
Virtual Machine Hosting for Networked Clusters:
Building the Foundations for “Autonomic” Orchestration

Laura Grit, David Irwin, Aydan Yumerefendi, Jeff Chase
Department of Computer Science

Duke University
{grit,irwin,aydan,chase}@cs.duke.edu

Abstract

Virtualization technology offers powerful resource man-
agement mechanisms, including performance-isolating re-
source schedulers, live migration, and suspend/resume. But
how should networked virtual computing systems use these
mechanisms? A grand challenge is to devise practical poli-
cies to drive these mechanisms in a self-managing or “au-
tonomic” system, without relying on human operators.

This paper explores architectural and algorithmic issues
for resource management policy and orchestration in Shi-
rako, a system for on-demand leasing of shared networked
resources in federated clusters. Shirako enables a flexible
factoring of resource management functions across the par-
ticipants in a federated system, to accommodate a range of
models of distributed virtual computing. We present exten-
sions to Shirako to provision fine-grained virtual machine
“slivers” and drive virtual machine migration. We illustrate
the interactions of provisioning and placement/migration
policies, and their impact.

1 Introduction

After a decade of advances in virtual machine (VM)
technology, robust and efficient VM systems are widely
available and are fast becoming ubiquitous. Among other
benefits, these systems offer powerful mechanisms for man-
aging shared server networks and clusters. The leading VM
systems support live migration, checkpoint/restart, and fine-
grained allocation of server resources as a measured and
metered quantity (e.g., Xen [1, 4], VMware [19]).

These capabilities create a rich policy space for system
management infrastructures. How should an intelligent in-
frastructure “turn the knobs” to map workload and resource
requests onto a server network? Coordinated usage of these
basic mechanisms can make it possible to harness the po-
tential of virtual machines for effective and efficient re-

source management. The broader challenge involves all of
the steps to operate a computing service utility: configuring
and instantiating OS images and services, binding them to
server resources, and managing and controlling their inter-
actions at both the system and application level. This gen-
eral process of mapping application services onto a shared
server network is widely known as orchestration.

In short, a key challenge today is to develop practical
policies for on-demand, adaptive, and reliable allocation of
networked computing resources from a common pool. This
paper 1 explores some architectural and algorithmic chal-
lenges for resource management policy, which is difficult
for at least three reasons:
• It is heuristic. Resource management involves pro-

jections under uncertainty and optimization problems
that are NP-hard in their general form, forcing us to
adopt heuristics tailored for specific needs and settings.
There is no “one size fits all” solution.

• It is dynamic. Resource allocation policies must adapt
to changing workload and demands in real time.

• It is organic and emergent. Policy choices must bal-
ance the needs and interests of multiple independent
stakeholders, e.g., resource providers and resource
consumers or hosted guests. In federated systems—
in which independent providers contribute resources
to a shared pool—brokering intermediaries may also
play a role to supplant the need for pairwise peering
arrangements and/or to implement community sharing
policies. In general, the resource assignment emerges
from choices taken by each of these actors, and the
complex interactions of those choices.

The basic structure of resource management policy is
common to a range of visions for networked virtual comput-
ing, encompassing managed data centers, network testbeds,

1This research is supported by the National Science Foundation
through ANI-0330658, CNS-0509408, EIA-99-72879, and CNS-0451860,
and by IBM, HP Labs, and Network Appliance. Laura Grit is a National
Physical Science Consortium Fellow.

1

grid computing systems, and market-based utilities. With
the right factoring of policy and mechanism, these systems
can build on the same underlying resource management
substrate. This paper explores architectural considerations
for such a substrate, and summarizes challenges posed by
the rich policy space realizable within it. In particular, we
discuss the architecural choices for autonomic orchestration
in the Shirako system [10, 16], a Java toolkit for resource
leasing services based on the SHARP framework [7]. We
illustrate some policy issues relating to the use of Shirako
for fine-grained adaptive hosting of virtual machines.

2 Separating Policy from Mechanism

Our prototype infrastructure for networked virtual com-
puting consists of a set of resource drivers and policy mod-
ules for the Shirako toolkit. Although Shirako’s leasing
model can generalize to many kinds of shared resources
(e.g., network resources), we focus on orchestrating host-
ing of Xen virtual machines, as a basis for secure, adaptive,
on-demand resource sharing in federated clusters.

In this setting, the system-level policies control VM pro-
visioning (allocation of quantities of server resources over
time) and placement of active VM images within the server
network.

Shirako emphasizes the importance of contracts between
resource providers and resource consumers (e.g., hosted ap-
plication services or users) with respect to the commitment
of resources. Shirako contracts take the form of leases,
which define the resources allocated to a user, and the du-
ration of the user’s ownership of the resources. Some in-
frastructures may be useful with weak contracts (e.g., a
well-provisioned network testbed), while others will require
stronger contracts to meet service quality targets or to en-
sure reproducible results. While the underlying lease and
contract mechanisms are common, the space of contract
attributes and values is resource-specific, and the specific
attribute sets selected for each contract is a policy choice.
Stronger contracts require stronger policies.

For example, consider an on-demand system that instan-
tiates best-effort virtual machines, with no assurance that
they will make forward progress. The provisioning problem
is trivial in this system: no admission control or resource
arbitration is needed. The placement choice might be left
to users, e.g., to seek out hosts that appear lightly loaded
at any given time. Alternatively, the providers or brokers
might coordinate placement to balance the load.

Now consider a system whose goal is to assure a pre-
dictable level of service quality for its guests. Best-effort
contracts might be adequate if the system is sufficiently
over-provisioned. The alternative is to make promises to
each consumer about the resources it will receive—how
much and/or when. Shirako represents such promises in the

lease term and in the lease attributes.
The leading VM systems, including Xen, support the re-

source control mechanisms necessary to back these stronger
contracts. Performance-isolating schedulers permit fine-
grained allocation of host server resources as a measured
and metered quantity: each guest VM is bound to a sliver of
host resources sized along multiple dimensions (e.g., CPU
capacity, memory, and network bandwidth). Slivers are
sized to meet performance targets in the guest while min-
imizing the “crosstalk” from competing VMs on the same
host. Support for VM migration [4] provides the flexibility
to satisfy new and unforeseen resource demands while re-
taining the continuity, liveness, and sliver sizing of existing
VMs. These technologies are reasonably mature, although
refinement continues.

We anticipate support for resource-controlled virtualiza-
tion of other resources as well. For example, while today’s
Internet lacks comprehensive quality-of-service mecha-
nisms, support for bandwidth-provisioned paths is increas-
ingly available on advanced networks below the IP layer.
Resource control for shared network storage continues to
be an active area of research.

A key premise of our work is that resource control and
strong resource contracts are essential to deliver on the
promise of distributed virtual computing. In particular, con-
tracts enable meaningful federation, in which common in-
frastructure is managed across administrative domains. For
federation to be sustainable the participants must have the
power to understand and control what they give up and
what they receive in return. Recent advances in virtualiza-
tion technology motivate a stronger focus on the policy im-
plications and the significant research challenges that they
raise. Resource control features are essential mechanisms,
but someone or something must control how they are used,
e.g., how to size the slivers, where to place the VMs, and
when and where to migrate. It is straightforward to expose
these choices to human operators through a control panel,
but the grand challenge is a self-managing compute utility
in which the control functions are automated and respond to
changes in real time.

2.1 Shirako: A Quick Tour

The Shirako toolkit offers a common, extensible re-
source leasing core. Leases are dynamic and renewable.
The leasing abstraction applies to any kind of computing
resource that is partitionable as a measured quantity. Re-
sources are typed, and each type is associated with a con-
troller module and a driver that controls instances of the
resource. For virtual machine computing, Shirako incorpo-
rates Cluster-on-Demand (COD [3]) as a back-end manager
for cluster sites, fitted with resource drivers to instantiate
and control Xen VMs.

2

Shirako can be used to implement simple data center au-
tomation or complex federated systems. A fundamental ar-
chitectural choice is the factoring of resource management
functions across the different stakeholders in the infrastruc-
ture. Shirako is a toolkit for implementing actors, which
are servers interacting with a messaging protocol such as
SOAP or XMLRPC. Actors can serve any of three different
roles corresponding to consumers, providers, and brokers.
A resource provider represents a cluster site, data center,
or other resource domain. Resource consumers request re-
sources according to the projected needs of a hosted service,
environment, user, or group. Resource providers cooperate
with brokers to arbitrate requests, e.g., to allocate resources
to their highest and best use. The three actor roles are re-
ferred to as service managers, site authorities, and brokers.

Shirako actors may be instantiated on the fly, and they
may associate and interact in various ways. For example, a
service manager may lease resources from multiple brokers
and sites; a site may peer with multiple brokers; a broker
may coordinate resource usage across multiple sites. Each
actor embodies its own local policies, and these policies in-
teract to automate provisioning and placement of Xen VMs
in a server network.

While this paper focuses on resource management, “or-
chestration” for virtual computing also includes the config-
uration and control of hosted application services. Service
managers include application-specific plugin code to inter-
act with a guest service or application, monitor its function-
ing, and respond to events by requesting changes to sliver
sizing or to the number of virtual machines or their location.
The plugin receives upcalls to mark the passage of time and
notify it of various events, e.g., when VMs join or leave,
and when leases are due for renewal. The service manager
has programmatic access to operator interfaces in the guest
environment and application.

We recently extended Shirako/COD to support fine-
grained sliver sizing along multiple dimensions (e.g., the
amount of CPU cycles and network bandwidth bound to a
sliver), sliver resizing on lease renewal, and policy-driven
migration to adapt to changing demands. This required mi-
nor changes to the Shirako policy interface, as well as new
features to protect the accountability of contracts, which are
beyond the scope of this paper. To support virtual machine
migration and resizing we extended the event handler set
for site authority resource drivers with a new event: modify.
The modify event handler for Xen virtual machines invokes
Xen primitives to resize or migrate a target VM, guided by
a property list passed from a policy module.

2.2 Toward a Common Control Fabric

Shirako can act as a foundational resource control plane
for a wide range of applications and even different mod-

els of distributed virtual computing. Most of the differences
among competing approaches to distributed virtual comput-
ing boil down to matters of policy, or questions of who the
players are and how much power they have, or differing ap-
plication assumptions that ultimately have little impact on
the underlying resource management requirements. These
superficial differences leave open the opportunity for a com-
mon management “fabric”.

We use the Shirako toolkit as a substrate for three ap-
proaches to networked virtual computing:
• Grid hosting. Grid computing systems coordinate job

management and data sharing within federated “vir-
tual organizations”. We developed a grid hosting sys-
tem for Globus grids on top of a Shirako resource con-
trol plane [16]. Each grid runs a Globus-aware service
manager (GROC) that interacts with a Globus moni-
toring service and procures resources in response to
changing demand within its grid. This approach en-
ables controlled co-location of multiple Globus grids
and other unrelated services on generic clusters, and
devolves grid-related management burdens from the
site administrator to the grid operator.

• Virtual batch computing. Virtual machines intro-
duce new opportunities for flexible job management
in batch computing systems. If VM instantiation is
cheap, it becomes possible to run each job within a
private virtual machine workspace [6]. It is possible to
customize the workspace for the needs of specific jobs,
and essential checkpointing and migration features are
supported in a general way at the VM level. For exam-
ple, NIMO [17] can use per-job containers and sliver
sizing as a basis for active learning of end-to-end ap-
plication performance models.

• Resource markets. As networked utilities increase
in scale, market-based control becomes attractive as
a basis for resource allocation that is fair, flexible,
adaptive, and decentralized. Strong resource contracts
enable negotiated, accountable exchanges in a mar-
ketplace. We have used Shirako to experiment with
market-based virtual machine hosting based on a self-
recharging virtual currency [9].

3 Overview of Policy Challenges

Adaptivity to accommodate different system goals can
be complex: services may request resources at any time for
any length of time, VM slivers may vary in size along multi-
ple dimensions, and VMs may be placed on host machines
in many different ways. We address these challenges by
factoring out decision logic into custom policies that fit the
particular needs of a system.

Shirako defines interfaces for pluggable policy modules
for each actor. A key principle is that provider sites control

3

the placement of VMs on their own clusters, but delegate
limited provisioning power to brokers. This decoupling of-
fers a general and flexible basis for managing a shared pool
with many resource contributors: each broker and provider
site is free to select the policies governing the resources un-
der its control. For example, brokers can coordinate site se-
lection and sliver sizing for virtual machines, while sites can
control placement of the hosted VMs on their local servers
based on local considerations, e.g., thermal load balancing
within a cluster. These policies may function within a con-
tinuous optimizing feedback loop with specific objectives,
e.g., fidelity to SLAs, utilization, global utility or revenue,
energy efficiency, or dispersion of flash crowds.

3.1 Provisioning

Resource management poses formidable algorithmic
challenges. Consider the problem of provisioning—how
much resource is allocated to each request, and when. If
different choices have different values (utility), then pro-
visioning is an instance of an NP-hard knapsack problem.
With multiple sites or host machines, it becomes a multiple
knapsack (MK) problem. If resource requests are flexible in
the number of resources they will accept, then it becomes a
multiple choice knapsack (MC). VM slivering offers a finer
degree of control over the resources, but then the knapsack
problem becomes multidimensional (MD).

Knapsack problems are NP-hard even in their simplest
form, and the MK-MC-MD variants complicate the heuris-
tics. Kelly [12, 13] has a detailed treatment of the problem
variants and approaches to solving them. Heuristics and
approximations exist, but the choices may be sensitive to
workload. Even so, it is an open question what the objec-
tive functions might be for resource provisioning in prac-
tice, and—if utility-driven allocation is indeed necessary—
what quality of approximation is adequate given the degree
of resource constraint and the presence of best-effort service
classes.

Additional features such as advance reservations and
market auctions further complicate provisioning policy. In
Shirako-based systems, the provisioning policy module in
the broker may also be responsible for site selection if mul-
tiple sites peer with the broker. Allocation of network links
and paths will present new algorithmic challenges for net-
work embedding manifested within a broker, or perhaps a
set of cooperating brokers for different autonomous systems
(peering networks).

3.2 Placement

Site-level placement policies determine the mapping of
provisioned VMs onto a site’s server network. As with pro-
visioning, placement is subject to continuous, on-line con-

trol as conditions change. A cluster placement policy might
consider several factors:
• Failures and maintenance. A cluster site may need

to remove selected hosts from service due to failure or
for scheduled maintenance.

• Overbooking. Proportional share schedulers on the
hosts may permit overbooking [18] of resources to
benefit from statistical multiplexing.

• Thermal management. A cluster site may respond
to cooling problems by placing heat-generating work-
loads away from hot spots. Placement may also sub-
stantially influence data center cooling costs at typical
utilizations [15].

• Energy management. At low utilizations, concentrat-
ing workload on a subset of servers can reduce energy
consumption proportionally if the site authority pow-
ers down unused hosts [2].

3.3 Provisioning vs. Placement

A complete system for allocating cluster resources, the
provisioning and placement policies must work together ef-
fectively. In practice, the decoupling of provisioning and
placement creates a tension between these policies. This de-
coupling simplifies provisioning and enables brokered fed-
eration. But if the site and broker policies work at cross-
purposes, then it may increase the need for migration, as
illustrated later in this paper.

Some systems have chosen to integrate provisioning and
placement tightly; for example, [11] takes an integrated ap-
proach to assigning distributed web application components
in a server cluster to meet demands and balance load under
dynamic conditions. A proactive model-based approach to
integrated multi-tier provisioning and placement was pro-
posed in [5].

Integrated policies could be implemented for one or
more data centers in Shirako by constructing a single ac-
tor that fills the roles of both a broker and site authority for
all of those sites. In essence, this structure requires that the
data centers operate under central control. The lack of site
autonomy may result in a less scalable system, and may be
unsuitable for a federation.

4 Migration

When VMs are provisioned and resized dynamically, a
cluster site may be forced to adjust its placement choices by
migrating VMs. This can occur, for example, if VM slivers
grow in response to load changes in a hosted service, or if
requests for new VMs are granted. We have extended Shi-
rako to enable site policies to control migration and check-
point/restart for Xen VMs.

4

Migrations offer cluster sites additional flexibility to im-
plement more complex and adaptive placement policies, as
suggested in the previous section. This flexibility comes at
a cost: sites must be conservative in their use of migration,
since it is expensive and disruptive.

The migration planning problem is as follows: given a
set of physical hosts, a set of slivers distributed among the
physical hosts, and a target reassignment of slivers to phys-
ical hosts, find a sequence of migrations that converges to
the target assignment with minimal cost, without violating
the capacity constraints of individual hosts. Costs include
data storage and transfer, service interruptions, and number
of migrations.

It is possible to show, using a reduction from a similar
problem [8], that finding a plan that minimizes the number
of migrations is NP-hard. Approximation algorithms exist
to solve instances of the problem at the expense of addi-
tional storage space and physical hosts.

4.1 Resource Fidelity and Migration

Migration is disruptive to the guest to varying degrees.
We can quantify the disruption with the metric of fidelity
Fidelity is a measure of the resource allotment an applica-
tion receives compared to what it is promised or what it
demands (whichever is less).

Current virtualization solutions typically offer two types
of migration: stop-and-copy and live. The former approach
suspends a VM and saves its state to stable storage. At
a later time, the VM can be reinstantiated on a different
host using the saved state. Stop-and-copy migration of-
fers more flexible migration planning, because it has lower
overhead and VM images may be saved on storage. How-
ever, it temporarily suspends all applications running inside
the VM. Live migration addresses this limitation by signif-
icantly reducing application downtime to within a few mil-
liseconds [4]. However, live migration may take longer to
complete. Overall, migration is a powerful tool but it affects
running applications and may impact on their performance.

Figure 1 illustrates the impact of both kinds of migration
on fidelity. In this experiment, we run gamut [14] on a
guest VM. gamut is a synthetic application that interleaves
execution of a compute-intensive loop with periods of idle-
ness to match a target CPU utilization. We fix the target
CPU rate and measure the number of iterations the appli-
cation performs as its VM is being repeatedly migrated be-
tween two physical hosts.

All migration operations in Figure 1 complete within a
few seconds. It also shows how migration affects appli-
cation fidelity. When a migration occurs, application per-
formance degrades. Stop-and-copy migration decreases fi-
delity more noticeably since the application must be sus-
pended and its VM copied to the destination. Surprisingly,

 0

 200

 400

 600

 800

 1000

 1200

 0 100 200 300 400 500 600

Ite
ra

tio
ns

 (m
illi

on
s)

Time (seconds)

live
stop-and-copy

Figure 1: Progress of a synthetic gamut benchmark running in
a Xen VM that migrates on every lease extension under Shi-
rako/COD. Stop-and-copy migration interrupts the application for
up to 20 seconds, while live migration is less disruptive.

live migration occasionally increases fidelity since the Xen
hypervisor requires some time to set the resource limits on
a new virtual machine. This may affect the performance of
not only the migrating VM, but of all VMs hosted on the
same physical host. In our policies, we use stop-and-copy
migration only when live migration is not possible, e.g, the
migration plan has circular dependencies.

5 Brokering and Migration in Shirako

Federated utilities, such as grids, may become very large,
with many cluster sites and multiple guests competing for
resources. In these cases it is important to balance the au-
tonomy individual cluster sites have to implement their own
local policies with the system’s ability to allocate resources
globally to their highest and best use. To accommodate this
balance, we factor out policy from individual cluster sites
into common intermediaries, or brokers.

Introducing brokers as separate entities carries further
the logical separation of provisioning and placement (Sec-
tion 3). Provider sites control the placement of VMs on
their own clusters, but they explicitly delegate provision-
ing power for some or all of their resource holdings to one
or more brokers. Brokers may run on behalf of third par-
ties and may arbitrate lease requests for multiple providers.
Controlling both provisioning and placement at the cluster
site offers the potential to integrate provisioning and place-
ment policy, but factoring out provisioning into a broker
makes it possible to coordinate resource assignment across
multiple autonomous sites. A broker can satisfy multiple
requests for resources at different sites atomically. Bro-
kers offer another level of indirection, which may be used
to arbitrate contending requests from many guests, e.g., to
maximize a global provisioning objective. Further, this de-
coupling of function enables a competitive market for third-

5

guest

VM

site
physical hosts

logical inventory
request allotment

place allotment

resize

migrate VM

broker
resize

(a) (b) (c) (d)

guest guest

Figure 2: Sites delegate rights to provision host servers to brokers (a). Brokers determine how to allocate resource slivers from their logical
inventory to serve requests. Sites use a local policy to map allocated slivers to host servers, and bind them to virtual machines (b). Guests
may request to resize their slivers, e.g, in response to changing load (c). Sliver resizing or fragmentation may force the site to migrate a
VM to another host (d).

party brokers to allocate shared infrastructure.
As suggested in Section 3.3 there is a tension between

provisioning (in the broker) and autonomous placement
policies in the site. Since the cluster site uses its own local
placement policy, it may place VMs in a way that conflicts
with the broker’s provisioning choices, especially when VM
slivers grow. If the broker is correct and honest, then some
feasible placement will always exist to satisfy its provision-
ing choices. The broker maintains an assignment—based
on a partial mapping of logical resource units onto the phys-
ical nodes at the site—as a side effect of its provisioning
policy. If the site deviates from this default placement, the
broker’s provisioning choices may force it to migrate to ob-
tain a feasible assignment, even if a different placement pol-
icy (or provisioning choice) could have avoided the migra-
tion.

Figure 2 demonstrates a simple example of how more
migration can occur when a broker and a cluster site use
policies with competing objectives. In Panel (a), the broker
has two hosts delegated to it from the site which it places
into its logical inventory. As the broker provisions requests,
using resources from its inventory, it places them following
the room-for-growth policy. The room-for-growth policy
is a greedy algorithm that fills requests in a worst-fit fixed
order based on resource availability and the number of re-
quests at the broker for every allocation period. The worst-
fit heuristic gives the broker maximum flexibility to satisfy
any subsequent growth in guest slivers requested when the
guests renew their sliver leases.

In contrast, the cluster site places machines following a
greedy best-fit policy (Panel (b)). This policy packs VMs
onto machines as tightly as possible. We refer to it as
energy-aware because it allows the cluster site to power
down idle hosts to save energy. The conflict between these
policies occurs when a guest requests its VM to be resized

multiple times: due to its policy, the broker has space on its
inventory host, but the site must eventually migrate the VM
to a different host to accommodate the growth (Panels (c)
and (d)).

If the placement policy cannot locate free space for a new
sliver, it migrates VMs to create space; VMs are migrated
to hosts according to the provisioning policy’s placement—
this ensures that space will be made for the new sliver.
We are exploring a home-based migration scheme that re-
stores a feasible placement in a bounded number of steps,
at the price of reserving memory at each VM’s home node.
To preserve accountability, the broker annotates its direc-
tives with a verifiable proof that its sequence of VM sizing
choices always has a feasible assignment at each site. The
site can derive a feasible placement in linear time from the
state it maintains as it verifies these proofs. This default
placement defines each VM’s logical “home”.

Our current approach to migration in Shirako simplifies
migration planning. If migration is necessary, Shirako per-
forms live migration if there is enough space on the new
host. However, if live migration is not possible Shirako sus-
pends the VM and saves its image to disk, making use of ex-
tra storage space to reduce the complexity of the problem.
Suspending the image to disk prevents potential deadlock
and breaks any migration loops. The placement policy is
free to place VMs on hosts independent of the provisioning
policy as long as it can locate free space. We are investigat-
ing the tradeoff between the placement flexibility offered by
migration and the performance overhead incurred.

5.1 Migration Experiment

To demonstrate how separating provisioning and place-
ment may cause additional migrations at a cluster site, we
perform an experiment to show the number of migrations

6

 0

 100

 200

 300

 400

 500

 600

 0 100 200 300 400 500 600 700

M
ig

ra
tio

ns

Time (hours)

migrating/energy-aware
room-for-growth/energy-aware

migrating/follow-broker

Figure 3: Number of migrations incurred for three broker/cluster
site policy combinations. Different combinations of provisioning
and placement policies incur different numbers of forced migra-
tions. The largest number of migrations results when the broker
provisioning policy incorporates migration, and the site selects a
conflicting placement using an energy-aware placement policy.

at a cluster site when using two different provisioning and
placement policies. For this experiment we run an emu-
lation of two competing applications in a hosting site de-
ployment of 100 physical machines. Two guests request re-
sources; one based on a one month trace from a production
application service in a major e-commerce website, and the
other based on a job trace from a production compute clus-
ter at Duke University. Guests request VMs at the granu-
larity of half the size of a physical machine (e.g., one-half
share CPU, memory, bandwidth, disk). For the purpose of
this example, the cluster site delegates full control to the
broker over subdividing its resources into VMs. The bro-
ker provisions VMs for guest applications and, in doing so,
creates a logical placement of resources within its logical
inventory.

For our experiment we use two cluster site placement
policies: (1) follow-broker that follows the broker’s pro-
visioning decisions when performing its placements, and
(2) energy-aware that tightly packs machines as described
above. We also use two broker provisioning policies: (1)
room-for-growth that loosely allocates VMs to machines as
described above, and (2) a migrating variant that allows
broker migration. Broker migration occurs when a broker
moves an allocated VM in its logical inventory to a differ-
ent logical machine; this may occur if the proposed size for
the VM being resized cannot fit on its initial machine. This
can allow the broker to potentially allocate a request that
would otherwise fail.

Figure 3 shows the cumulative number of migra-
tions the cluster site performs for each of three sce-
narios: room-for-growth/energy-aware, migrating/energy-
aware, and migrating/follow-broker. The fourth scenario,
room-for-growth/follow-broker, is not pictured as it leads

to no migrations. By using a broker and cluster site with
competing policy goals, we approximate worst case migra-
tion behavior at the cluster site. As intuition suggests, the
number of migrations at the cluster site increases when the
broker uses migrations to satisfy requests (migrating). From
the three alternatives presented in Figure 3, when the cluster
site uses its follow-broker policy, there are the least number
of migrations. For room-for-growth/energy-aware, we ob-
serve less than 500 migrations over the month long trace.

6 Conclusion

Enhanced performance of virtualization technology ex-
poses the need to address the resource management chal-
lenges in this space. The ability to control the resources
assigned to a single VM creates a need for an intelligent in-
frastructure that can adapt to changing demands and condi-
tions by automatically “turning the knobs” of performance,
isolation, migration, and sliver resizing. This paper exposes
some of the challenges that resource management must ad-
dress.

The Shirako architecture factors provisioning and place-
ment where provider sites retain control over VM place-
ment, but delegate limited provisioning power to brokers.
This separation is key to preserving a site’s autonomy in
a federated infrastructure: a cluster site is unlikely to con-
tribute substantial resources to an infrastructure that does
not allow it to control placement objectives (e.g., energy or
thermal-aware) that may contribute significantly to operat-
ing costs. We show how migration is a useful mechanism
to resolve conflicts between the separate provisioning and
placement policies.

We also outline extensions to the Shirako resource leas-
ing toolkit to allow sliver allocation, sliver resizing, and
to enable site policies to control migration and check-
point/restart for Xen VMs. We are using this system to ex-
plore the policy space for adaptive virtual machine hosting
on federated clusters.

References

[1] P. Barham, B. Dragovic, K. Faser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the Art of Vir-
tualization. In Proceedings of the Nineteenth ACM Symposium on
Operating Systems Principles (SOSP), October 2003.

[2] J. S. Chase, D. C. Anderson, P. N. Thakar, A. M. Vahdat, and R. P.
Doyle. Managing Energy and Server Resources in Hosting Centers.
In Proceedings of the 18th ACM Symposium on Operating System
Principles (SOSP), pages 103–116, October 2001.

[3] J. S. Chase, D. E. Irwin, L. E. Grit, J. D. Moore, and S. E. Sprenkle.
Dynamic Virtual Clusters in a Grid Site Manager. In Proceedings
of the Twelfth International Symposium on High Performance Dis-
tributed Computing (HPDC), June 2003.

[4] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach,
I. Pratt, and A. Warfield. Live Migration of Virtual Machines. In

7

Proceedings of the 2nd Symposium on Networked Systems Design
and Implementation (NSDI), May 2005.

[5] R. P. Doyle, O. Asad, W. Jin, J. S. Chase, and A. Vahdat. Model-
based resource provisioning in a Web service utility. In Proceedings
of the Fourth USENIX Symposium on Internet Technologies and Sys-
tems (USITS), March 2003.

[6] I. Foster, T. Freeman, K. Keahey, D. Scheftner, B. Sotomayor, and
X. Zhang. Virtual Clusters for Grid Communities. In Cluster Com-
puting and Grid (CCGRID), May 2006.

[7] Y. Fu, J. Chase, B. Chun, S. Schwab, and A. Vahdat. SHARP: An
Architecture for Secure Resource Peering. In Proceedings of the 19th
ACM Symposium on Operating System Principles, October 2003.

[8] J. Hall, J. Hartline, A. R. Karlin, J. Saia, and J. Wilkes. On Algo-
rithms for Efficient Data Migration. In Proceedings of the 12th ACM-
SIAM Symposium on Discrete Algorithms (SODA), January 2001.

[9] D. Irwin, J. Chase, L. Grit, and A. Yumerefendi. Self-Recharging Vir-
tual Currency. In Proceedings of the Third Workshop on Economics
of Peer-to-Peer Systems (P2P-ECON), August 2005.

[10] D. Irwin, J. S. Chase, L. Grit, A. Yumerefendi, D. Becker, and K. G.
Yocum. Sharing Networked Resources with Brokered Leases. In
Proceedings of the USENIX Technical Conference, June 2006.

[11] A. Karve, T. Kimbrel, G. Pacifici, M. Spreitzer, M. Steinder,
M. Sviridenko, and A. Tantawi. Dynamic Placement for Clustered
Web Applications. In Proceedings of the 15th International World
Wide Web Conference (WWW), May 2006.

[12] T. Kelly. Utility-Directed Allocation. In First Workshop on Algo-
rithms and Architectures for Self-Managing Systems, June 2003.

[13] T. Kelly. Generalized Knapsack Solvers for Multi-Unit Combinato-
rial Auctions. In Workshop on Agent Mediated Electronic Commerce
VI: Theories for and Engineering of Distributed Mechanisms and
Systems, July 2004.

[14] J. Moore, J. Chase, K. Farkas, and P. Ranganathan. Data Center
Workload Monitoring, Analysis, and Emulation. In Proceedings
of Computer Architecture Evaluation using Commercial Workloads,
February 2005.

[15] J. Moore, J. Chase, P. Ranganathan, and R. Sharma. Making Schedul-
ing “Cool”: Temperature-Aware Workload Placement in Data Cen-
ters. In Proceedings of the 2005 USENIX Annual Technical Confer-
ence, pages 61–74, April 2005.

[16] L. Ramakrishnan, L. Grit, A. Iamnitchi, D. Irwin, A. Yumerefendi,
and J. Chase. Toward a Doctrine of Containment: Grid Hosting with
Adaptive Resource Control. In Supercomputing (SC06), November
2006.

[17] P. Shivam, S. Babu, and J. S. Chase. Learning performance models
in network utilities. In IEEE International Conference on Autonomic
Computing (ICAC), June 2006.

[18] B. Urgaonkar, P. Shenoy, and T. Roscoe. Resource Overbooking and
Application Profiling in Shared Hosting Platforms. In Proceedings
of the 5th Symposium on Operating Systems Design and Implemen-
tation, December 2002.

[19] C. A. Waldspurger. Memory Resource Management in VMware ESX
Server. In Symposium on Operating Systems Design and Implemen-
tation, December 2002.

8

