) Local detection of conflicting over-
subscribed tickets at a site authority; local validation
of conflicting claim set issued by a site authority to
justify a ticket rejection.

Table 4: Summary of Sharp security mechanisms.

Table 4 summarizes the security mechanisms presented in
this section. Section 3.5 outlines a security analysis with
respect to the threat model.

3.1 Resource Sets
Sharp principals interact by requesting and trading claims

for resource sets. In this paper we limit our focus to resource
sets made up of discrete units of networked computing re-
sources of a specified type. These units could be servers
or virtual servers of a given power, instruments or sensors,
storage lots, or any other enumerable commodity whose in-
stances at each site are interchangeable. There may be many
resource types with different attributes. For example, a re-
source set might specify a bundle of shares of multiple re-
sources at a site (e.g., CPU shares, network and/or storage
bandwidth) [20].

A claim in a ticket specifies an abstract resource set rset,
which is a pair (type, count). These resources are controlled
by site authorities, who issue claims for blocks of resource
units to other actors, e.g., agents. The agents may subdivide
their claims arbitrarily to distribute them to their clients,
which may be other agents. The holder of an abstract claim
may redeem it to the named site authority for a lease on a
concrete resource set, e.g., a list of IP addresses for allocated
servers or virtual machines. The site authorities control this
mapping from abstract to concrete resources.

3.2 Resource Claims
A claim record is a contract asserting that the issuing

principal issuer delegates control over resource set rset to
the delegated principal holder for term term, and is signed
by the issuer’s private key. A claim c is active at time t if
c.term.start ≤ t ≤ c.term.end. A claim c is expired if the
current time t > c.term.end. Table 5 shows a simplified
XML claim representation for PlanetLab.

Each Sharp claim also has a globally unique serial num-



subclaim(claim c, claim p)   ⇔
c.issuer = p.holder         &
c.parent = p.claimID &
contains(p.rset, c.rset) &
subinterval(c.term, p.term)

contains(rset p, rset c)   ⇔
c.type = p.type & c.count ≤ p.count

subinterval(term c, term p)   ⇔
p.start ≤ c.start ≤ c.end ≤ p.end

ticket({c0,…,cn})   ⇔
anchor(c0) &
∀ ci, i = 0..n-1: subclaim(ci+1, ci)

anchor(claim a) ⇔
a.issuer = a.holder &
a.parent = null

A

B

C

claim 
delegation

claimID = a
holder = A
issuer = A
parent =
a.rset/term

claimID = b
holder = B
issuer = A
parent = a
b.rset/term

claimID = c
holder = C
issuer = B
parent = b
c.rset/term

claim chain or 
ticket

anchor

final 
claim

subclaim
relation

Figure 4: Conditions for valid subclaims and tickets, and a ticket comprising delegated claims from a site
authority to a resource consumer through a broker/agent.

<subticket>
<issuer> A’s public key </issuer>
<content>

<principal>
B’s public key

</principal>
<nodes>

number of virtual nodes (slivers)
</nodes>
<start time> ... </start time>
<end time> ... </end time>

</content>
<signature>A’s signature</signature>

</subticket>

Table 5: Simplified XML claim representation in
PlanetLab. This claim record is one component
or “subticket” of a complete ticket. The Planet-
Lab Sharp implementation is self-certifying and uses
each principal’s public key as a unique ID.

ber (claimID) and includes the serial number of a parent

claim, as described below. Principals may track sets of
claims by storing them in a local cache hashed by claimID.
Each principal marks its claims with locally unique serial
numbers; the claimID is qualified by the principal’s unique
ID to make it globally unique. The issuer signs the claim
record by appending a secure hash (e.g., SHA) of the claim’s
contents encrypted with its private key Ki. Thus a claim
record is a tuple:

claim = 〈claimID, issuer, holder, rset, term, parent〉SHAKi

The signature protects the integrity of claims so that they
may be arbitrarily cached, stored, transmitted through un-
trusted intermediaries, and replicated on untrusted servers.
Claims are also non-repudiable; a principal cannot deny that
it issued a claim. The signed holder prevents interception
and hijacking of resource claims in transit. The unique
claimID ensures that all copies of a claim are recognized
as identical, preventing replay attacks. For example, site
authorities may ensure that each claim is redeemed at most
once by checking incoming tickets against a cache of previ-
ously redeemed claims that are still active (see Section 3.4).

3.3 Secure Delegation and Tickets
A holder of a claim p may delegate some or all of the

claimed resources to another principal by generating a new
claim c that is a subclaim of p. Figure 4 depicts delegated
claims and the conditions for the subclaim predicate.

A claim c descends from p if it is a (transitive) subclaim
of p. An immediate subclaim of p is a child of p. If p is not
a child of any other claim, then c.issuer is a site authority
that directly controls the claimed resources: we refer to p as
an anchor claim.

A ticket represents a claim substantiated by its chain of
ancestor claims. Formally, a ticket is a sequence or chain

of claim records T = {a, ..., f} representing transitive sub-
claim delegations from an anchor claim a to the ticket’s final

claim f (refer to Figure 4). The ticket’s final claim f spec-
ifies the ticket’s holder, resource set, and term. The claim
set making up a ticket constitutes a self-describing cryp-
tographically secure proof that the authority a.issuer has
transitively delegated control over the resource set f.rset to
the principal f.holder for term f.term. A ticket is active at
time t if its final claim is active at time t. A ticket is expired

if its final claim is expired.
Relationships among claims are securely apparent from

inspection of a claim set. Once the claims are installed in a
local cache hashed by claimID it is easy to traverse the del-
egation chain upwards from any claim by hashing on parent

fields. Thus we refer to a cached set of claims descending
from a common ancestor as a claim tree. A ticket T descends

from a claim p if c ∈ T . It is easy to regenerate the complete
ticket for any cached claim by tracing the path up the claim
tree to its anchor. Figure 5 illustrates a set of hierarchical
claims and the corresponding claim tree.

3.4 Ticket Conflicts and Accountability
Sharp must prevent any principal (or its delegates) from

obtaining more of any site’s resource than was transitively
delegated to it, by identifying and rejecting tickets with con-
flicting resource claims. The site authority fills this role as
a central point of ticket redemption for each site.

A set of claims {c0, ..., cn} is conflicting at claim p at time
t iff its members are descendants of p, they are active at time
t, and they cannot all be honored in full without exceeding
the resource delegated to p:

n�

i=0

ci.rset.count > p.rset.count

A set of tickets is conflicting iff their final claims {f0, ..., fn}
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Figure 5: Example of nested claims. Part (a) depicts claims as consuming a share of the resource space
for some period of time, with each subclaim contained within its parent claim. Parts (b) and (c) show the
corresponding claim trees for time t0 and t, with the conflict detected at time t.

are conflicting for some common ancestor p at some time t.
Note that t and p are not necessarily unique for a given set
of conflicting tickets. We consider the nearest (youngest)
common ancestor p at the earliest conflict time t to be ac-

countable for the conflict.
Given any set of conflicting tickets, it can be shown that

the holder of the accountable claim p has oversubscribed its
resources at time t, making the conflict possible. It follows
from the definition of the accountable claim and the contain-
ment property of subclaims that p is itself oversubscribed at
time t: p’s immediate children are conflicting at p at time
t. More strongly, the subset of p’s children from which the
tickets descend are conflicting at p at time t.

Figure 5 and Table 6 illustrate a simple algorithm to check
for conflicts across any claim set. It maintains a claim count

field in each cached claim record: the tickets descending
from a claim p collectively commit p.claim units of resource
at time t. When adding a ticket’s final claim to the claim
tree, it propagates the newly claimed resource count up
through the tree, checking for conflicts. The state required
is linear in the total number of tracked claims. The cost to
validate a ticket and check it for conflicts is linear with the
length of the ticket’s chain. Agent implementations may use
the claim tree structure in a similar way to track how they
have delegated their resource holdings to their clients.

The conflict detection algorithm generalizes to claims whose
terms start in the future. Future claims can support ad-
vance reservations and a futures market for a resource econ-
omy. Conflict detection for future claims works by rolling
the claim tree forward or backward in time, adding claims
that become active and removing claims that expire. The
algorithm maintains an interval list that can return an or-
dered sequence of start and end events for the final (leaf)
claims over any time interval. To determine if a ticket and
its final claim f conflict with the existing ticket set, roll the
claim tree forward to f ’s start time, then roll forward to its
end time, checking for conflicts as each claim becomes ac-
tive. The cost to check a set of claims for conflicts over any
interval is proportional to the depth of the claim tree times
the number of claims starting or ending during the interval.
Many optimizations are possible to reduce the number of
events to process, e.g., maintain separate interval lists for
distinct subtrees of the claim tree.

p = f.parent;
while (p) {

p.claim += f.rset.count;
if (p.claim > p.rset.count) {

reject f

p is accountable
}
p = p.parent;

}

Table 6: Check a ticket’s final claim f for conflicts
with known claims in the claim tree.

If a conflict exists, the set of claims in the subtree rooted
in the accountable claim p constitutes proof that a ticket was
properly rejected and that the holder of p was the immediate
cause of the conflict. Any entity can check the proof by
scanning the claim set and building the claim subtree. The
cost scales with the number of claims times the depth of the
subtree.

3.5 Security Analysis and Discussion
Table 7 summarizes how the security mechanisms (Ta-

ble 4) defend against each element of the threat model (Ta-
ble 3) given the system’s assumptions (Table 2). While most
of the entries in Table 7 are easily checked by inspection,
we note several fine points. A3 guarantees the integrity of
Sharp protocol messages passing between trust domains,
assuming that private keys are not compromised. In ad-
dition, the requirement to substantiate a ticket rejection
ensures non-repudiation by a malicious site authority that
might otherwise simply reject and omit evidence supporting
the rejection (T8). Failure to supply evidence for ticket re-
jection can be taken as evidence of misbehavior by the site
authority.

The non-repudiation (NR) properties are essential to de-
tecting misbehavior and proving it to third parties so that
economic and social mechanisms can control the threats, as
discussed in Section 2.4. For example, since tickets are self-
describing, any actor can verify that a principal issued a
ticket. One complicating factor for non-repudiation in self-
certifying systems is that an attacker can attempt to create
multiple public keys to hide its identity; this is known as a
sybil attack [19]. Sybil attacks are possible when there is



Threat AUTH IN NR
T1A Unauthorized local use A1; A4; A5; M1; M2; M3; M6 M1; M2; M3; M6
T1B Unauthorized remote use A1; A3; A4; A5; M1; M2; M3; M4; M6 M1; M2; M3; M4; M6
T2 Man-in-the-middle attack A1; A4 M1; M2; M3; M4; M6
T3 Unauthorized agent use A1; A2; A3; A4; M1; M2; M6 - A1; A4; M6
T4 Malicious or untrusted site A1; A2; A3; M3; M4 - A7
T5 Malicious agent M3; M4; M6 M3; M4; M6 A1; A3; A4
T6 Malicious service manager M7 M7 A1; A3; A4
T7 Site authority inflates tickets - - A1; M5; M6; M7
T8 Site authority rejects valid tickets - - A1; M1; M2; M7
T9 Denial of service attack A6 -

Table 7: For each threat or attack enumerated in the threat model, this table identifies the assumptions and
mechanisms that jointly ensure that Sharp provides the required authorization (AUTH), integrity (IN), or
non-repudiation (NR) properties.

no centrally trusted authority to bind each public key to a
fixed identity subject to external control. Sharp assumes
no such central authority, but it is resistant to sybil attacks
to the extent that actors authenticate their peering part-
ners. In general, the fixed identity bound to a public key is
known to the agent that certified the key, except in the case
of anonymous economic transactions.

Sharp currently does not support revocation of keys or
certificates. If a key or certificate is revoked, then any claims
issued to it will continue to be valid unless the site author-
ities are notified. To prevent this, any agents that granted
tickets to a revoked principal could notify the site authori-
ties for those tickets, so that they can reject or revoke the
claims. Each authority must store the revoked principal in
a Certificate Revocation List (CRL) until all claims held by
the revoked principal have expired.

The transitive trust relationships resulting from ticket del-
egation are subject to the confinement problem of classical
capability systems [31]. That is, the owner of the resource
(the site authority) cannot prevent an agent from carelessly
certifying some malicious entity to access the resource. This
is of particular concern for anonymous actors. As previously
stated, Sharp limits this trust to control over physical re-
sources for a bounded time. In particular, a Sharp ticket
does not confer access to any shared object or shared state,
so a malicious ticket holder cannot affect any other user if
the site schedulers properly isolate guest services running in
different slices. Of course, the ticket holder may attempt to
abuse the resources, e.g., to mount a denial-of-service attack
on a third party (T9B). The site authority is responsible for
isolating slices and monitoring resources to prevent abuse
(A6).

Although confinement is less important in Sharp than in
general capability systems, it may be useful for an agent to
further weaken the trust placed in a delegate. One way to
achieve this is to extend the claim record to include more
restrictions according to the issuer’s policies. For example,
an agent could mark a claim to notify downstream delegates
that a certified principal is anonymous, or to explicitly limit
its right to subdivide the ticket or certify other principals.
Such certified security assertions are common in systems for
general decentralized trust management [10] (see Section 6).

The accountability mechanisms in Sharp do not extend
to correct functioning of the allocated resources themselves.
In particular, Sharp assumes that clocks are synchronized
within some tolerance that is small relative to the granular-

ity of claim terms. For example, a site with a fast clock may
expire its claims prematurely, or a service manager with a
slow clock may falsely believe that the site shortchanged it.
Some external mechanism must exist to monitor resource
providers (sites) for compliance with their contracts (A7).
This monitoring is essential in any service economy.

4. RESOURCE AVAILABILITY AND EFFI-
CIENCY

This section discusses Sharp’s mechanisms to achieve both
high availability and high efficiency of target resources. Sharp

claims may be viewed as soft reservations. Some form of
reservation and/or admission control is needed to meet the
goal of predictable performance. Unfortunately, hard reser-
vations can compromise the efficiency and availability of re-
sources. Resource availability suffers if a reservation man-
ager or agent fails, preventing users from reserving the re-
sources it controls. Resource efficiency suffers when the
holder of a reservation fails or loses the reservation, denying
the resources to other users. We rely on economic and so-
cial incentives to address the related problem of principals
who claim excess resources and leave their leased resources
underutilized (see Section 2.4).

Two key techniques reduce these dangers of reservations.
First, Sharp uses soft-state claims of fixed duration, follow-
ing the classical leases model [25]. Timed claims improve
resource availability because any claims held by a failed en-
tity will eventually expire, releasing its resource holdings for
use elsewhere in the system. Claim expiration is also an op-
portunity for agents, site authorities, and service managers
to renegotiate the resource contract. Thus timed claims are
a basis for dynamic resource management that adapts to
changing load and system conditions. In previous work we
explore approaches to adaptive feedback-controlled resource
managers that periodically grow or shrink resource slices ac-
cording to load on the guest service [13, 20]; these systems
could run as Sharp agents. The choice of claim duration is a
tradeoff between agility, robustness, and renewal overhead.
Shorter terms allow principals to renegotiate contracts more
frequently, and they reduce the time to recover a resource if
a claim holder fails, but they increase the overhead for re-
source management. Previous work on leases explores these
tradeoffs [25, 51].

The second technique of oversubscription allows site au-
thorities and agents to issue tickets that exceed their re-



source holdings. We define the oversubscription degree OD

for a claim p at time t as the ratio of the aggregate number
of resource units claimed for its issued children to the total
number of resource units in the parent claim p. For example,
an agent holding 100 units of resources may grant tickets for
all 100 units to two different peering partners with the same
terms, for an OD = 2 or OD = 200%. Those partners may
in turn subdivide the claims. If enough of the oversubscribed
tickets are lost or allowed to expire without being redeemed,
then the authority will honor all remaining claims. Thus
oversubscribed tickets confer access to resources with con-
figurable degrees of assurance. They bridge the continuum
between reservations and “hints” from a status monitoring
service. Oversubscription is related to overbooking [41], a
distinct and complementary technique to improve resource
efficiency when guest services do not consume all of the re-
sources leased to their slices (see Section 6).

Oversubscription can improve the efficiency of distributed
resource discovery. It allows a site or agent to advertise
its resources aggressively by “pushing” claims for blocks of
resources to multiple peer agents, making it easier for clients
to discover them. Aggressive advertising of oversubscribed
tickets can decrease the latency and overhead of resource
discovery by reducing the search distance to locate a ticket
for a suitable resource. Varying OD balances aggressive
advertising with the assurance that a ticket will be honored
once it is found.

Oversubscription can also improve resource availability.
For example, replicating tickets at multiple agents improves
the likelihood that a service manager may obtain the re-
sources even if an agent fails. Again, this replication in-
creases the risk that a site authority will reject a ticket
when the holder attempts to redeem it for a lease. The
experiments in Section 5 illustrate and quantify the effect of
oversubscribing tickets on resource availability and efficiency
in our prototype for resource bartering in PlanetLab.

Peer agents holding oversubscribed tickets may notify one
another of their issued tickets to reduce the likelihood of
granting conflicting tickets. For example, peer agents hold-
ing a replicated ticket set may coordinate to maintain con-
sistency within some configurable bound on OD to balance
coordination overhead with the risk of ticket rejection. A
lower OD bound reduces the risk of ticket rejection but
requires tighter consistency with higher coordination over-
head. OD = 1 requires synchronous coordination; OD >> 1
reduces coordination overhead at the price of a higher risk
of rejection. In this case there is a close relationship be-
tween OD and consistency metrics for bounded weak con-
sistency [52]. For example, a replica set may bound OD

for the tickets it issues by propagating updates as often as
necessary to stay within some numerical error threshhold
specified for each agent. A replica’s numerical error limits
the maximum number of tickets (or resource units encoded
within the tickets) that a peer replica may issue without
informing the local replica. Tighter numerical threshholds
impose higher coordination overhead, and the overhead to
maintain any given threshhold grows with the ticket request
rate. Alternatively, the replica set can propagate updates to
stay within a staleness bound for each replica, which bounds
the delay for updates from its peers. In this case, the over-
head is less sensitive to the ticket request rate, but higher re-
quest rates may increase OD. Previous work has quantified
tradeoffs between coordination overhead and consistency in

similar settings. We leave a study of oversubscription poli-
cies for replicated ticket sets to future work.

5. CASE STUDY: PLANETLAB
We have implemented a complete instance of the Sharp

framework to perform resource discovery and authenticated
resource allocation in the PlanetLab [36] wide-area testbed.
The primary goals of our PlanetLab implementation are to:
i) provide secure transparent access to global PlanetLab re-
sources by all authorized principals, ii) lower the barrier to
entry to joining the infrastructure, iii) maintain local site au-
tonomy, and iv) enable a broad range of resource allocation
policies. Our infrastructure and experiments are designed
to demonstrate the generality and efficiency of Sharp. It
is also important to note that Sharp generalizes beyond
our PlanetLab implementation; the results presented in this
section are for one implementation and for one of many pos-
sible policies enabled by the Sharp framework. We use this
prototype simply to demonstrate and to evaluate the key
properties of Sharp.

As of July 2003, PlanetLab consists of 160 machines spread
across 65 world-wide locations. All PlanetLab machines run
linux 2.4.19. Individual machines are the ultimate arbiters
of resources in PlanetLab, with node managers running on
each PlanetLab machine acting as Sharp site authorities.
When a service manager successfully redeems a ticket for a
lease, the node manager creates a virtual machine for the
slice on the local node, with CPU, memory, and network re-
sources according to the resource set described in the lease.
The node manager also creates an account on the virtual ma-
chine matching a name in the request, and enables ssh access
using the public key of the lease holder. We currently use
vservers [42] to create lightweight virtual machines, though
virtual machine technology is an active area of research [21,
44, 47]. A SILK [7] linux module assigns the specified re-
sources to each vserver.

We implemented our Sharp prototype for PlanetLab in
the Python language. Our implementation uses simple Python
database objects to store active tickets at each agent and
node manager. While a different implementation platform
would likely improve the baseline performance of our proto-
type, our measurements below indicate that this implemen-
tation is sufficient for the system’s target use in the Planet-
Lab environment with resource claims at the granularity of
minutes or hours.

5.1 Transparent Access to Global Resources
PlanetLab node managers grant tickets for their resources

to one or more peering agents. In typical use we expect
one logical (possibly replicated) agent per autonomous sys-
tem. Agents collect tickets from node managers and adver-
tise a configurable portion of their ticket holdings globally,
holding the remainder in reserve for clients in the same AS.
Clients request slices through their service managers, which
requests resources at specified sites in XML requests to the
local agent. Each agent authenticates the requesting prin-
cipal and grants tickets, which the service manager in turn
redeems for leases with their node managers.

This simple scheme does not permit a service manager to
obtain resources that are not held by its local agent. We
extend the scheme with a simple resource routing mecha-
nism based on pair-wise peering relationships among agents,
negotiated in the same manner as ISPs exchange network



bandwidth. For instance, an agent A might grant 10 units
of A’s resources to agent B in exchange for access to 10
units of B’s resources. We encode the terms of this peering
relationship in two Sharp tickets. Denote a ticket from a
node manager local to B (NMB) to agent B as {NMB →
AgentB}. Then B can create a chained ticket transferring
a subset of the resources to an agent at site A: {{NMB →
AgentB}{AgentB → AgentA}}. This pair-wise resource
bartering enables AgentA to distribute claims for resources
at B to its local users. More importantly, it enables any prin-
cipal to access any global resource that is reachable through
some transitive peering path, reminiscent of how Internet
routing protocols enable universal packet delivery among
tens of thousands of ASes that typically are not directly
connected.

5.2 Secure Resource Routing
To enable such request routing in PlanetLab, we have im-

plemented SRRP, the Secure Resource Routing Protocol.
Our PlanetLab agents speak SRRP with remote peering
partners to build simple routing tables for request routing.
The goal of SRRP is to determine the next hop toward the
agent holding tickets for a desired set of resources.

While the implementation of SRRP is involved, it is a
straightforward adaptation of link state IP routing proto-
cols such as OSPF. At a high level, agents monitor the link
state of all edges incident to them and advertise this infor-
mation to their peers. The link state advertisement includes
the link connectivity and the amount of exchanged tickets
through the link, summarizing the exchange rate and avail-
ability of tickets via this link. When a new agent joins an
agent network, it first establishes a link with a pre-existing
agent and then synchronizes its link state database with the
agent. The existing agent propagates this new link state
to all other agents in the network. Remote agents corre-
spondingly adjust their routing table for this new update.
An SRRP routing table can be built based on multiple met-
rics for an end-to-end path, including: i) the end-to-end
exchange rate for remote tickets incorporating the exchange
rate of individual intermediaries along the path, ii) the tick-
ets available on an end-to-end path, or iii) the number of
hops of a path to the target resources.

SRRP uses a customizable edge weight function that com-
bines all metrics to compare paths for the same destination
when building a routing table. SRRP also maintains multi-
ple paths to each site, allowing it to consider alternate routes
in case of failure or the exhaustion of tickets along a par-
ticular path. With global link state knowledge, each agent
can individually determine a path to a site according to its
local view of global state and its preferences. Thus, SRRP
supports source-based request routing. Finally, SRRP sup-
ports next-hop forwarding in a best-effort manner, allowing
sources to specify a set of constraints on cost or other met-
rics.

In contrast to traditional link state protocols, SRRP in-
corporates security as a first-class feature, with the goal of
preventing malicious or compromised agents from subverting
the routing mechanism. When an agent issues a link state
update for an edge incident to it, it must sign the update
message with its private key. Other agents can verify the in-
tegrity of the message. Thus, a malicious agent cannot forge
or modify link states for edges starting from other agents.
On the other hand, if a malicious agent advertises false link
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Figure 6: A sample PlanetLab deployment scenario
demonstrating access to global resources through
pair-wise peering relationships.

states about its relationships with other agents, the affected
peers will eventually detect the attack (link state updates
are eventually distributed throughout the system) and no-
tify other agents, optionally through the aid of a reputation
system.

5.3 Evaluation

5.3.1 Microbenchmarks
We now present an example scenario and evaluation of the

basic Sharp mechanisms. Consider the following scenario
summarized in Figure 6. A principal at site A operates
through its service manager SMA and wishes to gain access
to resources at site D (e.g., on resources administered by
a node manager NMD). In this example, agents at sites
A, B, C, and D have established three pair-wise peering
relationships, indicated by dashed lines in Figure 6. Boxes
below each agent in Figure 6 represent the set of tickets
held by each agent as a result of its pre-existing peering
relationships.

SMA transmits a description of its resource requirements
(at D) to its agent, AgentA. Through SRRP, AgentA knows
that it can obtain resources at AgentD through its peering
partner AgentB . For simplicity, we will assume that all re-
source units are comparable (normalized to some baseline)
and that peering exchanges are done on a one-for-one basis.
Given this setup, AgentA transmits a request to AgentB de-
scribing its desired resources at AgentD along with a ticket
describing an equal set of rights for resources at AgentB .
In this example, AgentB does not possess any tickets for
resources at AgentD , but through SRRP it knows that it
can obtain AgentD ’s resources through its peering relation-
ship with AgentC . Thus, it marks the tickets transmitted
by AgentA as “spent” (by updating local stable storage)
and sends a recursive request for resources at AgentD to
AgentC , along with a ticket describing AgentB ’s resource
privileges at AgentC . AgentC has direct access to resources
at AgentD through its direct peering relationship. It hon-
ors its peering relationship with AgentB and creates a new
ticket granting AgentB access to AgentD ’s resources. In
step 6, AgentB creates another ticket transferring the priv-
ileges back to AgentA, who in turn creates a ticket granting
the appropriate access to SMA. Finally, SMA directly con-
tacts NMD and redeems the ticket for a lease. As part of
this process, NMD creates a virtual machine and a login for
SMA.

We ran the above scenario across four PlanetLab nodes,
each in a separate administrative domain, in the United
States. SMA and AgentA were co-located on one machine
while NMD and AgentD were co-located on another. AgentB



Step Node Operation Cost
1 A Local search .1ms
1 A Create barter ticket 98.6 ms
2 B Mark ticket spent 62.0 ms
3 C Local search and delegate 101.7 ms
5 A Validate ticket 37.7 ms
2-5 A Receive ticket 752.7 ms
6 A Delegate to SMA 178.0 ms
7 NMD Validate ticket 56.8 ms
7 NMD Check conflict in tree 91.7 ms
7 NMD Create lease 45.5 ms
7 NMD Insert ticket into tree 2.8 ms
7 NMD Create vserver 2 sec

Table 8: A breakdown of various operations involved
in the scenario depicted in Figure 6.

and AgentC ran on separate machines. Table 8 shows the
cost breakdown for selected steps in this scenario. The end-
to-end cost (steps 1-6 of Figure 6) for SMA to receive a
delegated ticket for resources at NMD is 1.15 seconds. In
step 1, AgentA searches its local database for tickets from
D. This search fails, taking 0.1 ms. At this point AgentA

consults its routing table and creates an XML representa-
tion of a ticket (for resources at AgentB) and transmits a
request to AgentB , taking 98.6 ms. AgentB then begins the
recursive process of obtaining the appropriate ticket from
its own peer, taking a total of 752.7 ms in steps 2-5. When
the requested ticket is sent back by AgentB , AgentA spends
37.7 ms (step 5) to verify the ticket. Then it updates its own
database of issued tickets and creates a delegated ticket for
transfer to SMA, which takes 178.0 ms (step 6). Python’s
XML parsing and database implementation form the ma-
jor overhead components for most of these operations. For
example, within the 37.3 ms overhead for validating the re-
quested ticket, only 2.0 ms was spent in verifying the ticket’s
content and signature. The remaining overhead comes en-
tirely for parsing the XML format of the ticket.

The total end-to-end latency incurred by SMA to obtain
a lease from NMD in step 7 was 0.63 seconds in this exper-
iment. The time for NMD to create a local virtual machine
took 2 seconds in our experiment. Vservers create a set of
“copy on write” links to a main file system (using chroot to
set the root file system for the vserver). Typically, initial-
izing a vserver from scratch takes between 15-60 seconds,
depending on the complexity of the virtual machine. For
our experiments, we have implemented a simple technique
for “pre-loading” common vserver configurations, allowing
us to hide most of the latency.

5.3.2 Oversubscription
The next experiment explores the effect of oversubscrib-

ing tickets on availability and efficiency (see Section 4). This
experiment uses a connected mesh of 41 PlanetLab nodes,
spread across the United States. A randomly chosen agent
S acts as the “sink” for resource requests originating from
service managers co-located with 10 other randomly cho-
sen agents. Each agent other than the sink randomly peers
with between 4 and 7 remote agents. We assume that S

has a capacity of 50 resource units and that it peers with
2 randomly chosen agents. S evenly delegates tickets repre-
senting all its resource privileges (saving none for local use in
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Figure 7: Resource efficiency as a function of of-
fered load and oversubscription degree for a sample
PlanetLab scenario.

this example) among its two peers according to some over-
subscription degree, OD. With OD = 100%, S delegates 25
resource units to each of its peers, in effect advertising 100%
of its resources. With OD = 200%, S delegates 50 resources
units to each peer.

The 10 service managers wishing to consume resources
at S generate requests according to a Poisson arrival rate.
The remaining 30 agents simply act as forwarders of re-
quests based on SRRP, bartering tickets to reach one of
S’s peers (as in the previous example). The uniform study
evenly distributes requests from all service managers. In
the skewed study, 3 service managers generate 90% of the
requests. Each request obtains one unit of resource for a
fixed term of 200 seconds. Each experiment runs for 20
minutes.

Figure 7 plots resource utilization at S as a function of of-
fered load for the skewed request load. We vary offered load
such that the sum of the means of the request arrival rate
across the 10 service managers results, on average, in some
selected percentage of S’s capacity. For this configuration,
the three service managers generating 90% of the requests
all happen to have a path to the same peer of S. Thus, for
OD = 100% where each peer only has 25 resource units, one
peer receives requests near its capacity while another peer
is largely idle. Figure 7 shows that as we increase offered
load from 50% to 150% of S’s capacity, utilization only im-
proves from 46.2% to 57.4%. As we increase OD from 100%
to 200%, resource efficiency increases with the offered load.
We omitted the graph for the uniform load, whose utiliza-
tion increases linearly with offered load as expected, largely
independent of OD.

Figure 8 shows the breakdown of four possible outcomes
for a service manager request. Success indicates that both a
ticket and a lease were successfully obtained. There are three
failure conditions. Oversubscribe indicates that a ticket was
successfully obtained from a remote agent, but the node
manager rejected it as a conflict. A True Negative indicates
that an agent rejected a ticket request for a fully utilized
resource while a False Negative indicates that an agent re-
jected a request for a resource that was unclaimed.

As offered load increases, the ratio of successes to fail-
ures decreases independent of OD. Since resources are lim-
ited, higher load increases the ratio of rejected requests. All
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Figure 9: Oversubscription compensates for agent
failure.

failures for OD = 100% and OD = 150% are false neg-
ative because the workload implies that resources are still
available at S. For this experiment, when oversubscription
reaches OD = 200%, S begins to reject conflicting tick-
ets. In this example, oversubscription improves resource
efficiency. However, had some agent maliciously oversub-
scribed tickets, S would detect the conflict and reject only
those requests delegated through the misbehaving agent.

5.3.3 Failure
Finally, we consider the effect of oversubscription on re-

source availability in the case of failure. We run the same
experiment as above for the uniform workload case with an
offered load 125% of the capacity of S, and manually kill
one agent at time t = 300 (after a warm up period). Fig-
ure 9 plots resource utilization at S as a function of time
for three values of OD. We see that for OD = 100%, the
failure causes resource utilization to fall to 50% as existing
jobs drain from the system; 50% of resources become un-
available when the agent holding tickets for those resources
fails. As we increase OD, resource utilization recovers to
75% for OD = 150% and near 100% for OD = 200% as
SRRP discovers the alternate agent holding oversubscribed
replicas of tickets held by the failed agent. Ideally, the sys-

tem would adjust OD to maintain a target level of efficiency
(e.g., accounting for possible failures), with acceptably low
conflict rates.

6. RELATED WORK
Sharp defines a comprehensive architecture for manag-

ing distributed resources, combining cryptographically pro-
tected authorization, leases, hierarchical resource manage-
ment, probabilistic resource tickets, and self-certifying de-
centralized trust management. It is related to many previ-
ous systems in several areas.

Reservations and shares. Sharp assumes resource
control and scheduling mechanisms at each site to enforce
the resource shares granted to claims and slices. Many sys-
tems have defined suitable abstractions for resource slices
on individual nodes [6, 21, 7, 44, 30] or across groups of
nodes [4, 11, 36, 5, 14]. Several works also define propor-
tional share scheduling mechanisms to enforce resource as-
signments across slices; a classic example is lottery schedul-
ing [46]. Sharp is complementary: it is a framework for
assigning resources to slices according to decentralized poli-
cies for resource management and access control.

Leases. Sharp claims are based on the lease [25, 51]
mechanism for cache consistency. Sharp adopts leases for
soft-state ownership of distributed resources, like Jini [43]
and recent grid proposals [23, 18, 22, 8]. Sharp extends
these systems by cryptographically signing claims to make
them unforgeable, non-repudiable, and independently veri-
fiable by third parties. Sharp claims are distributed and
hierarchical; the idea of distributed hierarchical leases was
proposed by Lampson [28], and they are also used for wide-
area cache consistency [51].

Capabilities. Sharp claims are signed assertions of au-
thority that may be delegated to third parties. They are
similar to capabilities [31] with key differences as outlined
in Section 2.1. Cryptographic distributed capabilities first
appeared in the Amoeba [40] distributed operating system,
and other extensible operating systems use capabilities as
well (e.g., [2]).

Cryptographic tickets. Kerberos [39] was an early sys-
tem to introduce cryptographic tickets to authenticate a
client for access to a server. Sharp tickets are similar but
they assert limited privileges for the holder with respect to
the server. Many systems use signed assertions to specify ac-
cess privileges, including CRISIS [9], NASD [24], the Globus
Community Authorization Service (CAS) [35], and systems
for decentralized trust management discussed below. Sharp

applies this concept to resource ownership and control.
Hierarchical resource management. Sharp resource

managers (agents) may subdivide their resource claims and
delegate them to other parties in a hierarchical fashion. Ex-
okernel [26] uses hierarchical capabilities to support fine-
grained control over resource access. Lottery scheduling [46]
defines a notion of resource tickets that may be subdivided
hierarchically; Sharp tickets are related but distinct in fun-
damental ways (see below). Systems based on these ideas
demonstrated that hierarchical delegation is a key enabler
for flexible resource management, but with few exceptions
(e.g., [53]) they are limited to a single node; Sharp extends
these ideas to wide-area resource management.

Probabilistic tickets. Sharp agents may issue arbi-
trary numbers of tickets against their resource holdings. Re-
source managers in lottery scheduling [46] use a similar tech-



nique for flexible ticket delegation. A key difference is that
issuing more lottery tickets causes inflation; all tickets in
a domain have the same value, but they all lose value. An
oversubscribed Sharp ticket retains its face value with some
probability that the site authority will reject it entirely. In
this case the authority notifies the ticket holder of the rejec-
tion; the victim may request compensation for the rejected
ticket or obtain its resources elsewhere rather than suffer-
ing unexpectedly degraded service. Sharp tickets differ in
other ways: they can encode any number of resource units
and they support advance reservations in that the holder
may store a ticket and redeem it in the future (until it ex-
pires).

Overbooking. Oversubscribing Sharp tickets improves
resource efficiency when some allocated resources are left un-
claimed. This concept is related to overbooking, in which the
scheduler at a site commits the same resources to multiple
slices. Previous work [41] shows that significant efficiency
gains are available with relatively modest conflict rates for
some workloads. Sharp accommodates overbooking: over-
booking applies to leases at the discretion of the site author-
ity, while oversubscription applies to tickets. Overbooking
degrades service when a conflict occurs, while conflicts on
oversubscribed tickets typically result in explicit rejection.

Computational economies. While the literature on
economic resource allocation is too large to survey here, re-
search systems using economic models include Amoeba [40],
Spawn [45], Muse [13], Millennium [15], and many systems
based on lottery tickets and currencies [46]. A key goal of
Sharp is to create a foundation for computational economies
in wide-area systems without global trust [49]. Sharp is
powerful enough to support a rudimentary barter economy,
but a true computational economy requires additional pay-
ment mechanisms (e.g., digital cash).

Resource discovery and the Grid. Sharp and SRRP
are closely related to frameworks for resource discovery [3,
17, 22, 43]. Like intentional naming (INS [3]), SRRP ap-
proaches resource discovery as a routing problem similar to
BGP. Current Grid computing systems base resource man-
agement on resource discovery, e.g., as implemented in the
Globus Monitoring and Discovery Service or MDS [17]. Like
MDS, Sharp proposes a network of brokers, but it supple-
ments the hints provided by MDS with support for crypto-
graphically secure soft-state reservations.

Differentiated service. Sharp claims allow resource
managers to provision wide-area networked resources to meet
end-to-end service quality targets (SLAs). Most of the large
body of research on differentiated service is applicable within
individual Sharp sites or at the network level. Interest is
growing to apply these mechanisms to wide-area computing
resources for on-demand utility computing [5, 13, 20, 11, 49]
or the Grid [18, 22, 23]. In particular, Sharp shares the key
goals of the Globus SNAP proposal [18]. SNAP proposes to
meet end-to-end SLA targets by negotiating sub-SLAs for
an application’s components with the sites running them;
Sharp allows a resource manager to assemble the claims on
global resources needed to meet end-to-end service quality
targets directly.

Self-certifying trust delegation. Sharp is also re-
lated to PolicyMaker [10] and other pioneering decentralized
trust management systems that integrate authorization with
chained certificate delegation [27, 33, 12, 9, 50]. The basic
mechanism in these systems is a delegated trust certificate,

which certifies the public key for the new principal (a del-
egate or proxy) and defines its authorized actions, which
may reflect weakened trust. Sharp tickets extend this idea
to secure distributed resource management by allowing an
agent to certify another principal to control a limited subset
of its resource rights. Note that claims could be extended
to incorporate other restrictions as in PolicyMaker, e.g., to
restrict a principal’s right to delegate its claims or certify
other principals. Finally, Sharp builds on the idea of a
distributed web of trust with no central authority [32, 54].

Peer-to-Peer Resource Allocation. Our work also re-
lates to resource allocation in peer-to-peer systems, which
require incentives for participants to contribute resources.
Ngan et al. [34] suggest cooperative audits to ensure that
participants contribute storage commensurate with their us-
age. Samsara [16] considers storage allocation in a peer-
to-peer storage system, and introduces cryptographically
signed storage claims to ensure that any user of remote stor-
age must devote a like amount of storage locally. While both
techniques center around audits, it is not yet clear how to ap-
ply these techniques to renewable resources such as CPU and
bandwidth, as in Sharp. In a position paper, Shneidman et
al. [38] propose economic incentives and mechanism design
to encourage participants to contribute resources. Relative
to all these efforts, Sharp operates under a different set
of assumptions. Sharp operates at the granularity of au-
tonomous systems or sites, which are reasonably long-lived.
To join the system a Sharp site must negotiate resource
contracts with one or more existing group members. These
contracts, in effect, specify the system’s expectations of the
site and the site’s promise of available resources to the sys-
tem. Accountable claims make it possible to monitor each
participant’s compliance with its contracts, simplifying au-
dits and making collusion more difficult in Sharp relative
to general peer-to-peer systems.

7. CONCLUSION
This paper presents the design and implementation of

Sharp, an architecture for Secure Highly Available Resource
Peering. We make three principal contributions. First, we
define self-certifying secure claims to global resources that
can be safely delegated and traded across trust domains.
Properties of these claims enable flexible tradeoffs between
resource utilization, availability, and conflict. The security
mechanisms protect against a variety of attacks that may be
mounted against individual actors in the system. Second, we
show how to build a computational economy among individ-
ual trust domains through pair-wise peering arrangements
and resource bartering. Finally, we demonstrate the prac-
ticality of our approach in large-scale experiments with a
Sharp prototype running across the PlanetLab wide-area
testbed.
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